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Abstract

Cryptocurrencies are risky currencies due to their extreme price volatilities and requires an estimation of coherent risk

measures for an effective portfolio optimization and risk management. We focus on seven cryptocurrencies (Bitcoin,

Ethereum, Litecoin, Ripple, Das, Monero, and Steller) and provide empirical application of Fissler and Ziegel joint loss

dynamic models (FZL) for joint Value-at-Risk (VaR) and Expected Shortfall (ES) in a cryptocurrency context at α= 0.01

and α= 0.025 risk levels. Results show Ethereum and Steller as less risky currencies followed by Monero, Das, Litecoin,

Bitcoin, and largest for Ripple suggesting that Ethereum and Steller requires the least capital to absorb losses.

Following this result, we argue that market participants interested in cryptocurrencies can follow the rankings in this

study to hedge, calculate margins, and capital requirement to maximize utility whiles minimizing risk to ensure financial

stability in the global economy.
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1. Introduction

Following Basel III international regulatory framework on the development of enhanced risk management system for

financial institutions after the global financial crises in 2008/2009, the international financial system has faced a new

challenge with the introduction of cryptocurrencies1, decentralized virtual currencies with excess price volatility (Caporale

and Zekokh 2019). Since then, studies have modelled volatility in cryptocurrency market but not incorporating volatility

during extreme tail events by applying Fissler and Ziegel joint loss dynamic models (FZL) for joint Value-at-Risk (VaR) and

Expected Shortfall (ES) in cryptocurrency market. The studies mainly focused on the predictable variance and missed out

on the tails of distribution of the cryptocurrencies (Bouri, Mahamitra, Gupta, and Roubaud, 2018; Bouri, Shahzad, and

Roubaud, 2019; Corbet et al., 2018; Omane-Adjepong, Alagidede, and Akosah, 2019; Catania et al., 2018; Katsiampa,

2019; Yi et al., 2018; Koutmos, 2018; Ji et al., 2018). Notably, extreme market conditions largely reflect in the

distributional properties of returns referred to as tail events. Tail events particularly have consequences for risk
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management and portfolio diversification.

Other approaches of examining volatility in cryptocurrency market using VAR, GARCH, and Copula methodology are also

evident in the literature (Gkillas, Bekiros, and Siriopoulos, 2018; Gkillas and Katsiampa, 2018; Trabelsi, 2018; Borri, 2019;

Huynh et al., 2018; Huynh, 2019). Evidence from such studies suggests that cryptocurrencies are highly dependent at the

tails and are exposed to tail-risk. The empirical literature also has evidence studies that have attempted to estimate and

predict Value-at-Risk (VaR) and Expected Shortfall (ES) in the cryptocurrency market. For instances, Caporale and

Zekokh (2018) model the volatility of Bitcoin, Litecoin, Ethereum, and Ripple applying GARCH models to a one-step

ahead forecast of Expected Shortfall and Value-at-Risk. The results show that GARCH models incorrectly predict ES and

VaR which can lead to ineffective portfolio optimization, risk management and derivative pricing. The authors recommend

asymmetric distributions for such analysis.

The study of Troster, Tiware, Shahbaz, and Macedo (2018) model Bitcoin return and risk using GAS and GARCH

framework. Findings show that Generalized Autoregressive Score (GAS) framework with heavy tail asymmetric

distributions provided best goodness-of-fit and out-of-sample forecast compared to heavy-tailed GARCH models. Angelini

and Emili (2018) predict the volatility of six cryptocurrencies using GARCH-M, EGARCH, APARCH, TGARCH, and the

simple GARCH for 700 daily cryptocurrency prices in a one-step ahead forecast in a recursive manner and findings show

that the EGARCH performed better than the other GARCH models. Konstantinos and Katsiampa (2018) make use of

extreme value technique to estimate ES and VaR of five cryptocurrencies: Bitcoin, Bitcoin Cash, Ethereum, Ripple and

Litecoin. The results of the study show Bitcoin cash as the riskiest cryptocurrency whiles Litecoin and Bitcoin have the

least risk profile.

Nevertheless, all the above studies missed out on the FZL function for joint VaR and ES in a univariate GAS framework.

As noted by Catania et al. (2018), the time series of cryptocurrencies exhibit the stylized facts of other financial time

series which includes extreme observations, time-varying volatility, and asymmetric volatility process even though they

provide their owners immense profit when invested at the right time. These stylized facts have been confirmed by Corbet

et al. (2018a), Troster, Tiware, Shahbaz, and Macedo (2018), Borri (2019), and Huynh (2019). The authors note that, the

newly emerged digital assets comprises USD billions everyday but exhibit extreme price volatility, are fat-tailed, and

exposed to tail risk and requires coherent risk measures such as Value-at-Risk and Expected Shortfall in a model which

can capture all conventional moments without assuming normality.

