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Time-series data often arises during the monitoring and evaluation of ongoing industrial processes.

Time series forecasting requires accurate data modelling through the description of inherent

structures such as trend, cycle, and seasonality by collecting and modeling stochastically the historical

data points of a time series. In this paper, we are concerned with industrial time series data that is

limited and not readily available for accurate machine learning tasks, e.g., online fraud and network

intrusion data. In this scenario, modeling of time series can be achieved through generative modeling

activities in deep learning. Then, abundant temporal data can be generated and used in different ways

to achieve application-level forecasts and predictions. We focus on the use of Generative Adversarial

Networks (GANs) to model and generate limited real-world time-series data. We discover that this is a

relatively new research domain with research trends generally focusing on employing real data to

generate or forecast the time series through the GAN in a supervised manner. On the contrary, we

adopt a novel approach that is completely unsupervised, i.e., we employ GAN to generate limited time

series data from a (gaussian) noise distribution as input without any additional input vector of real

data. To achieve realistic generative performance in this situation, we propose and implement a

feedback mechanism through which GAN improves its performance by using historically generated

time series (and never the real data). Using different experimental con�gurations, we demonstrate

that our approach generates realistic limited intrusion detection data from the standard CIC-IDS2017

dataset.
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I. Introduction

Time-series data and its applications are recently increased in different domains such as Service demand

prediction in network traf�c data, scenario forecast in power generation, Oil Price forecasting, Railway

passenger volume forecast, crime forecasting with sequence data, Commercial building Electricity time-

series prediction, missing sensor data records in weather predictions, human behavior prediction.

However, an adequate amount of data is required to produce the time series prediction and forecasting

framework. [1] Existing works relying on complete information of historical data are not able enough to

deal with real-time scenarios because a signi�cant portion of historical data is not available due to many

reasons such as cost, time and privacy, etc. Deep learning comes up with a data generation mechanism

with its deep neural networks such as Variational Autoencoder and GANs. VAE, on one hand, uses original

data with a latent code sample at the input side to process its generation process whereas GANs take the

random data sample and generates the synthetic data [2].

As nonlinear mapping, GAN can learn data distribution well, and the generator of GANs can be used to

deal with limited data problems and imbalanced datasets. Generative Adversarial Networks (GANs) learn

the data distribution in an adversarial manner.  It aims at generating the synthetic data sample

indifferentiable from real data sample by jointly training its two neural networks, i.e. Discriminator and

Generator.

GAN was supposed to be used in image handling problems as largely shown in the previous work.

Recently, the GAN framework is extended for sequential or time-series data now, called sequence

generative networks and has shown promising results in capturing the dynamics of this kind of data to

bene�t prediction and forecasting applications plus the generated samples assist various tasks such as

data augmentation and incompleteness of data. For instance,  [3]  proposed a deep generative model for

electronic health records data to produce labelled data using real patient records. In [4], conditional GAN

with LSTM layers in both discriminator and generator was used to predict the hotspots using the

previous hotspots data. To extract temporal and spatial features of data, cluster analysis (DBSCAN) was

also modi�ed to cater to noise. [5] designed a data generation algorithm to resolve the issue of imbalanced

data with minority class using conditional generative adversarial network. Based on the GAN framework,

proposed a method [6] to predict the building electricity data with limited data by generating the target

qeios.com doi.org/10.32388/XCPE04 2

https://www.qeios.com/
https://doi.org/10.32388/XCPE04


data using the available similar data. A conditional Generative Adversarial Network with an underlying

architecture of a decoder in the Generator module is used to generate future predictions to overcome the

problem of historical data incompleteness for service demand prediction  [7]. A cycle-consistent

generative adversarial network (CycleGAN) is used in  [8]  to learn daily changes of the leaf and disease

from hyperspectral images using the real data at the input side of the generator. For evaluation purposes,

images are aligned over time using a feature-based method. Again in  [9], the input to the generator

involves the use of both real data and noise signals. The authors combine adaptive scales continuous

wavelet transform with supervised GAN models to forecast crude oil prices Moreover, in [10], the authors

propose TadGAN which is a time-series anomaly detector which is providing  a dynamic threshold for

classi�cation that uses LSTM as a base model and trained with cycle consistency loss. The proposed GAN

method is used to generate suf�cient abnormal data to cover all possible anomalies since the decision

tree model is not robust.  In  [11], the authors motivate themselves by the problem of scarcity of medical

data and hence use GANs to generate medical synthetic data. By comparing the performance of learning

systems over the latter, the authors prove the resemblance and utility of the latter to real-world data.

