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Abstract

Koka Reservoir in Ethiopia, which serves as an essential water source for local inhabitants, has faced severe toxic

cyanobacteria blooms. A conventional technique has been employed to monitor the trend. Though this technique has

been proven accurate, it has been expensive and laborious. Hence, a satellite remote sensing technique is proposed to

offset these challenges. The main objective of this paper is to explore two satellite-derived indices, which involved

cross-validation of the floating algal index (FAI) derived from Sentinel-2 MSI and Landsat-8 OLI imagery. We further

investigated the link between the FAI and normalized difference chlorophyll index (NDCI) using Sentinel-2 MSI. The

findings showed that FAI values derived from MSI imagery were slightly higher than those derived from OLI imagery. A

strong positive linear regression coefficient (R2 = 0.82), indicated that the FAI algorithm is a sensor-insensitive-

suggesting it could be used for algal bloom monitoring in Koka Reservoir.
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Introduction

The spread of harmful algal blooms in water bodies is now a significant concern for the entire world (Trottet et al. 2021). It

is driven by increased domestic and commercial sewage discharges, excessive use of fertilizers and manure in

agriculture, and eutrophication of surface waters (Haque, 2021). Algal blooms are typically associated with severe

depletion of oxygen, drastically reducing water transparency, and the formation of toxins- threatening aquatic and

terrestrial organisms and human health (Major et al., 2018). Numerous cyanobacterial toxins have been linked to acute

and potentially chronic public health issues and the lethal poisoning of domestic and aquatic animals. Consuming

seafood, such as fish raised in areas where harmful algal blooms exist, poses the same public health risk as

cyanobacterial toxins (Tilahun & Kifle, 2019). Currently, the Koka Reservoir, the subject of this study, is in the worst

condition, with Microcystis aeruginosa dominating the cyanobacterial assemblage. The number of total microcystins

(MCs) has significantly exceeded the WHO-permitted standard (1µg/L) (Tilahun et al., 2019). A situation that requires

urgent attention and regular monitoring of the reservoir.

Over the past decades, a conventional water quality monitoring technique has been employed in the Koka Reservoir.

Though this technique has been proven accurate, it has failed to consider the spatial variability of water quality

parameters in the reservoir. Several chlorophyll-a algorithms have been demonstrated to perform well with satellite

imagery to estimate concentrations in turbid inland water bodies. These include a semi-analytical NIR-Red band algorithm

for MERIS (Gons et al., 2005), Cyanobacteria Index(Wynne et al., 2008), 708/665 empirical band ratio (Gilerson et al.,

2010), Maximum Peak Height (Matthews et al., 2012) and Normalized Difference Chlorophyll Index (NDCI; Mishra and

Mishra, 2012). However, these algorithms have not been applied extensively to Ethiopian lakes. Sentinel-2, a land

monitoring constellation of two satellites launched in 2015 and 2017, offers enhanced spatial (10-60 m) and temporal

resolution (5 days) (Soomets et al., 2020). They are perfect for monitoring small to medium-sized lakes and reservoirs.

They also provide excellent coverage of water constituents. The thermal infrared sensors aboard the Landsat satellites,

operational since 1984, can also perform retrospective analysis and monitor the surface temperature of small to medium-

sized lakes and reservoirs every two weeks (Sharaf, 2021). The floating Algal Index (FAI), also initially developed by Hu

(2009) for the Moderate Resolution Imaging Spectrometer (MODIS), has been highly recommended for monitoring surface

oil slicks, algal blooms, and coastal water quality.

The FAI is calculated by subtracting a reflectance value in the near-infrared (NIR) from the baseline reflectance in the NIR

band that is derived from a linear interpolation between the red and short-wave infrared (SWIR) bands. The underlying

idea of this index is that floating algae have higher reflectance in NIR than other wavelengths such that they can be easily

distinguished from water. This index is characterized by the robustness to environmental and observing conditions (Hu,

2009). Sentinel-2 MSI and Landsat-8 OLI are equipped with the above three necessary bands to obtain FAI. To effectively

estimate chl-a in turbid waters, the Normalized Difference Chlorophyll Index (NDCI) has also been proposed by Mishra

and Mishra (2012) for the Medium Resolution Imaging Spectrometer (MERIS) sensors. These researchers established a

strong polynomial relationship between NDCI values and in-situ measured chl-a. The index is calculated using two bands,

of which the central wavelengths are 708 nm and 665 nm, respectively. The two wavelengths represent the reflectance
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peak and absorption feature of chl-a. Page et al. (2018) slightly modified this algorithm for Sentinel-2 MSI and exploited

the 704 nm wavelength instead of 708 nm.