Value-at-Risk measures a quantile of the distribution of an asset and ignores critical information concerning the tails of the

distributions beyond this quantile, whiles Expected Shortfall measure the average return of an asset conditional on the

return being below its Value-at-Risk level (Aas and Haff, 2006). Expected Shortfall which robustly measure tail risk was

proposed by Basel III2 after the global financial crises to complement and in part substitute Value-at-Risk measure which

do not comprehensively capture tail risk (BIS, 2013; Basel Committee, 2010; Patton, Ziegel, and Chen, 2019). Basically,

Expected Shortfall is Value-at-Risk calibrated to stress market conditions with regulatory capital sufficient under both

tranquil and extreme market turmoil (BIS, 2013). However, despite being a coherent risk measure (Artzner et al., 1999) in

contrast with VaR, ES is not elicitable3 and robust in estimation procedures as in VaR (Fissler & Ziegel, 2016; Cont,
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Deguest, & Scandolo, 2010; Burzoni, Peri, & Ruffo, 2017; Nolde & Ziegel, 2017; Fissler, Ziegel, & Gneiting, 2015).

Nonetheless, the study of Fissler and Ziegel (2016) show that the couple ES and VaR is jointly elicitable at higher order.

Subsequently, the authors proposed a joint loss function for ES and VaR hereafter referred to as FZL which replaces the

traditional backtesting in Basel III with comparative backtesting. Given that ES and VaR are coherent risk measure, there

is no empirical application of joint loss dynamic models (FZL) for joint VaR and ES in cryptocurrency markets risk analysis

which is the major contribution of this study. Given the extreme price volatility of cryptocurrencies coupled with their

exposure to tail risk, it is important to estimate appropriate risk metrics by choosing suitable asymmetric distributions that

can adequately capture tail risk, volatility clusters, and skewness which can be used for calculating margins, capital

requirement, and hedging to ensure financial stability in the global economy.

As required by Basel III that financial institutions worldwide are to implement and regularly disclose VaR and ES of

required capital, VaR and ES will gain increased attention form bank supervisors, risk managers, regulators, and investors

worldwide. Thus, to account for the empirical limitations of ignoring the stylized facts of cryptocurrency returns in a

coherent risk measure, we apply six different asymmetric distributions in the univariate GAS framework proposed by

Harvey (2013) and Creal et al. (2013) to estimate and forecast VaR and ES using FZL function for joint VaR and ES. This

has implications for investors and risk managers, especially financial institution risk management4 on the occasion that

they invest in cryptocurrencies. The intuition is drawn from Extreme Value Theory (EVT)5 by Fisher and Tippett (1928).

The theory concerns itself with the modelling of the tails of a distribution and its key results. The EVT literature has

become popular because it recognizes extreme observations as an important stylised fact for the estimation of risk

measures. As Cecchinato (2010) notes it is important to know the stylized facts of financial data in order to choose the

best fitting model for it. Ignoring heavy tails, time-varying volatility, asymmetric response to bad and good news, and

skewness can lead to underestimating risk with a possible consequence of default of a firm, bank, or an investor which

can impair financial stability. Results from FZL function for joint VaR and ES show that, at both α = 0.01 and α = 0.025 risk

levels, Ethereum and Steller has the least risk profile followed by Monero, Das, Litecoin, Bitcoin, and largest for Ripple.

Our results suggest that at α = 0.01 and α = 0.025 risk levels, Ethereum and Steller requires the least capital to absorb

losses followed by Monero, Das, Litecoin, Bitcoin, and Ripple.

The remainders of the study are structured as follows. Section 2 covers a description of the methodology. Section 3

covers a description of data and statistical properties. Section 4 captures the results and discussion on FZL function.

Section 5 is the conclusion and policy implications.

2. Methodology

The section describes the approach used to apply the FZL function for joint VaR and ES in cryptocurrency market risk

analysis. Our approach is based on the univariate GAS framework. Since FZL and GAS are score driven, FZL can better

be estimated by GAS model given the fundamental property of score function between them.
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2.1 Univariate GAS model specification

The univariate GAS framework also known as Score Driven (SD) models and Dynamic Conditional Score models

proposed by Harvey (2013) and Creal et al. (2013) is a valuable tool for prediction and signal extractions which is more

robust to volatility clusters, skewed, and fat-tailed distributions (Ardia, Boudt, and Catania, 2018; Troster, Tiware,

Shahbaz, and Macedo, 2018).

GAS models introduce a driving mechanism for time-varying parameters by using the score function of the predictive

model density at time t instead of only higher moments and means and can model all types of time series data. GAS

models encompass popular models such as the autoregressive conditional duration, generalized autoregressive

conditional heteroskedasticity, autoregressive conditional intensity, poisson count models with time‐varying mean, and the

dynamic copula models (Creal, Koopman, and Lucas, 2012). Empirical application of GAS model for financial risk

forecasting include; Oh and Patton (2016) for systematic risk, Blasques, Koopman, Lucas, and Schaumburg (2016b) for

spatial econometrics, Harvey and Thiele (2016) for dependence modeling, and Harvey and Sucarrat (2014) for market

risk.

The study follows the GAS framework proposed by Harvey (2013) and Creal et al. (2013), which is specified as:

 rt Ft−1 ∼  p rt; θt  (1)

Where Ft−1 denotes the past values of cryptocurrency returns ( rt) up to t − 1, θt ∈ Θ ⊆ RJ represents a time-varying

parameters’ vector that fully identifies p(. ) , and p rt; θt  is the returns conditional distribution.