In a revolutionary work  [7], the authors argue that GAN-based time series generation solutions are not

capable of modeling properly the temporal dynamics while the supervised sequence prediction solutions

are deterministic by nature. So, they combine both approaches in their proposed TimeGAN architecture.

This uses data embeddings with noise instead of real data to force the GAN to follow the stochastic

dynamics of the real data to produce the time-series data. Inspired by the application of GANs, we

implement them to provide an intuitive approach for generating time-series data to bene�t the tasks

such as prediction, forecasting, and classi�cation tasks. The proposed method leverages the bene�ts of

the long-short-term memory (LSTM) to learn the temporal structure of data whereas GAN is used to

characterize the evolving features and enhance the ability of the model to generate the data.

II. Background Knowledge

Typically, GAN consists of a generative model i.e. Generator (G) and Discriminator (D). First

Discriminator is trained with real data and fake generated data by G, then outputs the probability of the

sample coming from real and fake data in order to distinguish the real data in the training set from the

fake data following the mini-max game [4]. Therefore, to train a discriminator D given a generator G, it is

likely to maximize the probability of the discriminator predicting the data x coming from    and

minimize the probability of the discriminator predicting the generated data   coming from  .

Pdata

G (z) Pdata
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On the other hand, a random sequence of noise(z) from a certain probability distribution is given to the

generator (G) that tries to fool the D and outputs a quality generative sample by maximizing the

probability of its own outcome.

where represents the distribution of real data. whereas G(z;θg) consumes some noise input and produces

a piece of generated data. Therefore,    denotes the distribution of noises where normal

distribution  N(0,1) and uniform distribution  U(0,1) are the common choices  D  and  G  are iteratively

optimized using the existing binary cross entropy loss that is usually available in most of the deep

learning training frameworks by setting the target probabilities for real data sequence X as 1.0 and the

target probabilities for fake data sequence Z as 0.0, where 1.0 represents the data was from real for with a

probability of 1.0 and 0.0 represents the data was from fake for with a probability of 0.0.

III. Proposed methodology

Our proposed methodology has two combined novel features: 1) unsupervised and 2) feedback in GAN.

Both Generator and Discriminator have 3- Layers of LSTM. The reasons are that: (1) LSTM is capable of

exhibiting temporal dynamics compared to feed-forward networks and CNNs; (2) LSTM utilizes three

gates to protect and control the cell state, which mitigates the gradient vanishing and exploding

problems compared to RNNs  [11],  [12]  ;(3) LSTM has been used in a majority of related papers. Like the

above standard GAN framework in section 2, our model also optimizes two neural networks (i.e.,

generative network and discriminative network D) with a minimax two-player game. In the model, D

tries to distinguish the real data sequence in the training data from the sequence generated by G, while G

maximizes the probability of D making a mistake and this adversarial process can eventually adjust G to

generate the realistic sequence of data.

mi ma V (D,G) = ∼ (x) [logD (x)] + ∼ (z) [log (1 − D (G (z)))] (1)nG xD Ex Pdata Ez Pz

ma V (G;D) = ∼ (z) [logD (G (z))] (2)xG Ez Pz

(z)Pz
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Random numbers sampled from a normal distribution N(0, 1) with the dimensions of the dataset and

represented input to the generator z in the form of shifted time-series that was a vector with 

  in order to be a multivariate

normal distribution. Speci�cally, the noise zmzmzm  t at time to of a particular feature is based on its

three previous timestamps values. So, G generates the data 

 with the input of random noise input. Then Discriminator

is trained with the real data sequence of 

  and fake generated data

sequence of    where k is the time lags of the data and the

feature type = 1,2,3,…m. The problem we consider can be described as: given  Z  with its previous and

current values k, generate the target time series with the same pattern i.e. past and current values of true

data sequence X. In this sequence, we can add t+1, t+2, … t+k values for forecasting the future values too, but

for now we keep it simple. To address this problem, we propose a novel generating framework, which

applies the generative adversarial learning strategy to obtain the realistic adversarially generated time

series X^ to generalize any arbitrary time series.