Since the band centered at 704 nm is lacking in the OLI sensor, it is impossible to calculate an NDCI value and a chl-a

concentration directly. However, Page et al. (2018) demonstrated that the relationship between processed Sentinel 2 MSI-

derived FAI and NDCI (denoted hereafter as FAIMSI and NDCIMSI) could be exploited to derive NDCI values and

subsequent chl-a concentrations, even when the OLI sensor is used. In this study, the application of the FAI technique is

essential because the Sentinel-2 MSI imagery for Lake Koka is available in Google Earth Engine (GEE) after December

2018, while the Landsat-8 OLI has been available since May 2013. The field data from 2013 to 2017 is also available.

GEE is a robust cloud-based spatial analytical tool, and users can access various image collections. GEE provides Level-

2 products for OLI and MSI images and can be used without atmospheric correction.

Therefore, the main objective of this study is to explore two satellite-derived indices, which involved cross-validation of the

FAI derived from Sentinel-2 MSI and Landsat-8 OLI imagery, as well as investigating the link between the FAI and NDCI

using Sentinel-2 MSI to demonstrate temporal and spatial heterogeneity of optical characteristics in the Koka Reservoir,

which reflects phytoplankton dynamics in the water body. We further attempted to understand chl-a distributions in the

whole part of the reservoir in different seasons, using NDCI that can be used as an indirect index to measure chl-a

abundance. The created maps were associated with variations in land surface temperature and precipitation in this

region.

Methods

Description of the study

The Koka reservoir (Fig 1), also known as Lake Galilea, was created in 1960 by constructing the Koka Dam across the

Awash River to generate hydroelectricity. It is located in the Misraq Shewa Zone of the Oromia Region, about 90

kilometers south of Ethiopia's capital city, Addis Ababa, at 8°45′ N and 39°15′ E. The Koka reservoir is fed by two rivers,

the Awash (primary) and the Mojo (minor), which flow into it from the west (Getnet et al., 2021). Koka reservoir is used not

only for generating electricity but also it is known for its domestic water supply, commercial fish farming, recreation, and

irrigation. The reservoir is also known for tourism (Fasil et al., 2011).
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Figure 1. Map of Koka Reservoir with sampling sites

 

Data collection approach

We first exploited Joint Research Center (JRC) Global Surface Water Occurrence data, version 1.3, to remove land areas

from the lake boundary. The reflectance from land surfaces was avoided for the analysis. We further adopted a technique

that Donchyts et al. (2016) proposed, including Normalized Difference Water Index, the Canny edge filter, and Otsu

thresholding. After delineating water areas, we assessed the similarity between FAIMSI and Landsat-8 OLI processed FAI

images (FAIOLI) in randomly generated points over the entire lake. Images of two dates (i.e., December 15, 2018, October

31, 2019) were subject to this analysis since the overpass times of the two satellites were almost coincident (within 20

min). After that, we examined the relationship between FAIMSI and NDCIMSI in other randomly generated points using 12

cloud-free MSI images throughout the year 2019 (i.e., January 9 and 14, February 13, March 15, April 14 and 29, May 4

and 19, June 13, September 1, October 21, and November 15). Forty random points were generated per image, and 400

out of 480 pairs of FAI and NDCI values were retrieved and used to establish the correlation. From January to April, a part

of the lake dried up, and some water areas in the south were almost isolated from the rest. We split the lake into two parts

accordingly and generated random points to investigate different behaviors in these two parts. The resulting regression

equation between FAISen2A and NDCISen2A was further evaluated to compare FAIOLI with NDCIMSI at four different times

