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Space has a complex structure, and investigations of any electromagnetic wave

transmission theory need to consider the inhomogeneous and anisotropic

nature. We have selected two cases for our investigations: regions of pulse

energy changes and gravitational deflection. Numerical methods have been

developed, and examples are given to show that these conditions do have their

localized effects. However, since the total length of those regions is

insignificant in comparison with the total transmission distance involved,

their inclusion does not significantly alter the linear relationship between

wavelength change and distance travelled. The possible exception is the case

of gravitational deflection when the waves have passed through densely

populated regions of space. Our findings could be of interest to the current

debate on Hubble tension.
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1. Introduction

In recent years, we have published three papers  [1][2]

[3] about how the nonlinear Schrodinger equation (NSE)

could be used to find out wavelength changes in

electromagnetic waves propagating through space. As

the only direct and easily measurable physical quantity

from space, electromagnetic waves have been widely

used to study the universe. For example, redshift, the

lengthening of the wavelength in starlight, has been

used to determine the distance of a star, and the size

and origin of the universe. To be sure that those

applications are reliable, it is important to understand

the physics involved in redshift. Up to recent years,

there have been realizations that we still need new

physics to explain this phenomenon  [4]. Although the

physics behind NSE is not new, we have shown that

redshift could be predicted. In this paper, we report our

further investigation and provide additional evidence to

support the wave propagation theory.

Solving NSE numerically, we have generated waveforms

specifically for bright  [1], dark  [2]  and anti-

dark [3] solitons. These are respectively white, dark, and

grey spectral lines used by astronomers to determine

the extent of wavelength changes in starlight coming

from space. We have shown that those solitons can

propagate stably over long distances through space. But

the previous model used involves only two system

parameters: namely, the dispersion coefficient and one

for the nonlinear focusing term. In reality, space is a

much more complex medium with many regions

having localized unique features. In this paper, we shall

include two extra features into our model: (i) pulse

energy changes due to prevalent atmospheric

conditions, and (ii) gravitational deflection of the light

path.

In propagating through some sections of a vast distance

in space, electromagnetic waves could encounter

qeios.com doi.org/10.32388/XFMF84.2 1

mailto:papers@team.qeios.com
https://www.qeios.com/
https://doi.org/10.32388/XFMF84.2


atmospheric conditions that impart or absorb energy

from the waves. The two cases of pulse energy changes

we consider are (i) elements present in the atmosphere

that emit or absorb pulse energy of similar frequency,

resulting in the increase or decrease of pulse amplitude,

and (ii) the CW background that causes pulse energy to

change. To account for these additional parameters,

NSE has been modified accordingly.

According to General Relativity Theory, a travelling

light path would be deflected near the proximity of a

vast mass. Depending on the system involved, the full

mathematical analysis is rather complicated. We shall

use an approximate solution  [4]  that has been derived

for cases of small deflections. In this approximate

solution, the deflection is found to be inversely

proportional to a distance variable. We consider that

such an approximation is adequate for us to investigate

the contribution of gravitational deflection to redshift.

Space should not be modelled simply as an isotropic

and homogeneous medium, as has quite often been

suggested. Photos taken from the James Webb Space

Telescope (JWST) in its deep space probes  [5]  have

shown clusters of galaxies in certain regions, while

there are huge empty spaces elsewhere. Along a given

light path, a wave will experience different conditions

as compared with other paths. The aim of our

investigation is to find out whether, with pulse energy

changes in some sections and gravitational deflections

in others, the overall redshift could still be predicted by

the wave propagation theory using overall averaged

system parameters. Our interest is in the gradient of the

wavelength versus distance plot. But our findings are in

dimensionless format; we need calibration to convert

them into physical entities.

In Section 2 of this paper, we describe how the NSE

with an external source or with a CW background could

be solved numerically. In Section 3, we describe how we

calculate the deflection of a stable soliton using the

approximate solution of General Relativity Theory. In

Section 4, we give numerical examples that provide us

with sufficient data for Discussion in Section 5.