Relying solely on the training of the generator with single noise input may not be suf�cient incentive for

the generator to capture the true distributions of the data  [6]. To achieve this more ef�ciently, we

introduce an additional input through feedback to further discipline learning. First, we trained the

discriminator in the same standard manner and update the generator via’s discriminator error. After

every 10 epochs of this training, we start observing the divergences in both data distributions. First, we

initially generate the  data(xfake)   again with noise input sequence (Z) and calculate the 

 between the  and real data (X) as shown in (1). Similarly, in (2) we determine

the   between Z and  . We then add the product of   and product

of   with X to compute the feedback input for the generator as mentioned in (5). Repeated the

same training procedure of discriminator with newly generated samples from the generator and

generator with the new input noise sequence

Z{ (t − k) , (t − k − 1) , (t − k − 2) , … , (t − k − n) , t}zm zm zm zm zm

zm

X {  (t−k),  (t−k−1),  (t−k−2),….  (t−k−n),  t}xm xm xm xm xm

X { (t − k) , (t − k − 1) , (t − k − 2) , … . (t − k − n) , t}xm xm xm xm xm

X { (t−k), (t−k−1), (t−k−2),…. (t−k−n), t}xm xm xm xm xm

data( )xfake

KL-divergence(kl_ _X)xfake

KL-divergence(kl_ _Z)xfake xfake kl_ _Xxfake

kl_ _Zxfake

kl_ _X = ( ∥X) (3)xfake DKL xfake

kl_ _Z = ( ∥Z) (4)xfake DKL xfake
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The schematic of our proposed method is shown in Fig. 1.

Figure 1. GAN-based Time-Series Data Generation Model

= kl_ _X ∗  Z + kl_ _Z ∗ X (5)znew xfake xfake
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Algorithm

IV. Results and Discussion

In this section, we describe a series of experiments that we have conducted to evaluate the effectiveness

of our proposed method. A combination of different hyperparameters including batch size and

timestamp were applied to an IDS dataset selected for this research. From this multivariate data

(CIDS_2017) containing six large �les we took one �le which is named ‘Thursday_WorkingHours-

Morning-WebAttack’ because of the presence of various attacked data labels. The dataset covers the time
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from 8:59 am till 12:59, contains 85 features and 458968 rows which is a more suitable dataset regarding

the performance of GAN. In this data, we took only the anomalous data with no labels and important

features to learn the attacked pattern only. Therefore, the model was applied only on 2180 rows and 78

features. The dateTime column has been added to generate sequences of �xed-frequency dates and time

spans though the Timestamp column is present however it’s not uniform and cannot be directly used for

pre-processing.

The GAN model has been trained using the python Library Keras(1), since we haven’t found any single

utility library to analyze time-series data using a deep-learning model. Both of the neural networks of

GAN are built upon 3 Layers of LSTM followed by Leaky-ReLU with the exception of the output layer. We

use batch normalization and Adam optimizer with a mini-batch size. The learning rate was set to 0.001

and epochs to 500 for both networks. Various methods are compared under the evaluation of the

evaluation metric of Root Mean Square (RMSE), Mean absolute error (MAE), KL-divergence and JS-

Divergence. Table I and Table II presents the results of GAN without feedback and to acquire the best

hyperparameters for our model.

Methods RMSE MAE KL-DIV JS-DIV

GAN-LSTM (mini Batch16) 1.187 0.974 22.129 0.315

GAN-LSTM (mini batch=32) 1.997 0.975 21.589 0.313

GAN-LSTM (mini batch=64) 1.195 0.973 21.687 0.314

Table I. Training Results 

Methods RMSE MAE KL-DIV JS-DIV

GAN-LSTM (mini batch16) 1.127 0.972 21.217 0.307

GAN-LSTM (mini batch=32) 1.133 0.965 19.846 0.298

GAN-LSTM (mini batch=64) 1.1482 0.972 19.946 0.3002

Table II. Testing Results
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In these tables, we can see a smaller difference between training and testing hence there is no over�tting

and under�tting problem. We picked the best mini batch size = 32 due to the stability of results during

training and testing to apply our proposed methodology. However, it is quite obvious that KL-divergence

which is an important metric to evaluate has a very high value as compared to other metrics because if

two distributions perfectly match,     otherwise it can take values between 0 and ∞. The

lower the KL-divergence value, the better we have matched the true distribution with our

approximation[13]. Therefore, we introduce the KL-divergence in our method to further consider the

magnitude difference between the fake and true data distribution.

A. Evaluation Metric and Baselines 

There are plenty of existing error metrics, but our primary concern is with minimizing the amount of

information we have to send to the distribution that preserves the most information from our original

data source.  Kullback-Leibler  (KL) divergence is the  expectation  of the log difference between the

probability of data in the original distribution with the approximating distribution.