(i.e., April 8, June 27, September 15, December 4, 2020), when both satellite overpasses were coincident. Meanwhile, the

relationship between FAIOLI and in-situ chl-a concentrations was examined using field sampling data obtained at three

offshore locations (i.e., sites No. 1-3) from 2013 to 2016 (the total number of data points was 27) and three other different

locations (i.e., sites No. 4-6) on May to August 2017 (the total number of data points was 12). Figure 1 shows the

locations of sampling points covered in this study, of which more detailed information is summarized in Table 1. 
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Site id Coordinates Sampling months References

1 8.350°N, 39.083°E August, December 2013, February to April 2014 Major (2016)

2 8.446°N, 39.094°E
March, April, May, October, November 2015 January
2016

Zewde et al. (2018)

3 8.359°N, 39.036°E May 2015 to April 2016 (except September 2015)
Tilahun and Kifle
(2019)

4 8.357°N, 39.004°E

May to August, 2017 Aynalem (2018)5 8.349°N, 39.027°E

6 8.469°N, 39.151°E

Table 1. Sampling site information

 

Finally, mappings of NDCI values using MSI imagery were created over the entire lake in three different seasons (dry,

minor rainy and heavy rainy) in 2021: February 2, May 18 and September 10 as representative data for the three seasons.

We used MODIS-derived land surface temperature data for auxiliary climate-related data, an average-8-day composite

data in a 1200 × 1200-kilometre grid. The central point of the lake (8.393°N, 39.090°E) and a location near the west

shoreline (8.420°N, 39.014°E) were chosen as monitoring points for MODIS imagery. Additionally, we obtained

precipitation data via Global Rainfall Map (GSMaP_MVK) by JAXA Global Rainfall Watch (produced and distributed by the

Earth Observation Research Center, Japan Aerospace Exploration Agency).

Results

The FAI values derived from MSI imagery were slightly higher than those derived from OLI imagery, but a strong positive

linear correlation (R2 = 0.82) was observed between FAISen2 and FAIOLI (Figure 2a). This indicates that the FAI algorithm

is rather sensor-insensitive. A relationship between FAIMSI and NDCIMSI is displayed in Figure 2b.
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Figure 2. (a) Relationship between MSI-derived FAI vs OLI-derived FAI, and (b) relationship between MSI-derived FAI vs NDCI.

Note: The former was based on images of 2 dates when both satellite overpasses were coincident on December 15, 2018, and

October 21, 2019. One hundred random points were generated over the entire lake for each image, and 192 out of 200 pairs were

retrieved and displayed. For the latter, 12 cloud-free MSI images throughout the year 2019 (i.e., January 9 and 14, February 13,

March 15, April 14 and 29, May 4 and 19, June 13, September 1, October 21, and November 15) were obtained. Fourth random

points were generated per image, and 400 out of 480 pairs of FAI and NDCI values were retrieved and used to establish the

correlation. 

 

The plot colors were changed depending on the times: (i) January to April, (ii) April 29 and May 4, and (iii) middle May to

November. The FAI values lower than -0.05 consist of the only dataset from the middle of May to November, and even in

higher FAI values than -0.05, NDCI values were consistently lower for this dataset. Plots of the dataset from April 29 and

May 4 were located in the middle of the other two datasets but still close to the dataset from the middle of May to

November. However, the dataset from January to April exhibited higher NDCI values, even with lower FAI values. We

further investigated data for January to April. Scatter plots for the north and south parts are presented in Figure 3.
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Figure 3. Scatter plots of MSI-derived FAI vs NDCI for January to April. The entire lake was split into two parts, namely the north and south, of

which the red line represented the boundary

 

Plots from the south part exhibit higher NDCI values compared with those from the north parts. To derive a relationship

between FAIMSI and NDCIMSI, we decided to separate data from the south part from the January to April data, while data

from the north part were combined with data from May to November. In Figures, 4a and b, the resulting linear regressions

were shown, and the regression equations were NDCIMSI = 1.13 FAIMSI + 0.106 (R2 = 0.66), and NDCIMSI = 2.33