Although the propagation of solitons is governed by the

local conditions that could have varying effects on the

propagating wave, those effects are cumulated at each

step and are carried over to the next. It is the overall

redshift that is important. This redshift is observed by

astronomers in their empirical Hubble law and

predicted by astrophysicists in models such as the

Standard Model of cosmology. But based on our

numerical solutions, we conclude that the

electromagnetic wave theory could be used to account

for those localized transmission variations

investigated.

2. Stable periodic (SP) bright

solitons

The NLS equation for electromagnetic wave (soliton)

propagation in dimensionless form is

where u is the slowly varying envelope of the axial

electric field, and D(x), x, t, and S are the dispersion

coefficient, the spatial propagation distance, temporal

local time, and external source, respectively. The last

term on the left-hand side of Eq. (1) represents self-

phase modulation but without a specific system

parameter.

To include a CW background, uo into Eq. (1), let

With S = 0, substituting the above into Eq. (1) gives

Using the same numerical procedures as described in

our previous papers  [1][2][3], Eq. (1) could be solved to

give a stable periodic solution along the propagation

distance x. The procedures involve the division of the

numerical spatial time window of length L into N equal

segments. Over each segment, the solution is to be

approximated by an economized (M – 1)th order power

series,

Eq. (1) is discretised in the t-direction by using

collocation points chosen to be the roots of a Chebychev

function,

Together with the boundary conditions and all the

interfacial continuity conditions between any two

subdivisions, the set of ordinary differential equations

so obtained is in the form,

where V is a [M x N] vector consisting of the coefficients

of the power series used, and A, L, and Q are matrix

− D(x) − i|u u = S(x)ux
i

2
utt |2 (1)

u = v + uo

− D(x) − i|v + (v + ) = 0vx
i

2
vtt uo |2

uo (1a)

u(t,x) = (x)∑
k=1

M

uk tk−1 (2)

= − cos[ ], k = 1, … ,M − 1tk
(2k − 1)π

2(M − 1)
(3)

A (x) − iLV (x) = iQ(x,V )Vx (4)
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operators. As Eq. (4) is nonlinear, it could be solved by

an implicit difference algorithm together with iteration.

For a bright soliton solution, a suitable initial input

pulse could be,

where L is the length of a given numerical window for t, 

an arbitrarily chosen constant, and    an adjusting

parameter to give a specified pulse energy, E,

It is important to set the boundary conditions as

The large constant associated with the derivative term

will force u to assume a near-zero value with zero

gradient so that reflection at the boundaries is

minimized.

For the stable periodic solution, we integrate Eq. (4) to a

total distance Z, with the specified dispersion

coefficient – D for the first half and D for the second

half of Z. We use the fact that, for an SP solution

propagating through a dispersion map, the input pulse

should be similar in shape to the output pulse. To reach

this goal, an iterative scheme based on successive

halves could be used,

where uin, and uout are the input and output pulses to

the dispersion map, respectively, and the superscript i

denotes the iteration number. It should be noted that SP

solitons are special cases of exactly periodic solitons.

But, with an exactly periodic soliton, the input pulse is

exactly the same as the output pulse.

The stable periodic solitons so found could be used as

the initial input to start a propagation history through

sections that have various system parameters. It should

be noted that for those histories, the same set of

algebraic equations is used with the exception that the

steps described in Eq. (8) are not included.

3. Gravitational Deflection

Based on the approximate solution  [4]  of the General

Relativity theory, the light path deflection angle, ∆ϴ, is

found to be inversely proportional to the distance

between the light path and the centre of the mass:

where G is the gravitational constant, M is the mass,

and ∆ is the distance between the wave front and the

centre of the mass. Eq. (9) could be used in its

dimensionless form,

where  . We can study the contribution of

gravitational deflection by tracking the history using a

single arbitrarily chosen parameter C. Numerically, we

shall use a new rectangular coordinate system (x1, x2).