The GAS model in equation (1) is defined with autoregressive component incorporated as:

θt+1 = ω + Ast + Bθt, (2)

st = St θt

∂logp rt; θt

∂θt , (3)

Where ω is a vector of constant, A , and B are coefficient matrices, st is the steps of the scaled-score vector, 

∂logp rt ;θt

∂θt

 is the score of (1) that is appraised at θt, and St θt
 6 is a positive definite scaling matrix that adjusts the shape of the

score specified as:

St θt = Et−1

∂logp rt; θt

∂θt

∂logp rt; θt
′

∂θt
−1

(4)

Where Et−1denotes an expectation with respect to p rt; θt .
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Equations 1 to 4 define the GAS framework and we use GAS(1, 1) in all estimations in line with Mensah and Alagidede

(2017), Ardia, Boudt, and Catania (2016; 2018), and Creal et al. (2013).

2.2 Selected distributions for the univariate GAS model

In the univariate GAS framework; specifications for skewed-Gaussian (SNORM), student-t (STD), skewed-student-t

(SSTD) (Fernández and Steel, 1998), asymmetric student-t with two tail decay parameters (AST), asymmetric student-t

with one tail decay parameter (AST1) (Zhu and Galbraith, 2010; 2011), and asymmetric Laplace (ALD) (Kotz et al., 2012)

are considered7. These distributions are selected because of their flexibility to incorporate the features of financial returns

which are skewed, fat-tailed with volatility clustering (McNeil et al., 2015) in forecasting the FZL for cryptocurrencies.

2.2.1. STD, SSTD, and SNORM

A skewness parameter in general controls the asymmetry of the central part of a distribution. In risk management and

finance, STD, SNORM, and SSTD has single tail parameter used to model tin/heavy tails and skewness in conditional

distribution of financial returns (Zhu and Galbraith, 2010; Fernández and Steel, 1998). The general form of STD, SSTD,

and SNORM distributions is defined as:

rt Ft−1 SSTD rt, μ, σt, ζ, v (5)

Where Ft−1 denotes autoregressive conditional distribution of rt, μ ∈ R is the location parameter, σt > 0 is time-varying

scale, ν > 2 is shape parameter, and ζ > 0 denotes skewness. In line with Ardia, Boudt, and Catania (2016; 2018),

Bauwens and Laurent (2005) we parameterize equation (5) so that Vart−1 rt = σ2
t , and Et−1 rt = μ. We recover as

special cases SSTD imposing SNORM when ζ = ∞, and SSTD imposing STD when ζ = 1.

2.2.2. AST, AST1

The AST distributions have skewness and two tail parameters which control the left and right tail behavior of financial

returns. The two tail parameters increase the capacity to fit and forecast financial returns in the tail regions which is crucial

for risk management (Zhu and Galbraith, 2010). The AST and AST1 distributions in this study have zero location

parameter, unity (one) scale parameter with probability density function expressed as:

AST rt; θ =

1
σ 1 +

1
ϑ1

rt−μ

2ασK ϑ1
2 − ϑ1+1 /2

, rt ≤ μ

1
σ 1 +

1
ϑ2

rt−μ

2(1−α)σK ϑ2
2 − ϑ2+1 /2

, rt > μ

(6)

where θ = (α, ϑ1, ϑ2, μ, σ)T,  α is skewness, ϑ1 is left tail, ϑ2 is right tail, μ is location, σ is scale parameter, with 

| ( )

[ ] [ ]

( ) { [ ( ( ) ) ] ( )

[ ( ( ) ) ] ( )
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Κϑ = (Γ(ϑ + 1)∖2)/[√πϑΓ(ϑ/2)], for ϑ1, ϑ2 ∈ ϑ .

2.2.3. ALD

The most suitable skewed simplification of classical Laplace law which robustly measure fat-tail, skewness, and

leptokurtic characteristics of financial returns is ALD (Kotz et al., 2012; Zhao et. al., 2015) with probability density function

specified as:

f rt; θ, σ, κ =

κ(1 − κ)
σ exp −

rt − θ

σ κ − I rt ≤ θ , (7)

where −∞ < θ < ∞ is location parameter, σ > 0 is scale parameter, and 0 < κ < 1 is skewness with indication function as 

I(. ).

We employ Kotz et al. (2012), Blasques, Koopman, and Lucas (2014) maximum likelihood estimator jointly with one-step

ahead forecast to estimate the parameters in all the distributions.

2.3. FZL Function for joint VaR and ES

The two standard risk measures used in finance are Value-at-Risk (VaR) and Expected Shortfall (ES) (Jorion, 1997; Ardia,

Boudt, and Catania, 2018). However, these two standard risk measures fall short in their own rights under the properties

of a coherent risk measure (Acerbi and Szekely, 2014; Acerbi and Tasche, 2002). Value-at-Risk is elicitable using the

quantile loss function but not sub-additive whereas ES is not elicitable since it has no loss function but coherent and

comonotonically additive (Ziegel, 2016; Bellini and Bignozzi, 2015). Nevertheless, Fissler and Ziegel (2016) show that

VaR is jointly elicitable with ES, and thus a dynamic model can be built for both. Subsequently, the authors proposed a

joint loss function for ES and VaR hereafter referred to as FZL which replaces the traditional backtesting in Basel III with

comparative backtesting. Following Fissler and Ziegel (2016), we explore the FZL dynamic model for joint VaR and ES

which is based on the univariate GAS framework.

