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Efficiently searching on a large linked list is a critical challenge in various computational applications.

Traditional methods grapple with the sequential organization and voluminous data, resulting in

sluggish search operations. In response, this study introduces a novel approach leveraging

multithreading for concurrent searches, facilitating parallel exploration of distinct segments within

the linked list. Complementing this, we incorporate a caching mechanism to store frequently accessed

elements, thereby optimizing RAM utilization during search processes. Through rigorous

experimentation, our methodology showcases remarkable advancements in search efficiency and

overall system performance compared to conventional techniques. These findings underscore the

proposed framework's significance in revolutionizing large linked list exploration, offering promising

avenues for enhancing computational operations across diverse domains.
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1. Introduction

In the ever-evolving world of computer science, linked lists play a fundamental role in various

applications, including personal storage, databases, search engines and artificial intelligence systems.

Linked lists find extensive applications in various domains, making them a crucial data structure in

modern computing[1]. They are the backbone of personal storage, enabling users to organize and manage

data efficiently. In databases, linked lists facilitate the storage and retrieval of records, contributing to
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smooth data operations[2]. Moreover, search engines heavily rely on linked lists to index and retrieve

information from vast web databases[3]. Artificial intelligence systems also leverage linked lists to build

complex data structures, efficiently storing and processing data during training and inference stages[3][4]

[5][6][7][8][9][10][11][12][13][14][15].

Searching is a fundamental operation within linked lists that enables the retrieval of specific data

elements from the structure[16]. Efficient search algorithms enable seamless access to information in

applications like databases, where quick response times are essential for a positive user experience[17].

Moreover, searching within linked lists in artificial intelligence systems facilitates efficient data

processing during tasks like pattern recognition, decision-making and natural language processing.

The traditional linear search algorithm for linked lists has a time complexity of O(n)[18], which makes it

inefficient for large-scale applications where the size of the dataset is significant[19]. As a result, a search

algorithm for linked lists that can handle large datasets with minimal computational overhead and is

more effective and scalable needs to be developed.

As computer systems continue to evolve rapidly, with innovations in multi-core processors, vectorized

instructions and specialized hardware accelerators[20], the proposed algorithm is designed to take

advantage of these advancements. It is optimized to efficiently utilize parallelism and leverage the full

potential of modern hardware architectures. By doing so, the algorithm can exploit the available

computational resources effectively, resulting in even faster search performance for large datasets.

Furthermore, the algorithm’s ability to handle large datasets with minimal computational overhead

addresses one of the most critical challenges in contemporary computer science and data processing[21].

With the explosive growth of data in various domains, such as big data analytics, machine learning and

artificial intelligence, the need for efficient search algorithms becomes paramount[22]. The proposed

algorithm not only enhances the speed of searching within linked lists but also reduces the

computational burden, making it well-suited for real-world, data-intensive applications.

To improve linked list-searching methods, this paper investigates the application of caching and parallel

processing techniques. Caching is a method that stores frequently accessed data in a fast-access memory

to reduce the time it takes to access it[23]. In contrast, parallel processing involves using multiple

processing units or cores to perform tasks concurrently[24]. It begins by highlighting the significance of

linked lists as a widely used data structure in computer science, particularly for handling large datasets

due to their dynamic memory allocation and efficient insertion and deletion capabilities[25]. However, the
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traditional sequential search algorithms for linked lists have limitations, especially for large-scale

applications[19]. We propose using parallel processing and caching techniques to address this challenge to

enhance search efficiency. The objective is to create an algorithm that is more effective and scalable. The

proposed algorithm uses parallel processing to simultaneously search for the target data in each of the

smaller chunks it divides the linked list into. They are cached in memory to speed up access to the

chunks during subsequent searches. All the parallel search results are combined to determine whether

the target data are in the linked list.

This paper evaluates the proposed algorithm’s speed and scalability using various data sizes from[18]. The

evaluation results establish the proposed algorithm’s superiority over the traditional sequential search

technique. It not only demonstrates its capacity to handle large datasets efficiently but also highlights its

ability to maintain low computational overhead even when confronted with extensive data sizes. This is a

critical achievement in linked list searching. Large-scale applications often involve massive datasets that

can be time-consuming and resource-intensive to process using conventional methods[26]. By

significantly outperforming the sequential search algorithm in terms of speed, the proposed algorithm

paves the way for enhanced performance in a wide array of applications that rely on linked list

searching[27].

