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E�ciently searching on a large linked list is a critical challenge in various computational

applications. Traditional methods grapple with the sequential organization and voluminous data,

resulting in sluggish search operations. In response, this study introduces a novel approach

leveraging multithreading for concurrent searches, facilitating parallel exploration of distinct

segments within the linked list. Complementing this, we incorporate a caching mechanism to store

frequently accessed elements, thereby optimizing RAM utilization during search processes. Through

rigorous experimentation, our methodology showcases remarkable advancements in search

e�ciency and overall system performance compared to conventional techniques. These �ndings

underscore the proposed framework's signi�cance in revolutionizing large linked list exploration,

o�ering promising avenues for enhancing computational operations across diverse domains.
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1. Introduction

In the ever-evolving world of computer science, linked lists play a fundamental role in various

applications, including personal storage, databases, search engines and arti�cial intelligence systems.

Linked lists �nd extensive applications in various domains, making them a crucial data structure in

modern computing[1]. They are the backbone of personal storage, enabling users to organize and
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manage data e�ciently. In databases, linked lists facilitate the storage and retrieval of records,

contributing to smooth data operations[2]. Moreover, search engines heavily rely on linked lists to

index and retrieve information from vast web databases[3]. Arti�cial intelligence systems also

leverage linked lists to build complex data structures, e�ciently storing and processing data during

training and inference stages[3][4][5][6][7][8][9][10][11][12][13][14][15].

Searching is a fundamental operation within linked lists that enables the retrieval of speci�c data

elements from the structure[16]. E�cient search algorithms enable seamless access to information in

applications like databases, where quick response times are essential for a positive user experience[17].

Moreover, searching within linked lists in arti�cial intelligence systems facilitates e�cient data

processing during tasks like pattern recognition, decision-making and natural language processing.

The traditional linear search algorithm for linked lists has a time complexity of O(n)[18], which makes

it ine�cient for large-scale applications where the size of the dataset is signi�cant[19]. As a result, a

search algorithm for linked lists that can handle large datasets with minimal computational overhead

and is more e�ective and scalable needs to be developed.

As computer systems continue to evolve rapidly, with innovations in multi-core processors,

vectorized instructions and specialized hardware accelerators[20], the proposed algorithm is designed

to take advantage of these advancements. It is optimized to e�ciently utilize parallelism and leverage

the full potential of modern hardware architectures. By doing so, the algorithm can exploit the

available computational resources e�ectively, resulting in even faster search performance for large

datasets. Furthermore, the algorithm’s ability to handle large datasets with minimal computational

overhead addresses one of the most critical challenges in contemporary computer science and data

processing[21]. With the explosive growth of data in various domains, such as big data analytics,

machine learning and arti�cial intelligence, the need for e�cient search algorithms becomes

paramount[22]. The proposed algorithm not only enhances the speed of searching within linked lists

but also reduces the computational burden, making it well-suited for real-world, data-intensive

applications.

To improve linked list-searching methods, this paper investigates the application of caching and

parallel processing techniques. Caching is a method that stores frequently accessed data in a fast-

access memory to reduce the time it takes to access it[23]. In contrast, parallel processing involves

using multiple processing units or cores to perform tasks concurrently[24]. It begins by highlighting
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the signi�cance of linked lists as a widely used data structure in computer science, particularly for

handling large datasets due to their dynamic memory allocation and e�cient insertion and deletion

capabilities[25]. However, the traditional sequential search algorithms for linked lists have limitations,

especially for large-scale applications[19]. We propose using parallel processing and caching

techniques to address this challenge to enhance search e�ciency. The objective is to create an

algorithm that is more e�ective and scalable. The proposed algorithm uses parallel processing to

simultaneously search for the target data in each of the smaller chunks it divides the linked list into.

They are cached in memory to speed up access to the chunks during subsequent searches. All the

parallel search results are combined to determine whether the target data are in the linked list.

This paper evaluates the proposed algorithm’s speed and scalability using various data sizes from[18].

The evaluation results establish the proposed algorithm’s superiority over the traditional sequential

search technique. It not only demonstrates its capacity to handle large datasets e�ciently but also

highlights its ability to maintain low computational overhead even when confronted with extensive

data sizes. This is a critical achievement in linked list searching. Large-scale applications often

involve massive datasets that can be time-consuming and resource-intensive to process using

conventional methods[26]. By signi�cantly outperforming the sequential search algorithm in terms of

speed, the proposed algorithm paves the way for enhanced performance in a wide array of applications

that rely on linked list searching[27].