As noted by Artzner et al. (1999) the VaR α ∈ (0,  1) for a random variable X with a distribution function F is defined as:

VaRα(X) = inf{x |F(x) ≤ α}. (8)

ES is specified as:

E X X > VaRα (9)

As noted by Fissler and Ziegel (2016) VaR and ES are jointly elicitable as the values of vt and et that minimize the sample

average of the loss function:

( ) (
( )

[ ( )])

( | )
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FZ rt, vt, et, α,  G1, G2 ≡ dt − α G1 vt − G1 rt +

1
αG2 et vt − G2 et

1
αdtrt − et − G2 et , (10)

where G1 and G2 are strictly increasing, G2 = 0, and G′
2 = G2. In line with Ardia et al. (2018), Patton et al. (2017), we

assume strictly inverse values for VaR and ES by setting G1(x) = 0 and G2(x) =

−1
x  . We specify the associated FZ loss

function for predicting VaR and ES at α risk level at time t as:

FZLα
t ≡

1

αESα
t dt rt − VaRα

t +

VaRα
t

ESα
t + log −ESα

t − 1, (11)

for ESα
t ≤ VaRa

t ≤ 0. We average FZ losses over the OOS period to calculate the QL.

2.4. FZL backtesting and model comparison

The study follows a typical out-of-sample exercise where model parameters are estimated using in-sample (IS) period of

length M, predictions on the conditional distribution in the out-of-sample (OOS) period H and model comparison made

according to their out-of-sample performance. Thus, h-step (h = 1) ahead daily forecast of the return distribution of

cryptocurrencies at time M + h is generated along with corresponding FZL level in a recursive manner until the end of the

series T.

We test the null hypothesis of equal predictive accuracy (EPA) of the six asymmetric distributions using the multivariate

version (MDM) of Mariano and Preve (2012), and Diebold and Mariano (1995). In line with Blazsek and Hernandez (2018),

we rank the six competing models for FZL by calculating the mean absolute error (MAE) 1/Tf∑
Tf
t=1 |pt − p̄

t |  between

realized and forecast values and the model with least MAE is chosen as candidate for backtesting.

To verify the precision of predictions and check the correct coverage of unconditional and conditional left-tail of log-

returns, four backtesting procedures of FZL forecasts at the risk level8 α = 0.01;  α = 0.25 of cryptocurrency returns are

performed by implementing Kupiec (1995)’s correct unconditional coverage (UC)9, Christoffersen (1998)’s correct

conditional coverage (CC)10, dynamic quantile (DQ)11 by Engle and Manganelli (2004), and quantile loss (QL)12 by

(Koenker and Bassett, 1978).

3. Data description and preliminary analysis

We focus on seven cryptocurrencies (Bitcoin, Ethereum, Litecoin, Das, Ripple, Monero, and Steller) for the cryptocurrency

market risk analysis. The cryptocurrencies sampled have existed for the past two years and are among the top fifteen

currencies by market capitalization and can proxy for the cryptocurrency market. Daily data is sourced from

CoinMarketCap and spans 10th August 2015 to 18th February 2019. We calculate returns as change in log price for

Monday-to-Friday series.

( ) ( )( ( ) ( ) ( ) ) ( )( ) ( )

( ) ( )
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We split the period of analysis (10/8/2015 – 18/2/2019) into in-sample (IS) (10/8/2015 – 11/12/2017) representing the

estimation period and out-of-sample (OOS) (12/12/2017 – 18/2/2019) representing the forecasting period as per out-of-

sample forecasting exercise. We choose the OOS as the forecast length since backtesting periods are based on the

forecast length. As prescribed by BIS (2013), the OOS is a minimum of one year and percentiles are 99 and 97.5.

Table 1 presents summary statistics on the seven daily cryptocurrency return series studied. In the first panel we present

the composite summary statistics on the seven return series. Average daily return ranges from 0.2% for Bitcoin and

Ethereum to 0.55% for Steller and daily variance range from 0.18% for Bitcoin and Ethereum to 0.88% for Steller. Litecoin,

Ripple, Das, Monero, and Steller are positively skewed except Bitcoin and Ethereum. The second panel shows the in-

sample summary statistics with average daily returns of -0.026% for Ripple to 0.084% for Ethereum and daily variance of

0.03% for Das to 0.059% for Ethereum. All the cryptocurrencies are positively skewed except Bitcoin. The out-of-sample

summary statistics in the third panel exhibit negative average return for all cryptocurrencies except Litecoin, daily variance

range from 0.02% for Bitcoin to 0.099% for Ripple, whiles Bitcoin, Ethereum, Monero depicts negative skewness. In

general, kurtosis and skewness values across the board show leptokurtic and non-normality in cryptocurrency returns

which is confirmed by the Shapiro-Wilk test by rejecting the normality assumption at all conventional levels of significance.