FAIMSI + 0.215 (R2 = 0.43), respectively. We further confirmed the two patterns of FAI vs NDCI with a dataset obtained at

four different times (i.e., April 8, June 27, September 15, and December 4, 2020) when both satellite overpasses were

coincident. Again, we observed in Figure 4c that in April and December, NDCI values were consistently higher than those

in June and September. Next, we looked into a relationship between FAIOLI vs in-situ chl-a. In-situ data were obtained at

three offshore sampling locations (sites No. 1 to 3) from 2013 to 2016 (N=27) and obtained at sites No. 4 to 6 from May to

August 2017 (N=12).
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Figure 4. (a) Resulting relationship between MSI-derived FAI vs NDCI for (a)

January to April data of the north part as well as May to November data of the

whole part, (b) January to April data of the south part 

 

As shown in Figure 5, (a) and (b), data from site No.2 were well fitted to the previously proposed equations (Mishra and

Mishra, 2012 and Makwinja et al. (2022); however, data from site No.1 and No.3 were consistently higher or lower than

the solid or dashed lines. We acknowledged that sampling dates were unknown exactly, except for months, and there

might be a possibility that sampling water contained higher chl-a. However, based on the stability of FAI values in about

20 days, the Lake Koka waters appeared to be not very variable within this range, so we suspect that chl-a concentrations

in site No.1 were too high. Also, there were typically macrophytes near site No.3, which might have caused apparent high

FDI values.
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Figure 5. (a) Comparisons of MSI-derived NDCI to OLI-derived FDI at four different

times (i.e., April 8, June 27, September 15, December 4, 2020), when both satellite

overpasses were coincident, (b) the relationship between OLI-derived NDCI vs in-

situ chl-a obtained at three offshore sampling locations (site No. 1 to 3) in 2013 to

2016 (N=27) and obtained at sites No. 4 to 6 in May to August 2017 (N=8).

 

OLI-derived NDCI and the higher and lower NDCI lines in Figure 5(a) were obtained from equations presented in Figures

2 and 3. FAIOLI was first converted to FAIMSI, and then NDCI was calculated based on the two different regression

equations. The error analysis was conducted for April and June datasets in Figure 5(a). The mean absolute percentage

errors for those datasets were 20.0 and 36.2%, respectively.

Figure 6 shows the NDCIMSI distribution maps for the entire lake in three different seasons, which are dry, minor rainy,

and heavy rain. Considering that an NDCI value is positively correlated with a chl-a concentration as demonstrated by

previous studies, even though there are no established equations to estimate chl-a obtained in this study, we can

understand a spatio-temporal variation of NDCI distribution maps as a proxy for chl-a concentration maps. In a dry

season, the south part exhibited higher values, while the rest showed relatively low values, and the distribution was

homogeneous (Figure 6a).
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Figure 6. NDCI mapping for Lake Koka at three different

seasons (minor rainy, heavy rainy, and dry): (a) February

2, 2021; (b) May 18, 2021; (c) September 10, 2021.
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On the contrary, in a minor rainy season, the northern part exhibited higher values, compared with the south, except for

the isolated small part in the south. It turned out that the NDCI values got lower almost entirely in a heavy rainy season.

As can be seen in Figure 7, surface water temperatures were stable in a range of 18 to 25℃ for the entire year; however,

surface land temperatures tended to be higher, particularly in the first half of the year, peaking at higher than 45℃ in May,

and dropped to less than 30℃ when the heavy rainy season started in June. After that, the surface temperature gradually

incremented toward the end of the year.

 

Figure 7. (a) Precipitation and (b) surface temperature data (water and land) in the Lake Koka

region in the whole year of 2021. The central point of the lake (8.393°N, 39.090°E) and a location

near the west shoreline (8.420°N, 39.014°E) were chosen as representative monitoring points.

Discussion

Financial and institutional constraints hinder in situ water quality data availability in lakes in remote areas such as Koka

Reservoir. Additionally, in situ monitoring has limited spatial and temporal coverage, making it difficult to obtain

information on water quality dynamics across the lake. The introduction of remote sensing applications overcomes the

drawbacks that traditional field monitoring methods have and would open new perspectives for lake monitoring (Bouffard

et al., 2018). This study demonstrated the first application of satellite image analysis to Koka Reservoir to facilitate an

understanding of phytoplankton dynamics and to monitor water resources with a fine-scale spatial variation. As Willén et

al. (2011) reported, Koka Reservoir has suffered from recurrent blooms of Microcystis aeruginosa, the dominant species

Qeios, CC-BY 4.0   ·   Article, November 29, 2022

Qeios ID: XCILYC   ·   https://doi.org/10.32388/XCILYC 11/16



among the cyanobacterial assemblage. Blue-green surface scum is often observed on the water surface. This was

thought to be a good situation where the utility of FAI was proven. This study, however, showed that relying solely on FAI

was not acceptable since there were two patterns between FAI vs NDCI relationships, as demonstrated in Figure 2 (b),

unlike the single relationship observed in the literature (Page et al., 2018). 