In the �rst chapter, we discussed the liked list data structure, the linked list’s signi�cance, and its

searching operation in real-world applications. The second chapter is about the related works in this

�eld, highlighting the methodology and limitations of each research. Moving forward, the next

chapter is about the methodology and implementation of the proposed algorithm. It consists of

creating a dataset and applying the parallel search algorithm. The result analysis section represents

and compares the experimental results with the linear search approach. Finally, the conclusion

highlights the results and the future of the research conducted.

The major contributions of this study are given below:

i. Multi-threading is used for faster searching in large linked lists.

ii. Caching technique used for faster data processing in the linked list.

iii. Increased scalability due to the adaptation to di�erent hardware by adjusting the number of

threads used.
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iv. Enabled load balancing optimization with con�gurable thread count and adjustable chunk size.

This research work is publicly available at GitHub Repository[28].

2. Literature Review

To address the scalability issue researchers have explored various optimization techniques including

the use of parallel search algorithms.

2.1. Linked Lists and Search Algorithms

A linked list is a dynamic data structure comprising nodes where each containing a data element and a

reference to the next node in the sequence. This structure is advantageous for operations such as

insertion and deletion. These operations are performed with constant time complexity. However,

searching for a speci�c element typically requires traversing the list that leads to a linear time

complexity O(n). As the dataset grows the ine�ciency of this approach becomes apparent and

particularly in scenarios requiring frequent or time-sensitive searches.

o overcome the limitations of linear search various search algorithms have been developed. Binary

search for example, o�ers a logarithmic time complexity O(log n), but it requires a sorted array and is

not directly applicable to linked lists. Hashing is another approach that provides constant time

complexity O(1) for search operations but introduces additional space overhead and does not maintain

the order of elements.

Parallel search algorithms have emerged as a promising solution to the ine�ciencies associated with

traditional search methods in linked lists. By dividing the search task across multiple threads or

processors, parallel search algorithms can signi�cantly reduce the time required to locate a speci�c

element in a large dataset. This approach leverages the capabilities of modern multi-core processors

that enables concurrent processing of di�erent segments of the linked list.

One of the key challenges in applying parallel search to linked lists is the dynamic nature of the data

structure which complicates the division of nodes among threads. Despite these challenges several

studies have demonstrated the e�ectiveness of parallel search algorithms in improving search

e�ciency.
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2.2. Previous Work on Parallel Search in Linked Lists

Recent research has explored various strategies for implementing parallel search in linked lists. Yu et

al. introduced a multiple learning backtracking search algorithm designed for estimating parameters

in photovoltaic models, which incorporates parallelism to enhance e�ciency[29]. Similarly, Dhulipala

et al. developed theoretically e�cient parallel graph algorithms that can be both fast and scalable,

demonstrating the potential of parallel approaches in optimizing search tasks[30].

Fang et al. explored e�ective and e�cient community search techniques over large heterogeneous

information networks, employing parallel algorithms to handle the complexity of the task[31]. In

another study, Fang et al. focused on optimizing query algorithms for large directed graphs, again

highlighting the advantages of parallel processing[32]. Finally, Ezugwu proposed an enhanced

symbiotic organisms search algorithm for scheduling in manufacturing, which utilizes parallelism to

achieve near- optimal solutions with improved e�ciency[33].

Building on this body of work, the current study aims to develop a novel parallel search algorithm

speci�cally tailored for linked lists. The proposed algorithm will address the challenges associated

with the dynamic nature of linked lists by e�ectively dividing the search task across multiple threads.

By placing the search key at di�erent positions within the linked list (beginning, middle and end), the

study will evaluate the algorithm’s performance in terms of time complexity and compare the results

with those of traditional linear search methods. This research is expected to contribute to the �eld by

providing an e�cient alternative to existing search methods in linked lists, with potential

applications in various domains that require the processing of large datasets.

3. Dataset

We created a new dataset according to the existing rules and protocol[18]. Datasets are generated of

sizes 100k, 200k, 300k, and 500k of random numbers ranging from 0 to 9. The search key, which is 10,

is placed as the �rst, middle and last element in the generated linked list. The following algorithm is

used to generate the dataset.
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We used C++ built-in random function rand() is used to create a random dataset. A variable N

indicates how many nodes should be created for a test-linked list. The �rst, middle and last nodes will

have a known value, which will be searched for performance measurement. The nodes in between will

have random values. The created data set will be like Figure 1.

After creating a linked list N-1 times with generated random numbers, a search key(integer 10) will be

placed at the �rst, middle and end of the linked list for time complexity analysis. The time noted are

then compared with the linear search results. A variable N indicates how many nodes should be

created for a test-linked list. The �rst, middle and last nodes will have a known value, which will be

searched for performance measurement. The nodes in between will have random values. The created

data set will be like Figure 1.