These non normality features can also be observed from the time series plots of the cryptocurrencies in Figure 1 which

goes to support the need for using asymmetric distributions in modelling the tail risks of the cryptocurrencies.

Table 1. Summary statistics of Cryptocurrencies
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Composite Bitcoin Ethereum Litecoin Ripple Das Monero Steller

Observ. 885 885 885 885 885 885 885

Mean 0.002 0.002 0.0007 0.0026 0.0021 0.0026 0.0055

Variance 0.0018 0.0018 0.0038 0.0044 0.0035 0.0044 0.0088

Skewness -0.2356 -0.2356 1.2575 4.5132 0.2983 4.5132 2.1108

Kurtosis 4.7234 4.7234 12.1915 76.4051 3.383 76.4051 17.9168

Normtest.W 0.914 0.914 0.8425 0.5981 0.9463 0.5981 0.8568

Normtest.p 0 0 0 0 0 0 0

In-sample        

Observ. 590 590 590 590 590 590 590

Mean 0.0055 0.0084 0.0042 -0.0026 0.007 0.0047 0.0123

Variance 0.0016 0.0059 0.0037 0.0016 0.003 0.0052 0.0104

Skewness -0.1033 0.7087 1.3649 0.8047 0.3981 0.9364 2.2475

Kurtosis 6.8739 4.0117 15.9088 6.2963 3.7041 6.2583 17.7008

Normtest.W 0.8752 0.9254 0.7784 0.8876 0.9373 0.9128 0.8447

Normtest.p 0 0 0 0 0 0 0

Out-of-sample        

Observ. 295 295 295 295 295 295 295

Mean -0.0048 -0.006 -0.0062 0.0128 -0.0078 -0.006 -0.008

Variance 0.002 0.0037 0.0041 0.0099 0.0043 0.0046 0.0053

Skewness -0.3551 -0.0008 1.1381 3.6817 0.3133 -0.1485 0.6361

Kurtosis 1.7404 1.6286 6.5447 42.5311 2.8943 1.196 5.5911

Normtest.W 0.9616 0.9661 0.9217 0.553 0.9556 0.9813 0.9351

Normtest.p 0 0 0 0 0 0 0

Period of analysis: 10/8/2015 – 18/2/2019 (Out-of -sample: 12/12/2017 – 18/2/2019, In-sample: 10/8/2015 – 11/12/2017).

Observ. – observations, Shapiro-Wilk test rejects the normality assumption at all conventional levels of significance.
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Figure 1. Time series plot of selected Cryptocurrencies

4. Results and Discussion

4.1. Forecasting univariate GAS FZL functions

We apply six different distributional assumptions (SNORM, STD, SSTD, AST, AST1, and ALD) of the univariate GAS

models to one-step ahead FZL in the OOS period at α = 0.01 and α = 0.025 levels. We then apply MDM to the competing

models to test the null hypothesis of equal predictive adequacy (EPA) of the models. The MDM test of EPA in Table 2 fails
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to reject the null hypothesis of EPA at all conventional levels of significance for all cryptocurrencies except Litecoin at 1%

level. This outcome raises concerns about the robustness of the test since adjudging six models of different distributional

assumptions as being of equal predictive accuracy is almost hard to ignore. Moreover, in the context of this study, all six

models cannot be used as models of choice and together with the rejection of Litecion at 1% level, further tests are

warranted. Since the FZL is elicitable and has a consistent scoring function; the models can be ranked in order of

predictive ability. We show the MDM test of EPA in Table 2.

Cryptocurrency α W p-value

Bitcoin 1% 44.213 1.00

 2.5% 75.524 1.00

Ethereum 1% 37.979 1.00

 2.5% 58.048 1.00

Litecoin 1% -429.38 0.000

 2.5% 777.07 1.00

Ripple 1% 37.965 1.00

 2.5% 111.92 1.00

Das 1% 25.211 0.9999

 2.5% 44.686 1.00

Monero 1% 23.129 0.9997

 2.5% 42.397 1.00

Steller 1% 45.452 1.00

 2.5% 341.43 1.00

Table 2. Multivariate Diebold-Mariano

(2012) test of model equal predictive

accuracy

W is the MDM test statistic. MDM does not reject the null hypothesis of EPA for all cryptocurrencies at all conventional

levels of significance except for Litecoin (LTC) 1% level (in boldface).

4.2. MAE ranking of univariate GAS FZL forecasts per distributional innovation

Following Blazsek and Hernández (2018), we calculate the MAE for each model across the samples at their respective α

 levels to rank the models, which is presented in Table 3. Models with the least MAE values are preferred. From Table 3,

ALD emerged as the best model with the least MAE at both α = 0.01 and α = 0.025 levels. This confirms the study of

Taylor (2019) which contends that the ALD is appropriate to jointly estimate and forecast dynamic models of VaR and ES.