Tracking the wavefront at a particular step, let the mass

be at ((x1)m, (x2)m) and the wavefront be at ((x1)1, (x2)2);

the straight line connecting the wavefront to the centre

of the mass is

Then, Eq. (10) can be used to find the deflection angle 

  . If a wavefront has propagated along a light path

making an angle ϴ with the x1-axis and reached ((x1)1,

(x2)2), the path direction for the next integration step

would be along the deflected angle, ϴ +    . With the

path integration step being ∆x, the change in the

wavefront position would be ∆x cos (ϴ +   and ∆x sin

(ϴ +    ) in the x1- and x2- coordinates, respectively.

Knowing the new position, Eqs. (11) and (10) could be

used to find    and    respectively, for the next

integration step.

4. Numerical Examples

For every case in our present investigations, we start

with a stable bright solution obtained numerically as

described in our previous paper [3]. Using L = 40, N = 10,

M = 20, ∆x = 0.0005, D = - 0.1, E = 0.25, and a dispersion

map Z = 6, Figure 1 shows that such a soliton

propagates stably with an increasing wavelength.

Furthermore, the same characteristics are observed

when it is propagating through a section with a set of

different system parameters. We retain the description

of periodic because the histories are all repeatable.

u(t, 0) = β exp[−α(t − 0.5L ])2 (5)

α β

E(x) = (|u(t,x) )dt∫
L

2

−
L

2

|
2 (6)

u(t,x) = 1000 − u(t,x) at x = ±0.5L∂u
∂t

(7)

= 0.5 ( + )ui+1
in uiin  uiout 

(8)

Δϴ =
4GM

Δ
(9)

Δϴ =
c

ε
(10)

E = CΔ
4GM

ε = +((x1 − (x1 ))m )1
2 ((x2 + (x2 ))m )1

2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−

√ (11)

Δϴ

Δϴ

Δϴ)

Δϴ

ε Δϴ,
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Figure 1. Propagation of bright stable periodic solution

4.1. Propagation of a bright soliton with CW

background

Example 1 - Four cases (See Table 1 for details), with or

without a CW background, were used to show the

differences in the pulse half-width, W, propagation

histories. (W is the same as FWHA, full width at half

maximum, a commonly used measure for pulse width.):

qeios.com doi.org/10.32388/XFMF84.2 4

https://www.qeios.com/
https://doi.org/10.32388/XFMF84.2


Propagation distance, x Dispersion coefficient, D CW background, uo

Case 1 0 to 6 -0.2 0

Case 2

0 to 2

2 to 2.5

2.5 to 3.5

3.5 to 4

4 to 6

-0.2

-0.2

-0.2

-0.2

-0.2

0

-0.2

0

-0.2

0

Case 3 0 to 6 -0.1 0

Case 4

0 to 2

2 to 2.5

2.5 to 3.5

3.5 to 4

4 to 6

-0.1

-0.1

-0.1

-0.1

-0.1

0

0.5

0

0.5

0

Table 1. System parameters used in Example 1

The pulse width histories found are shown in Fig. 2.

The noticeable features are: (i) the gradient is slightly

higher for negative uo, and slightly lower for positive uo;

(ii) the gradient in the sections before and after a

section with a CW background remains the same.
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Figure 2. Effects of CW background on the half pulse width histories 

Example 2 - Case 5 (See Table 2 for details) is designed

to include two sections, in each, both D and uo have the

same values but of opposite sign. In five other sections

involved, the dispersion coefficient is randomly

selected, but for the whole length, the overall distance-

weighted average is 0.1, which is the same as Case 3 in

Example 1.
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Section Propagation distance, x Dispersion coefficient, D External source, uo

1 2 -0.2 0

2 0.5 0.2 -0.2

3 1 0.1 0

4 0.5 -0.2 0.2

5 2 -0.15 0

Table 2. System parameters for Case 5

The solutions are shown in Fig. 3, where we can see that

in Sections 2 and 4, there are large decreases and

increases in pulse energy due to the presence of uo. But

the gradient change between Sections 2 and 3 is very

small. The same happens between Sections 4 and 5.