Figure 1. Linked List Structure.
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4. Methodology

In the study, we proposed a search algorithm that can �nd the speci�c number from the large size of

the link list. First, the datasets are passed to the parallel search function, and then keys are placed in

the �rst, middle, and last sections of the linked list. After that, the search is performed to determine

the speci�c goal with the information of time and space complexity. The observation of space and time

of this operation is kept in a table and compared with the linear search based on this data.

4.1. Parallel Searching in a Linked List

The linked list utilizes the C++ struct idea[34], whereby struct Node *next designates the address of

the linked list’s next node, and int designates the integer data type that is included in the dataset. The

generated random numbers are distributed to n - 1 nodes (n is the number of nodes that is taken from

the user). Each random value is allocated to a node, which is then linked to the preceding node. The

head of the node is if it is the �rst element in the dataset; if it is the last, the address portion of the

node is given the value null. A search key that is not found in the dataset is added after the linked list

with all the random values has been constructed. To do this study, the search is situated at the start,

middle, and end. After the linked list and the search key is obtained, the parallel search algorithm is

performed.

The proposed algorithm starts by initializing a variable to store the search key. If the search key is

found in the cache, the result is returned immediately, otherwise the algorithm proceeds to the next

step. The algorithm then initializes a pointer to the head of the linked list and traverses the list to

determine chunk heads. The number of CPU threads is also initialized, and the size of each chunk is

computed based on the number of threads and the total size of the list. Next, the algorithm initializes

the required number of threads and assigns one chunk to each thread. Each thread then searches for

the search key in its assigned chunk parallel. If the key is found, the data is cached, and the search key

is returned. Finally, if the key is not found, the algorithm returns with a relative message.
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5. Experimental Evaluation

5.1. Environmental Setup

The experimental setups involve the use of an Intel i3 8th generation processor with 4 GB of RAM, an

Intel i5 8th generation processor with 8 GB of RAM and an Intel i7 8th generation processor with 16 GB

of RAM. Several readings were taken, and the results were averaged.

5.2. Performance Result

For the computations of the functions’ execution times, the time.h module is used. This method is not

very accurate in C++ programming language. There are variations in the complexity calculation of

±15% in all cases. Therefore, several readings(10-20) were taken, and the average was considered for

the comparison.

Table 1 and table 2 show us the comparison between linear search and parallel search for the �rst

search operation. The values are plotted in �gure 3 and �gure 4, respectively, for better

understanding.
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Figure 3 and �gure 4 give us the graphical representation of the time complexity of linear search and

parallel search for the �rst search operation. Parallel search, in this case, is slower than linear search

because of the thread allocation. For both of the cases, the time complexity is linear. This is because

the �rst node is at the �rst position of the list, and as soon as the pointer moves to the �rst node, the

key is found. So, the time complexity would be the time that it takes for the pointer to move to the �rst

node of the list. Although the di�erences are not that signi�cant, we can say linear search performs

better than parallel search for the �rst operation. This is the general case of the algorithm when the

data is not at the cache memory. But in the case of being the data in the cache memory, the result is

instantaneous. The time complexity when the cache hits is obviously constant and fast.
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Figure 2. Flowchart of Parallel Search Algorithm.
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Test

Sample

Linear Search Time

(in ms)

Parallel Search Time if Cache

Miss (in ms)

Parallel Search Time if Cache

Hit (in ms)

100k 3.5463 3.8186 0.0041

200k 3.6123 3.7675 0.0039

300k 3.6926 3.7685 0.0042

400k 3.6699 3.7654 0.0045

500k 3.5681 3.7321 0.0038

Table 1. Time Complexity for Search First Operation

Test Sample Parallel compared to Linear

100k 96.669

200k 95.808

300k 97.985

400k 97.464

500k 95.607

Table 2. Calculation of the percentage of time necessary for the Search First Operation.

Table 3 and 4 show us the comparison between linear search and parallel search for search middle

operation. The values are plotted in �gure 5 and �gure 6, respectively, for better understanding.

qeios.com doi.org/10.32388/XGNJ9L 11

https://www.qeios.com/
https://doi.org/10.32388/XGNJ9L


Test

Sample

Linear Search Time

(in ms)

Parallel Search Time if Cache

Miss (in ms)

Parallel Search Time if Cache

Hit (ms)

100k 5.3053 3.8188 0.0031

200k 6.5432 4.1261 0.0032

300k 7.4404 4.4498 0.0043

400k 8.4951 5.0673 0.0041

500k 9.4103 5.1318 0.0041

Table 3. Time complexity for Search Middle operation.