This study further revealed the spatial and seasonal heterogeneity of optical characteristics of water in Koka Reservoir.

Koka Reservoir is divided into two parts in half a year in terms of optical properties (see Figure 3). In addition, there are

three distinct seasons in the region where Koka Reservoir is located: dry, minor rainy and heavy rainy seasons. The

relationship between FAI and NDCI revealed that we could group datasets of the nearly whole year (January to

November) into two subsets: (i) January to April data of the north part plus May to November data, (ii) January to April

data of the south part. This observation could not have been achieved without satellite data and a novel finding for Koka

Reservoir. Agricultural lands are considered a significant source of nutrient inputs for Koka Reservoir. Rapid population

growth and intensive agriculture practices, especially in the Awash catchment, have accelerated soil erosion. The surface

runoff in the catchment during a heavy rainy season (from mid-June to mid-September) causes the river to transport

sediment and nutrient into the Koka Reservoir (Tilahun et al., 2019). The accumulated nutrients could lead to

cyanobacteria proliferation observed during other months (i.e., dry and minor rainy seasons) (Major et al., 2018). These

phenomena were detected with NDCI mappings, as shown in Figure 6.

Interestingly, our results showed that in a dry season, high activity of phytoplankton in the Koka Reservoir was mainly

distributed in the southern part; however, this distribution was shifted to the northern part (a vast part of the reservoir) in a

minor-rainy season. As another nutrient input to Koka Reservoir in a dry season, Tilahun and Kifle (2021) studied

atmospheric sources and found that this was indeed associated with high concentration levels of ammonia. They

suspected that the origin was direct emission from fertilized agricultural lands and animal wastes produced from

livestock. Ammonia is favourable for cyanobacteria since the assimilation requires less energy (Tilahun and Kifle,

2021). Tilahun and Kifle (2019) reported that the observed low level of nitrogen and soluble reactive phosphorus in 2015

could probably be related to a reduction of nutrient inputs delivered through rivers due to El Niño induced drought in

Ethiopia. The low concentrations of nitrogen and phosphorus may also have resulted from active denitrification processes

and adsorption to the existing abundant silt due to the intense mixing of the shallow water column, respectively (Zewde et

al., 2018). During this period, the proliferation of diazotrophic cyanobacteria was observed, as they have a tolerance to

severely limited nitrogen conditions and can fix nitrogen gas. However, phosphorus can be replenished through an internal

cycle from the sediment pool (Tilahun and Kifle, 2019). When the sediment condition is anoxic, phosphorus retention is

low, making the lake system more vulnerable to external inputs. This means that long-term increases in phytoplankton

could be induced due to a rise in phosphorus loads from the watershed, as observed in another African lake, Lake Malawi

(Li et al., 2018). The southern portion of Koka Reservoir exhibited particularly in a dry season consistent higher NDCI

values, which indicate phytoplankton activities. This part is most affected by the impacts of land use in the Awash

catchment. The proper management to mitigate nutrient load from the catchment will be required to prevent further

degradation of the reservoir's water quality.