Also shown is the fact that the overall half pulse width

change could be accurately predicted by using the

average distance-weighted D as in Case 4 of Example 1.
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Figure 3. Histories, Cases 4 and 5, of half pulse width and pulse energy histories

4.2. Propagation of solitons with external source

Example 3 – This example, Case 6, consists of three

sections that all have D = - 0.2 but S(x) = s u, where s =

0.5, - 0.5, and 0.5, respectively, in each section. Features

of the solution histories are: (i) pulse energy increases

or decreases steadily according to the sign of s, and (ii)

there is very little change in the wavelength half-width

gradient in all sections, as can be seen in Figure 4.

4.3. Propagation with gravitational deflection

With small deflection, the propagation of

electromagnetic waves is still governed by Eq. 1. The

propagation distance, x, is taken to be along the

deflected light path. When integrating Eq. (1) by a

stepwise procedure, the deflection and tracking of the

wavefront are carried out based on procedures

described in Section 3.

Example 4 – Using the x1-, and x2- coordinates, the

starting position is chosen to be at (0, 0) with the mass

located along the straight line x1 = 0.5 Z, where Z is the

length of the propagation distance to be investigated. If

the line joining the wavefront to the centre of the mass

makes an angle, φ, with the x1-axis, the mass is located

at (0.5 Z, b), where b = 0.5 Z tan(φ). For this example, the

initial φ = 20o, ϴ = 0, Z = 3, and D = - 0.2. For the

arbitrarily chosen constant in Eq. (10), C = 0.00005 and

0.0001, respectively, for Cases 7 and 8. The solutions are

plotted out in Figure 5. The deflection rate (as seen in

the direction changes) is the largest at x1 = 0.5 Z, where

the wavefront is closest to the mass. Also, a larger C

gives larger deflection, as expected. Without deflection,

the wavefront will move along the x1-axis and travel 3

units in that direction. With deflection, the wavefront

has travelled the same distance along its path, the same

as in the case without deflection, but shorter in terms of

the x1-coordinate. It should be pointed out that the

scaled-down dimensionless length units, x1 and x2,

used here are based on the local conditions and would

be many orders smaller than x, the propagation

distance used in NSE, which is in billions of light years.

5. Discussion

Since the discovery of a statistically significant

difference in the Hubble constant predicted by the Big

Bang theory-based method and by empirical

correlation, this ‘Hubble tension’ has not yet been

resolved. A 2023 review  [6]  has referenced 531 papers;

each has offered one or another scientific solution. But

some people would insist on the Big Bang approach,

often on philosophical belief, while others accept what

they consider more authoritative. Scientists would ask

for new evidence, such as in the call for new physics [4]

[6]. Although the physics used in the Schrödinger

equation is not new, it has been widely used, both in

theory and in practice, for wave propagation in many
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diverse fields. However, its application to

electromagnetic waves propagating through space is a

new suggestion.

There are more than 43 known mechanisms for

wavelength changes [7]. Most of these mechanisms are

localized effects that would not contribute significantly

to the overall wavelength changes that are the central

issue of Hubble tension. However, if a localized effect is

recursive (happening in many sections of the light

path), the contribution of this type of effect needs to be

investigated. We have selected pulse energy change and

CW background; both are recursive.

In addition to Hubble tension, another challenge facing

Big Bang theory is the fact that a homogeneous and

isotropic universe is assumed on a large-scale model

and the cosmological principle such that one single

Hubble law is supposed to cover all cases no matter how

far away they are being observed. But, even on such a

scale, the universe is found to be both anisotropic and

inhomogeneous  [8][9]. Based on what we have found

numerically, the wave propagation theory need not rely

on the Cosmological principle, although a set of

distance-averaged parameters could be used to predict

the overall wavelength shift. This is due to the fact that

the waves are found to be stable, periodical, and have

other innate characteristics of their propagation.