In the first chapter, we discussed the liked list data structure, the linked list’s significance, and its

searching operation in real-world applications. The second chapter is about the related works in this

field, highlighting the methodology and limitations of each research. Moving forward, the next chapter is

about the methodology and implementation of the proposed algorithm. It consists of creating a dataset

and applying the parallel search algorithm. The result analysis section represents and compares the

experimental results with the linear search approach. Finally, the conclusion highlights the results and

the future of the research conducted.

The major contributions of this study are given below:

i. Multi-threading is used for faster searching in large linked lists.

ii. Caching technique used for faster data processing in the linked list.

iii. Increased scalability due to the adaptation to different hardware by adjusting the number of threads

used.

iv. Enabled load balancing optimization with configurable thread count and adjustable chunk size.

This research work is publicly available at GitHub Repository[28].
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2. Literature Review

To address the scalability issue researchers have explored various optimization techniques including the

use of parallel search algorithms.

2.1. Linked Lists and Search Algorithms

A linked list is a dynamic data structure comprising nodes where each containing a data element and a

reference to the next node in the sequence. This structure is advantageous for operations such as

insertion and deletion. These operations are performed with constant time complexity. However,

searching for a specific element typically requires traversing the list that leads to a linear time complexity

O(n). As the dataset grows the inefficiency of this approach becomes apparent and particularly in

scenarios requiring frequent or time-sensitive searches.

o overcome the limitations of linear search various search algorithms have been developed. Binary search

for example, offers a logarithmic time complexity O(log n), but it requires a sorted array and is not

directly applicable to linked lists. Hashing is another approach that provides constant time complexity

O(1) for search operations but introduces additional space overhead and does not maintain the order of

elements.

Parallel search algorithms have emerged as a promising solution to the inefficiencies associated with

traditional search methods in linked lists. By dividing the search task across multiple threads or

processors, parallel search algorithms can significantly reduce the time required to locate a specific

element in a large dataset. This approach leverages the capabilities of modern multi-core processors that

enables concurrent processing of different segments of the linked list.

One of the key challenges in applying parallel search to linked lists is the dynamic nature of the data

structure which complicates the division of nodes among threads. Despite these challenges several

studies have demonstrated the effectiveness of parallel search algorithms in improving search efficiency.

2.2. Previous Work on Parallel Search in Linked Lists

Recent research has explored various strategies for implementing parallel search in linked lists. Yu et al.

introduced a multiple learning backtracking search algorithm designed for estimating parameters in

photovoltaic models, which incorporates parallelism to enhance efficiency[29]. Similarly, Dhulipala et al.
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developed theoretically efficient parallel graph algorithms that can be both fast and scalable,

demonstrating the potential of parallel approaches in optimizing search tasks[30].

Fang et al. explored effective and efficient community search techniques over large heterogeneous

information networks, employing parallel algorithms to handle the complexity of the task[31]. In another

study, Fang et al. focused on optimizing query algorithms for large directed graphs, again highlighting

the advantages of parallel processing[32]. Finally, Ezugwu proposed an enhanced symbiotic organisms

search algorithm for scheduling in manufacturing, which utilizes parallelism to achieve near- optimal

solutions with improved efficiency[33].

Building on this body of work, the current study aims to develop a novel parallel search algorithm

specifically tailored for linked lists. The proposed algorithm will address the challenges associated with

the dynamic nature of linked lists by effectively dividing the search task across multiple threads. By

placing the search key at different positions within the linked list (beginning, middle and end), the study

will evaluate the algorithm’s performance in terms of time complexity and compare the results with

those of traditional linear search methods. This research is expected to contribute to the field by

providing an efficient alternative to existing search methods in linked lists, with potential applications in

various domains that require the processing of large datasets.

3. Dataset

We created a new dataset according to the existing rules and protocol[18]. Datasets are generated of sizes

100k, 200k, 300k, and 500k of random numbers ranging from 0 to 9. The search key, which is 10, is

placed as the first, middle and last element in the generated linked list. The following algorithm is used to

generate the dataset.
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We used C++ built-in random function rand() is used to create a random dataset. A variable N indicates

how many nodes should be created for a test-linked list. The first, middle and last nodes will have a

known value, which will be searched for performance measurement. The nodes in between will have

random values. The created data set will be like Figure 1.

After creating a linked list N-1 times with generated random numbers, a search key(integer 10) will be

placed at the first, middle and end of the linked list for time complexity analysis. The time noted are then

compared with the linear search results. A variable N indicates how many nodes should be created for a

test-linked list. The first, middle and last nodes will have a known value, which will be searched for

performance measurement. The nodes in between will have random values. The created data set will be

like Figure 1.