The robustness of ALD is also confirmed in this study as did Kotz et al. (2012) and Zhao et. al. (2015) that ALD is the

most suitable skewed simplification of classical Laplace law. Nevertheless, the SNORM also appeared as the best model

in a few instances at both α = 0.01 and α = 0.025 levels. AST and AST1 have the same MAE which is the highest across

the board. The results for AST and AST1 provides evidence in support of Zhu and Galbraith (2010) study which indicates
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that the equality of the relative frequency of extreme returns in left tails (losses) and right tails (gains) of asset returns can

be established using AST class of distributions. This implies that the returns of cryptocurrencies cannot be distinguished

by virtue of left and right tail behaviours where one is thin and the other heavy in VaR and ES estimates. Our study shows

the ALD and in some cases SNORM models as candidates for backtesting the FZL forecast as shown in Table 3.

 
α =
1%  

α
=2.5%  

 
MAE Rank MAE Rank

Bitcoin (BTC)     

snorm 3.1607 2 2.9999 2

std 3.9029 3 3.3759 4

sstd 3.9763 4 3.3655 3

ast 5.8154 5 4.2653 5

ast1 5.8154 5 4.2653 5

ald 2.6573 1 2.8173 1

Ethereum (ETH)     

snorm 1.7797 1 1.9538 1

std 3.0435 3 2.7099 3

sstd 3.0859 4 2.6973 2

ast 5.2219 5 3.8057 5

ast1 5.2219 5 3.8057 5

ald 2.1056 2 2.8195 4

Litecoin (LTC)     

snorm 2.1092 2 2.2452 2

std 2.8942 4 2.5461 4

sstd 2.8028 3 2.4974 3

ast 5.8835 5 4.3849 5

ast1 5.8834 5 4.3848 5

ald 1.9575 1 2.1843 1

Ripple (XRP)     

snorm 4.4938 5 3.5477 5

std 2.4745 3 2.5393 3

sstd 2.4007 2 2.4929 2

ast 3.4519 4 3.2062 4

ast1 3.4519 4 3.2062 4

ald 2.1808 1 2.4527 1

Das (DASH)     

snorm 2.900 3 2.7387 3

Table 3. MAE ranking of univariate GAS FZL

forecasts per distributional innovation
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std 2.8931 2 2.759 4

sstd 2.9778 4 2.7259 2

ast 4.113 5 3.2817 5

ast1 4.113 5 3.2817 5

ald 2.1163 1 2.2972 1

Monero (XMR)     

snorm 2.200 2 2.203 2

std 2.3881 4 2.4007 4

sstd 2.3862 3 2.3839 3

ast 3.7679 5 3.1475 5

ast1 3.7678 5 3.1475 5

ald 1.7868 1 2.1214 1

Steller (XLM)     

snorm 1.4993 2 1.6549 1

std 2.098 4 2.2129 4

sstd 2.0391 3 2.1228 3

ast 3.5717 5 3.084 5

ast1 3.5717 5 3.084 5

ald 1.4405 1 1.7435 2

Best models are in boldface.

4.3 Backtesting and model ranking of FZL function

We implement the UC, CC, DQ, and QL backtest on the FZL forecast of the best performing models (ALD and SNORM)

selected by MAE for each cryptocurrency at α = 0.01 and α = 0.025 thresholds. The null hypothesis of a correctly

specified forecast model for the FZL at respective α levels13 is evidenced by all the backtesting models. The UC, CC, and

DQ tests statistics provide p-values whiles QL gives loss values. Models with p-values of UC, CC, and DQ test statistics

close to unity are preferred whereas models with lower Quantile loss are preferred. Table 4 provides the backtesting

results.

From Table 4, all models at both α = 0.01 and α = 0.025 of cryptocurrencies are accepted by UC and CC test as adequate

and correctly specified and hence can adequately estimate and forecast FZL. However, the results of the DQ test reject all

the models as adequate and correctly specified even if it is highly accepted by UC and CC test. This confirms the

robustness of DQ test as claimed by Braione and Scholtes (2016) that DQ takes into account a more general temporal

dependence between the series of violations.

To estimate the single value FZL for cryptocurrency tail risk and capital adequacy comparison, models that are correctly

specified by at least one of UC, CC, and DQ are chosen for further analysis. However, models at risk levels α = 0.01; 

α = 0.025 that are not accepted by any of UC, CC, and DQ test as correctly specified is omitted from further analysis. In

this study, since both UC and CC accepts the models at their respective α levels as correctly specified, both the 1% and
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2.5% FZL forecast are used to estimate the single value FZL for the risk comparison in the cryptocurrency market.

Following the Basel III requirement, we compare the 1% model to 2.5% model of each cryptocurrency by computing QL

ratios ( QLR = QL1% /QL2.5%) of FZL forecast obtained from backtesting results in the last column. As Ardia et al. (2016c;

2018) notes, the 1% model outperforms the 2.5% if QLR < 1 and vice versa. The QL ratios in Table 4 depicts that except

for Bitcoin (2%), and Das (1%) in favour of the 2.5% FZL model, the 1% FZL models outperform the 2.5% FZL models

ranging from 9% to 61% in five cryptocurrency markets.