KL divergence is formally de�ned as follows.

Where q(x)  is the approximation and p(x)  is the true distribution we’re interested in matching q(x)  to.

Intuitively this measures how much a given arbitrary distribution is away from the true distribution.

(p||q) = 0DKL

(p||q) = E [logp (x) − logq (x)]DKL

(p||q) =   N p(xi). logDKL ∑
i=1

p(xi)

q(xi)
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Training Model RMSE MAE KL-DIV JS-DIV

GAN-LSTM <---- JS-Div 1.075 0.789 0.663 0.032

GAN-LSTM <--- KL-Div 1.076 0.788 0.641 0.032

GAN-LSTM <---- WS-Div 1.044 0.742 0.855 0.040

Table III. Feedback Training Results

Testing Model RMSE MAE KL-DIV JS-DIV

GAN-LSTM <---- JS-Div 1.12 0.843 0.244 0.0232

GAN-LSTM <--- KL-Div 1.111 0.824 0.177 0.0203

GAN-LSTM <---- WS-Div 0.981 0.628 1.616 0.071

Table IV. Testing Feedback Results

We have applied three divergences i.e.  Jensen–Shannon  divergence (JS),  Kullback-Leibler(KL) divergence

and  Wasserstein distance  (WS) in our method as mentioned in equation 3 and equation 4. The feedback

mechanism with KL-div has shown superior results over the other two divergences particularly with the

evaluation metric of KL-divergence and JS-divergence as shown in Table III and Table IV. RMSE was

improved by 0.01% with JS-divergence during training and 0.001 during testing, MAE was improved by

0.002 during training and 0.13 during testing. 0.21% in KL-div during training and 0.19 % in testing.JS-

div metric in was improved by 0.003% during training and testing. With KL-divergence and Wasserstein

Distance, RMSE was improved by 0.01 during training and 0.002% during testing, MAE was improved by

0.18 during training and 0.14% during testing. 0.215% in KL-div during training and .196 % in testing.JS-

div metric in was improved by 0.003% during training and testing with both  KL-divergence and

Wasserstein Distance. MAE was improved by 0.0023 during training and 0.0034% during testing

With Wasserstein Distance. 0.213% in KL-div during training and 0.18 % in testing.JS-div metric in was

improved by 0.003% during training and testing.
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The tables V, VI, VII, VIII, and IX reveal the accuracy, precision, and F1-score of LSTM, Random Forest,

Xgboost, Support Vector machine, Decision Tree. We compare the proposed GAN feedback model with

the above-mentioned classi�cation approaches. Initially, we generated the fake anomalous data from the

generator, applied PCA to reduce the dimensions to make it easier for the model to classify and merged

with the original PCA applied benign data to attain the classical results, then perform the classi�cation

task on the original data of IDS.

Precision Recall F1-score Accuracy

BENIGN 1.00 1.00  1.00

0.992

ATTACK 0.68 0.69 0.69

Table V. LSTM

Precision Recall F1-score Accuracy

BENIGN 1.00 1.00  1.00

0.995

ATTACK 0.78 0.90 0.84

Table VI. Decision Tree

Precision Recall F1-score Accuracy

BENIGN 1.00 1.00  1.00

0.986

ATTACK 0.85 0.91 0.88

Table VII. Random Forest
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Precision Recall F1-score Accuracy

BENIGN 0.99 1.00  0.99

0.876

ATTACK 0.83 0.03 0.06

Table VIII. Support Vector Machine

Precision Recall F1-score Accuracy

BENIGN 1.00 1.00  1.00

0.985

ATTACK 0.79 0.90 0.84

Table IX. XGBOOST

Conclusion

In this paper, we introduce a novel method for time-series generation that combines the unsupervised

GAN approach with the feedback mechanism. Leveraging the contributions of the unsupervised loss and

trained with random noise generated data as a feedback loop based on KL-divergence, our model

demonstrates consistent and signi�cant results when compared with the classi�cation models which

shows that our model is able to generate realistic time series data. In the future, further work may

investigate incorporating the prediction datasets into our model in order to generate high-quality time-

series data over state-of-the-art benchmarks in generating realistic time-series data.

Footnotes

(1) https://keras.io/
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Additional References

  “Time-series generative adversarial networks - Google Search.” https://www.google.com/search?

client=�refox-b-d&q=Time-series+generative+adversarial+networks  (accessed Apr. 16, 2022).
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