Figure 1. Linked List Structure.
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4. Methodology

In the study, we proposed a search algorithm that can find the specific number from the large size of the

link list. First, the datasets are passed to the parallel search function, and then keys are placed in the first,

middle, and last sections of the linked list. After that, the search is performed to determine the specific

goal with the information of time and space complexity. The observation of space and time of this

operation is kept in a table and compared with the linear search based on this data.

4.1. Parallel Searching in a Linked List

The linked list utilizes the C++ struct idea[34], whereby struct Node *next designates the address of the

linked list’s next node, and int designates the integer data type that is included in the dataset. The

generated random numbers are distributed to n - 1 nodes (n is the number of nodes that is taken from

the user). Each random value is allocated to a node, which is then linked to the preceding node. The head

of the node is if it is the first element in the dataset; if it is the last, the address portion of the node is

given the value null. A search key that is not found in the dataset is added after the linked list with all the

random values has been constructed. To do this study, the search is situated at the start, middle, and end.

After the linked list and the search key is obtained, the parallel search algorithm is performed.

The proposed algorithm starts by initializing a variable to store the search key. If the search key is found

in the cache, the result is returned immediately, otherwise the algorithm proceeds to the next step. The

algorithm then initializes a pointer to the head of the linked list and traverses the list to determine chunk

heads. The number of CPU threads is also initialized, and the size of each chunk is computed based on the

number of threads and the total size of the list. Next, the algorithm initializes the required number of

threads and assigns one chunk to each thread. Each thread then searches for the search key in its

assigned chunk parallel. If the key is found, the data is cached, and the search key is returned. Finally, if

the key is not found, the algorithm returns with a relative message.
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5. Experimental Evaluation

5.1. Environmental Setup

The experimental setups involve the use of an Intel i3 8th generation processor with 4 GB of RAM, an

Intel i5 8th generation processor with 8 GB of RAM and an Intel i7 8th generation processor with 16 GB of

RAM. Several readings were taken, and the results were averaged.

5.2. Performance Result

For the computations of the functions’ execution times, the time.h module is used. This method is not

very accurate in C++ programming language. There are variations in the complexity calculation of ±15%

in all cases. Therefore, several readings(10-20) were taken, and the average was considered for the

comparison.

Table 1 and table 2 show us the comparison between linear search and parallel search for the first search

operation. The values are plotted in figure 3 and figure 4, respectively, for better understanding.

Figure 3 and figure 4 give us the graphical representation of the time complexity of linear search and

parallel search for the first search operation. Parallel search, in this case, is slower than linear search
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because of the thread allocation. For both of the cases, the time complexity is linear. This is because the

first node is at the first position of the list, and as soon as the pointer moves to the first node, the key is

found. So, the time complexity would be the time that it takes for the pointer to move to the first node of

the list. Although the differences are not that significant, we can say linear search performs better than

parallel search for the first operation. This is the general case of the algorithm when the data is not at the

cache memory. But in the case of being the data in the cache memory, the result is instantaneous. The

time complexity when the cache hits is obviously constant and fast.
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Figure 2. Flowchart of Parallel Search Algorithm.
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Test

Sample

Linear Search Time (in

ms)

Parallel Search Time if Cache Miss

(in ms)

Parallel Search Time if Cache Hit

(in ms)

100k 3.5463 3.8186 0.0041

200k 3.6123 3.7675 0.0039

300k 3.6926 3.7685 0.0042

400k 3.6699 3.7654 0.0045

500k 3.5681 3.7321 0.0038

Table 1. Time Complexity for Search First Operation

Test Sample Parallel compared to Linear

100k 96.669

200k 95.808

300k 97.985

400k 97.464

500k 95.607

Table 2. Calculation of the percentage of time necessary for the Search First Operation.

Table 3 and 4 show us the comparison between linear search and parallel search for search middle

operation. The values are plotted in figure 5 and figure 6, respectively, for better understanding.
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Test

Sample

Linear Search Time (in

ms)

Parallel Search Time if Cache Miss

(in ms)

Parallel Search Time if Cache Hit

(ms)

100k 5.3053 3.8188 0.0031

200k 6.5432 4.1261 0.0032

300k 7.4404 4.4498 0.0043

400k 8.4951 5.0673 0.0041

500k 9.4103 5.1318 0.0041

Table 3. Time complexity for Search Middle operation.