In our numerical investigations of Examples 1 and 2, we

have dealt with cases where the pulse amplitude has

changed gradually together with a small change in the

pulse shape due to the presence of a CW background. In

these cases, as can be seen in Fig. 2, our numerical

predictions have indicated a small change in the

gradient in the redshift–distance plot. But the changes

could be cancelled out in the presence of sources of

opposite sign, as in Case 5 of Example 2 and shown in

Fig. 3. Also, the overall wavelength changes can be

predicted by using the distance-weighted D without a

CW background.

Pulse energy changes due to an external source

proportional to the pulse itself will only affect the

amplitude and not the pulse shape, as in Example 3. In

these cases, there is no change in the gradient, as can be

seen in Fig. 4. This is consistent with what we have

found previously that pulse energy has not been an

important variable in the predictions of wavelength

changes [10].

We did not investigate cases of large pulse distortion

due to external energy sources. However, if the waves

are soliton-like, it is characteristic of such propagating

waves to restore to their stable shapes once those

external factors no longer exist.

If our interest is the overall wavelength changes over

the entire journey through space, it should be pointed

out that the total contribution due to energy changes

would be quite small because of the following reasons:

(i) wavelength changes are accumulated throughout the

entire distance travelled, which is measured in billions

of light years; the total distance over which the

conditions are in favour of energy exchanges could be

measured only in millions of light years; (ii) as can be

seen in our Examples, there are no dramatic changes in

wavelength due to energy changes; (iii) wavelength

changes could be positive or negative, leading to a

contribution closer to zero if the total is to be taken into

consideration.

The situation with gravitational deflection is different.

Gravity causes the light path to curve. Without

deflection, the waves are propagating in a straight line,

and the distance between two points is always shorter

when compared with a curved light path. In addition,

contributions are accumulative over the entire

propagating distance through space. Based on our

propagation theory and as shown in our numerical

Example 4, the wavelength changes over a given time

interval are the same with or without deflection. But

the apparent gradient in the wavelength change-

distance relationship, however, is higher in the

presence of deflection. The implication is that waves

passing through densely populated regions of space

would have a noticeably longer path length than those

passing through sparsely populated regions. Locally,

the deflection could be large; Case 8 of Example 4 shows

a total deflection of nearly 60o from the original light

path. But masses situated at the opposite side of the

path could cause negative deflection. The fact that some

waves have eventually reached the observers is

evidence that the net deflection need not be considered.

Historically, the deflection and lengthening of the light

path due to gravity have been used to confirm the

General Relativity Theory. The lengthening of the light

path has also been used as the scientific argument for

an expanding universe in the early days of the Big Bang

theory. Although we do not have the actual physical

data, in principle, our numerical example is sufficient to

demonstrate that the light path can be lengthened by

gravity. But, if we accept the prediction by the General

Relativity Theory, this should be the same anywhere in

the universe and is not related to the position of the

observer. We cannot accept the proposition in the Big

Bang theory that the rate of wavelength lengthening is

proportional to the distance between the light source

and observers.
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6. Conclusion

1. Due to the innate nature of solitons, and the

balancing of the dispersion term with the

nonlinear terms in NSE, electromagnetic waves

can propagate stably over a long distance with

wavelength changes linearly proportional to the

distance travelled, although the rate of change is

governed by the local prevalent conditions.

2. Solitons have both wave-like and particle-like

transmission characteristics. Due to the latter

characteristic, any changes are accumulated

throughout the entire distance travelled.

3. Since all wavelength changes vary linearly with

distance, the distance-weighted averages can be

used to predict the overall shift that retains the

linear relationship over any length of

transmission.

4. Consideration of an inhomogeneous and

anisotropic space is needed if localized events are

involved. But overall contributions to redshifts

observed in starlight are most likely insignificant

except for gravitational deflection.
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