Cryptocurrency Distribution α UC CC DQ QL QL ratio QL ratio (%)

Bitcoin ald 1% 2.45(0.12) 2.70(0.26) 284.75(0.00) 0.587981  -0.02*

 ald 2.5% 2.51(0.11) 3.53(0.17) 251.72(0.00) 0.575433 1.021806  

Ethereum snorm 1% 0.35(0.55) 0.38(0.83) 200.09(0.00) 0.096554  0.38

 snorm 2.5% 0.28(0.59) 0.55(0.77) 187.04(0.00) 0.155926 0.619229  

Litecoin ald 1% 1.19(0.27) 1.36(0.50) 471.52(0.00) 0.293236  0.09

 ald 2.5% 0.02(0.87) 0.36(0.83) 226.57(0.00) 0.323699 0.905891  

Ripple ald 1% 1.19(0.27) 5.13(0.08) 278.39(0.00) 0.075128  0.46

 ald 2.5% 1.89(0.17) 1.98(0.37) 118.30(0.00) 0.138782 0.541342  

Das ald 1% 0.34(0.56) 0.45(0.79) 307.06(0.00) 0.410231  -0.01*

 ald 2.5% 0.86(0.35) 1.57(0.46) 220.21(0.00) 0.404281 1.014719  

Monero ald 1% 2.45(0.12) 2.70(0.25) 500.14(0.00) 0.20253  0.39

 ald 2.5% 0.34(0.56) 0.91(0.63) 304.48(0.00) 0.333679 0.606961  

Steller ald 1% 0.001(0.98) 6.79(0.03) 83.57(0.00) 0.041684  0.61

 snorm 2.5% 5.63(0.02) 5.66(0.06) 69.24(0.00) 0.106585 0.39109  

Table 4. Backtesting results of selected univariate GAS FZL models

*Negative percentage indicates the 2.5% FZL model outperforms the 1% FZL model.

4.4 Characteristic FZL estimates for 1% and 2.5% univariate GAS models

To compare the capital requirement, tail risk, and riskiness of the seven cryptocurrencies, we use the characteristic FZL

(CFZL) values (single values of FZL) estimated from the unconditional14 location parameters from the OOS FZL forecast

of the best performing models. The characteristic FZL values in Table 5 are ranked in ascending order per their

magnitude with the least inverse CFZL ranked 1 and 7 for the most negative. Smaller CFZL values are preferred to larger

values. Table 5 shows that the capital required to absorb losses at the 1% risk threshold is least for Ethereum, followed by

Steller, Monero, Das, Litecoin, Bitcoin and largest for Ripple. This implies that Ethereum has the least risk profile among

the cryptocurrencies whiles Ripple is the riskiest currency at α = 0.01 level.

However, at the 2.5% risk threshold Steller requires the least capital to absorb losses followed by Ethereum, Monero, Das,

Litecoin, Bitcoin, and largest for Ripple. Which implies that at α = 0.025 risk level, Steller is the least risky currency among

the cryptocurrencies whiles Ripple is the riskiest. The results show that, Monero, Das, Litecoin, Bitcoin, and Ripple
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maintains their third, fourth, fifth, sixth, and seventh positions respectively at both 1% and 2.5% risk thresholds whiles

Ethereum and Steller alternate the first and second positions. Our results suggest that at 1% and 2.5% risk levels,

Ethereum and Steller are the safest cryptocurrencies which provides evidence against the study of Gkillas and Katsiampa

(2018) which reported Litecoin and Bitcoin as cryptocurrencies with the least risk profiles adopting the extreme value

technique to estimate VaR and ES of five cryptocurrencies.

Following the results of our study, we argue that potential cryptocurrency investors, hedge funds, market makers and

traders can follow the rankings in this study to enhance their trading and investment strategies to maximize utility whiles

minimizing risk since the extreme volatility of cryptocurrencies turns them a really risky assets. Our study confirms the

study of Patton et al. (2019) which argues that FZL values drawn from both VaR and ES provides a better empirical risk

modeling than either VaR and ES separately. Our approach provides coherent risk measure estimates which can be used

by market participants interested in cryptocurrency markets for an effective portfolio optimization and risk management.

α = 1%
 

α =2.5%

Cryptocurrency Innovation CFZL Rank Cryptocurrency Innovation CFZL Rank

Ethereum snorm -1.2098 1  Steller snorm -1.1231 1

Steller ald -1.5654 2  Ethereum snorm -1.3340 2

Monero ald -1.9100 3  Monero ald -2.2004 3

Das ald -1.9913 4  Das ald -2.2727 4

Litecoin ald -2.0031 5  Litecoin ald -2.3274 5

Bitcoin ald -2.5041 6  Bitcoin ald -2.7877 6

Ripple ald -2.5631 7  Ripple ald -2.8269 7

Table 5. Characteristic FZL forecast values for selected distributional innovations

CFZL – characteristic FZL forecast

5. Conclusion and policy implication

The study applies the FZL function drawn from both VaR and ES to measure tail risk among seven cryptocurrencies

(Bitcoin, Ethereum, Litecoin, Ripple, Das, Monero, and Steller) for the period August 2015 to February 2019. We capture

heavy tails and volatility clusters that characterize cryptocurrency returns applying six different asymmetric distributions

such as SNORM, STD, SSTD, AST, AST1, and ALD to the univariate GAS framework. We first of all, applied MDM test to

the six distributions to check the equal predictive accuracy (EPA) of the models. Results from MDM test of equal

predictive accuracy (EPA) failed to reject the null hypothesis of EPA at all conventional levels of significance for all

cryptocurrencies except Litecoin at 1% level. Since all six models cannot be used as models of choice and together with

the rejection of Litecoin at 1% level, we calculate the MAE for each model across the samples to rank the models. Results

from MAE shows the ALD and in some cases SNORM as the best models with the least MAE at both α = 0.01 and 