According to Tilahun et al. (2019), the concentration level of total microcystins (MCs) reached 45–54 μg/L, far beyond the
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permissible level (1 μg/L) set by WHO. They observed exceptionally high concentrations of MC variants in May; however,

the concentrations decreased from October to February, and those of extra-cellular MC variants were below the detection

limit. They suggested that the intense solar radiation and high water temperature induced photolysis and bio-degradation

of the extra-cellular toxins, leading to low levels of those toxins in most months throughout the year. However, sparse

monitoring data make it difficult to accurately assess the whole situation, as point estimates typically do not represent the

entire part of the reservoir. Since there is no practical method to estimate the toxin from satellite imagery directly, we still

need to rely on chl-a concentrations or subsequently estimated cyanobacteria cell counts. The plausible range of the alert

level for toxic cyanobacteria species is between 12 and 25 μg/L set by WHO (Matthews et al., 2012). To mitigate blooms

and their toxins, understanding the link between environmental variables and spatio-temporal dynamics of cyanobacteria

is crucial to managing Koka Reservoir effectively. Those variables include physicochemical, biological and climatological

factors (e.g., water temperature, pH, nutrient availability, transparency, and solar radiation) (Tilahun and Kifle, 2019).

Considering the cyanobacteria's ability to adjust their vertical position with its gas vacuoles, conditions leading to the

dominance of cyanobacteria have been well studied in the literature (Major et al., 2018): low light, high temperature, and

low euphotic depth to mixing depth ratio. (Paerl, 2014) reported that cyanobacteria growth is inhibited when water

temperature exceeds 35°C. According to MODIS-derived water surface temperature, water in Koka Reservoir appears to

be stable in the range of 20-25°C, which means that cyanobacteria growth is less likely to be diminished due to this factor.

Dilution of the reservoir water due to precipitation contributes to mitigating cyanobacteria bloom(Coffer et al., 2020). In

fact, as shown in Figure 6 (c), phytoplankton activity was apparently suppressed across the entire part during a heavy

rainy season. The solar radiation in this region is intense, except for a heavy rainy season, based on MODIS-derived land

surface temperature [see Figure 7(b)]. As noted earlier, cyanobacteria have a unique capacity to adjust their positions with

buoyancy. Under strong sunlight, they move lower in the water column, which may cause an under-representation of

satellite-derived indices(Coffer et al., 2020). The discrepancy between field observations (particularly ones obtained in site

No.1) and satellite data observed in Figure 5 (b) can be explained by this situation.

As Koka Reservoir serves as an essential water resource for people living nearby, the remote sensing application could

be extended to an early warning system to let the public know about the possible occurrence of blooms. It is beneficial for

local inhabitants to understand where and when algal bloom occurs at a specific point of interest. However, we need to

note that satellite remote sensing has some limitations. Satellite images are unavailable when the water surface is

covered with clouds, typically during a rainy season (Sawtell et al., 2019). Another limitation is that the satellite sensor is

unable to detect portions of water in the depth direction, which could fail to capture the stratified structure of phytoplankton

distributions in the water column. Also, in areas very close to the shore, water is optically shallow and could induce false

signals from bottom reflectance, which could be misinterpreted as phytoplankton (Coffer et al., 2020). Some of these

limitations can be resolved with the integration of in-situ and remote sensing data with numerical simulations (Bouffard et

al., 2018).

Conclusion
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An effective way to complement time-consuming field monitoring activities is through satellite remote sensing. There has

been a demand for remote sensing-based water quality monitoring systems because of the rise in the frequency of algae

blooms and the global degradation of water, including Koka Reservoir. This study was successfully completed using two

operational satellite sensors on the Koka reservoir. Cross-validation of the FAI derived from Sentinel-2 MSI and Landsat-8

OLI imagery was also performed, and the results demonstrated that the FAI algorithm is relatively sensor-insensitive

because FAI derived from MSI imagery were slightly higher than those derived from OLI imagery but had a strong positive

linear correlation. Furthermore, based on the image generated in this study, the Koka reservoir appears to be divided into

two parts in half a year by its optical properties, revealing the spatial and seasonal heterogeneity of water's optical

characteristics. For nearly a year, arranging and grouping the reservoir datasets was possible based on the FAI-NDCL

relationship results. Additionally, NDCL mapping revealed a high activity of phytoplankton in the Koka reservoir, first in the

southern part and then spreading to the north during a minor rainy season. In general, the overall results from the

Sentinel-2 and Landsat-8 platforms, combined with more systematic in-situ sampling, will play a considerable role in fully

understanding the phytoplankton community in Koka Reservoir, as well as pave the way for authorities to develop

concrete monitoring systems based on detailed information and spatially variable data generated by both satellite remote

sensing algorithms and filed data.
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