Test Sample Parallel compared to Linear

100k 138.926

200k 158.581

300k 167.208

400k 167.645

500k 183.372

Table 4. Percentage time calculation for Search Middle Operation.
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Figure 3. Graph Displaying the Time Complexity Involved in the Search First Operation.

Figure 4. Percentage compared to Linear for Search First Operation.

Figure 5 and figure 6 gives us the graphical representation of time complexity of linear search and

parallel search for search middle operation. In the case for searching the middle element in a linked list,

parallel search algorithm outperforms linear search for every test sample. This is because of the
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clustering effect. After dividing the linked list into clusters, the middle element does not remain the

middle element for a specific cluster. In best cases the middle element might become the first element in

a cluster. In that case, the time taken to find the middle element will be same as search first element. The

cache hit case is the same as described before.

Table 5 and table 6 shows us the comparison between linear search and parallel search for search last

operation. The values are plotted on figure 7 and figure 8 respectively for better understanding.

Figure 7 and figure 8 gives us the graphical representation of time complexity of linear search and

parallel search for search last operation. Parallel search in this case is very efficient compared to linear

search. As the data size increases the efficiency of parallel search increases. For 100k to 500k, the speed

improves by ∼ 35%to ∼ 70% compared to linear search[7]. This shows that the parallel search algorithm

becomes more and more efficient as the size of the dataset increases.

After analyzing the data, let’s consider the following factors to better understand the time complexity:

Size of the dataset, n

Number of threads in CPU, num_threads

Time taken to search one chunk, chunk_search_time

Time taken for each node, K

Figure 5. Time Complexity Graph for Search Middle Operation.
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Figure 6. Percentage compared to Linear for Search Middle Operation.

Test

Sample

Linear Search Time (in

ms)

Parallel Search Time if Cache Miss

(in ms)

Parallel Search Time if Cache Hit

(in ms)

100k 6.7386 4.901 0.0032

200k 8.6410 6.209 0.0041

300k 10.324 7.118 0.0044

400k 11.937 7.501 0.0046

500k 13.548 8.019 0.0042

Table 5. Time complexity for Search Last operation.
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Test Sample Parallel compared to Linear

100k 137.494

200k 139.169

300k 145.041

400k 158.337

500k 168.895

Table 6. Calculation of the time percentage for the search last operation.

Figure 7. Time Complexity Graph for Search Last Operation.
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Figure 8. Percentage compared to Linear for Search Last Operation.

By using these, we will be able to determine the time complexity of the parallel search method for the

best case, the average case, and the worst case respectively Best Case: In the best-case scenario, the key is

found in the first node of the list, so the algorithm will have a time complexity of O(K) as only one node is

traversed. As K is constant, we can also say the complexity if O(1).

Average Case: In the average case, the key is found in the middle of the list. For different sizes of datasets,

the middle element may be in a different position of a chunk. Let the average position of the search key

be in the middle p. So, the time required to find a key at p would be O(K ∗ p).

Worst Case: In the worst case, the search key would be at the last position of the last chunk. So, the time

taken to access that would be equal to the time to traverse one chunk. This can be expressed as

O(chunk_search_time). Note that the size of each chunk depends on the size of the dataset and the

number of threads.

chunk_search_time = n/(num_threads ∗ K)

Compared to linear search, this algorithm has a better average and worst-case time com- plexity as it

divides the list into chunks and assigns each chunk to a separate thread. This improves the parallelism of

the algorithm, which can help reduce the search time.

In case of a cache hit, the Best, Average and Worst case complexity is O(1). This further improves the

efficiency of the algorithm.
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6. Conclusion

This paper presents a strategy for improving search efficiency in large linked lists using multi-threading

and caching techniques. The research reveals improvements in time spent searching and overall system

performance by efficiently storing frequently used elements in a cache and scanning multiple sections

simultaneously. The scalability analysis and trade-offs between multi-threading and caching provide

practical implementation ideas, making the methodology potentially useful for optimizing search

operations in computational applications dealing with large linked lists.

Future work on the proposed methodology includes optimizing search efficiency, fine- tuning cache

replacement policies and dynamically adapting data distribution strategies. Conducting extensive testing

and benchmarking against other search algorithms and data structures will validate the algorithm’s

practical applicability. Integrating the parallel search algorithm into real-world applications can provide

valuable insights into its scalability and responsiveness, ultimately improving its overall performance.
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