α = 0.025 levels. These two models were chosen as candidates for backtesting the FZL forecast.
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As a typical out-of-sample forecasting procedure, we apply the UC, CC, DQ, and QL test to the best performing models

(ALD and SNORM) selected by MAE to backtest and check the adequacy of the models. The UC and CC test accepted

the ALD and SNORM models at their respective α levels as adequate and correctly specified except DQ test. As required

by Basel III, we compared the 1% models to 2.5% models by computing QL ratios. The QL ratios depict that the 1%

models outperforms the 2.5% models. Finally, we estimated the characteristic FZL value to compare the capital adequacy

and riskiness of the cryptocurrencies. Results from the characteristic FZL show that, at both 1% and 2.5% risk thresholds,

Ethereun and Steller has the least risk profile followed by Monero, Das, Litecoin, Bitcoin, and Ripple with the largest risk

profile. In a nutshell, our study suggests that at α = 0.01 and α = 0.025 risk levels as required by BIC (2013), Ethereum

and Steller requires the least capital to absorb losses followed by Monero, Das, Litecoin, Bitcoin, and Ripple.

The extreme price volatility of cryptocurrencies coupled with their exposure to tail risk makes them really risky currencies

since the financial impact of tail risk could be large despite their small likelihood of occurrence. Hence, the application of

FZL function for joint VaR and ES to cryptocurrencies provides coherent risk measure estimation for an enhanced

investment and trading strategies for cryptocurrency portfolio optimization. Our study goes beyond prior studies which

mainly described the volatility dynamics of cryptocurrencies (Gkillas, Bekiros, and Siriopoulos, 2018; Trabelsi, 2018; Borri,

2019; Huynh et al., 2018; Huynh, 2019) by estimating risk measures which is the main contribution of this study. We

provide evidence in support of the study of Patton et al. (2019) which argues that FZL values drawn from both VaR and

ES provide a better empirical risk modeling than either VaR and ES separately. This study focused on the tail risk of seven

cryptocurrencies using FZL Function for joint VaR and ES. Future studies can replicate this study by extending the enquiry

into several cryptocurrencies and other financial instruments to broaden our understanding of the volatility of the financial

instruments.
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Footnotes

1 Cryptocurrencies are based on cryptographic proof which provides many advantages over traditional payment methods

including lower transaction costs, high liquidity, and anonymity (Fantazzini et al., 2016).
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2 The initial Basel III was expected to be implemented by 1st January, 2019 while the final Basel III minimum requirements

are expected to be implemented by 1 January 2022 and fully phased in by 1 January 2027 (Patton, Ziegel, & Chen, 2019),

https://www.bis.org/press/p181004.htm.

3 As noted by Patton, Ziegel, and Chen (2019) a risk measure is elicitable if it has a loss function such that expected loss

is minimized by the risk measure. Fissler, Ziegel, and Gneiting (2015) argue that elicitability is important because it allows

for model estimation, selection, forecast ranking and comparison.

4 The Basel Accords (currently the Basel III Accords) regulatory process requires financial institutions to meet required

capital by correctly assessing and predicting their VaR and ES using state-of-the-art risk systems (Ardia, Boudt, and

Catania, 2016; 2018).

5 EVT provides a firm theoretical foundation for building a statistical model describing extreme events (Ramadhani,

Nurrohmah and Novita, 2017).

6 Note that, as mentioned by Creal et al. (2013), the scaling matrix St θt  can take the form of an identity matrix, inverse

fisher information matrix, or pseudo inverse square root, leading to different types of GAS models. Following Troster et al.

(2018), the study looks at only the inverse fisher information matrix.

7 There is almost no end to the list of non-Gaussian distributions one can choose from. However, for the purpose of this

study, we employ SNORM, STD, SSTD, AST, AST1, and ALD. These distributions, together with GAS, capture skewed,

fat-tails and volatility clustering which is a characteristic of cryptocurrencies returns (Troster et al., 2018).

8 To evaluate FZL model specification, the risk level α is typically set to α = 0.01; α = 0.025 for which asset’s loss is

expected to be exceeded for a given period of time (see BIC, 2013; Ardia, Boudt, and Catania, 2016; 2018).

9 The UC test verifies the correct coverage at the left-tail of the marginal distribution of returns.

10 The CC test analyses the conditional density of returns.

11 The DQ test simultaneously tests for conditional and unconditional coverage and is more robust than UC and CC.

12 The QL function is crucial for selecting the best FZL model if two models achieve CC/UC.

13 For consistency all tests are carried out at the same α levels in agreement with 99 and 97.5 percentiles of the FZL

forecasts.

14 Conditional parameters are the case in which the scale parameter is set to be time-varying in the typical GAS models

used for FZL estimation and forecasting. The unconditional parameters have not time-varying assumptions.
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