Test Sample Parallel compared to Linear

100k 138.926

200k 158.581

300k 167.208

400k 167.645

500k 183.372

Table 4. Percentage time calculation for Search Middle Operation.
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Figure 3. Graph Displaying the Time Complexity Involved in the Search First Operation.

Figure 4. Percentage compared to Linear for Search First Operation.

Figure 5 and �gure 6 gives us the graphical representation of time complexity of linear search and

parallel search for search middle operation. In the case for searching the middle element in a linked

list, parallel search algorithm outperforms linear search for every test sample. This is because of the
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clustering e�ect. After dividing the linked list into clusters, the middle element does not remain the

middle element for a speci�c cluster. In best cases the middle element might become the �rst element

in a cluster. In that case, the time taken to �nd the middle element will be same as search �rst

element. The cache hit case is the same as described before.

Table 5 and table 6 shows us the comparison between linear search and parallel search for search last

operation. The values are plotted on �gure 7 and �gure 8 respectively for better understanding.

Figure 7 and �gure 8 gives us the graphical representation of time complexity of linear search and

parallel search for search last operation. Parallel search in this case is very e�cient compared to linear

search. As the data size increases the e�ciency of parallel search increases. For 100k to 500k, the

speed improves by ∼ 35%to ∼ 70% compared to linear search[7]. This shows that the parallel search

algorithm becomes more and more e�cient as the size of the dataset increases.

After analyzing the data, let’s consider the following factors to better understand the time complexity:

Size of the dataset, n

Number of threads in CPU, num_threads

Time taken to search one chunk, chunk_search_time

Time taken for each node, K

Figure 5. Time Complexity Graph for Search Middle Operation.
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Figure 6. Percentage compared to Linear for Search Middle Operation.

Test

Sample

Linear Search Time

(in ms)

Parallel Search Time if Cache

Miss (in ms)

Parallel Search Time if Cache

Hit (in ms)

100k 6.7386 4.901 0.0032

200k 8.6410 6.209 0.0041

300k 10.324 7.118 0.0044

400k 11.937 7.501 0.0046

500k 13.548 8.019 0.0042

Table 5. Time complexity for Search Last operation.
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Test Sample Parallel compared to Linear

100k 137.494

200k 139.169

300k 145.041

400k 158.337

500k 168.895

Table 6. Calculation of the time percentage for the search last operation.

Figure 7. Time Complexity Graph for Search Last Operation.
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Figure 8. Percentage compared to Linear for Search Last Operation.

By using these, we will be able to determine the time complexity of the parallel search method for the

best case, the average case, and the worst case respectively Best Case: In the best-case scenario, the

key is found in the �rst node of the list, so the algorithm will have a time complexity of O(K) as only

one node is traversed. As K is constant, we can also say the complexity if O(1).

Average Case: In the average case, the key is found in the middle of the list. For di�erent sizes of

datasets, the middle element may be in a di�erent position of a chunk. Let the average position of the

search key be in the middle p. So, the time required to �nd a key at p would be O(K ∗ p).

Worst Case: In the worst case, the search key would be at the last position of the last chunk. So, the

time taken to access that would be equal to the time to traverse one chunk. This can be expressed as

O(chunk_search_time). Note that the size of each chunk depends on the size of the dataset and the

number of threads.

chunk_search_time = n/(num_threads ∗ K)

Compared to linear search, this algorithm has a better average and worst-case time com- plexity as it

divides the list into chunks and assigns each chunk to a separate thread. This improves the parallelism

of the algorithm, which can help reduce the search time.
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In case of a cache hit, the Best, Average and Worst case complexity is O(1). This further improves the

e�ciency of the algorithm.

6. Conclusion

This paper presents a strategy for improving search e�ciency in large linked lists using multi-

threading and caching techniques. The research reveals improvements in time spent searching and

overall system performance by e�ciently storing frequently used elements in a cache and scanning

multiple sections simultaneously. The scalability analysis and trade-o�s between multi-threading

and caching provide practical implementation ideas, making the methodology potentially useful for

optimizing search operations in computational applications dealing with large linked lists.

Future work on the proposed methodology includes optimizing search e�ciency, �ne- tuning cache

replacement policies and dynamically adapting data distribution strategies. Conducting extensive

testing and benchmarking against other search algorithms and data structures will validate the

algorithm’s practical applicability. Integrating the parallel search algorithm into real-world

applications can provide valuable insights into its scalability and responsiveness, ultimately

improving its overall performance.
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