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At a point p in a field, the Lagrangian density can be expressed as the interior product of the tangent

velocity vector   and its corresponding metric dual conjugate momentum 1-form  ,

i.e.,  . Taking the exterior derivative of this 1-form yields a differential 2-form  ,

whose components constitute the field strength tensor—an antisymmetric (0,2)-tensor. Contracting

this 2-form with the tangent velocity vector gives the dynamic equation of the flow (a 1-form): 

. This formulation is entirely general and does not rely on prior assumptions. In reality, all

fields exhibit some degree of compressibility. When this method is applied to a compressible field, it

yields the dynamic equations for compressible flow. A singularity arises when the flow velocity is

equal to the local wave propagation speed. In the case that the flow velocity is much less than the wave

speed, or the wave speed approaches infinity, as an approximation, the dynamic equation degenerates

to an incompressible flow. Further, by neglecting local spinning motion and applying Stokes's

hypothesis, the equation reduces to the classical Navier-Stokes equations. The second exterior

derivative   yields a homogeneous differential 3-form. The coefficients of this 3-form

correspond to the dynamic equations governing the vorticity field, providing for the absence of

sources, sinks, or singularities at the point under consideration.
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Introduction

Instead of focusing on the motion of a single particle—such as a mass in a gravitational field or a charged

particle in an electromagnetic field—a field should be viewed as a collection of massive particles. In such

a system, not only do particle interactions occur, but wave propagation also takes place within the

field  [1]. In reality, all physical fields exhibit some degree of compressibility. Disturbances in the field

propagate at finite wave speeds, such as electromagnetic waves traveling through space at the speed of

light. In fluid dynamics, pressure (or density) disturbances propagate as mechanical waves at the speed of

sound. Consequently, a field carries not only wave energy but also wave momentum.

Unlike a single particle, a complete and accurate description of a field must include both its wave energy

and wave momentum. Additionally, the constituent particles may undergo macroscopic motion relative

to an observer, contributing kinetic energy to the system from the viewpoint of the observer.

Differential forms offer an elegant and powerful framework for describing fields. When expressed in this

formalism, the governing field equations become remarkably compact and transparent. In this paper, we

adopt the language of differential forms to formulate the dynamics of physical fields.

The structure of the paper is as follows:

Section 1 introduces the action 1-form within a Cartesian coordinate system on a manifold. It is

defined as the metric dual of the tangent velocity vector, implicitly incorporating the metric tensor

field and residing in the cotangent space. The Lagrangian density is then expressed as the interior

product of this 1-form with the velocity vector, yielding a scalar energy density field.

Section 2 derives the field strength tensor as the exterior derivative of the action 1-form, resulting in a

differential 2-form—a (0,2)-tensor.

Section 3 presents the contraction (interior product) of the 2-form with the velocity vector, yielding a

1-form whose components define the dynamical equations of the flow.

Section 4 develops the dynamic equation for a compressible field, revealing a singularity when the

flow velocity matches the local wave propagation speed.

Section 5 considers the incompressible approximation, where the flow velocity is much less than the

wave speed. Under this approximation, the equation simplifies accordingly.

Section 6 ignores the rotational effects (an antisymmetric part of the velocity gradient) and applies

Stokes’ hypothesis; the equation reduces further to the formulation of the classical Navier–Stokes

equations.
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Section 7 introduces the dynamical equation for the vorticity field. Its mathematical structure mirrors

that of the homogeneous Maxwell equations, as it follows automatically from  .

Since the full derivations are extensive, detailed step-by-step calculations are provided in the Appendix.

1. The Volumetric Density of the Action 1-Form

Suppose there exists a physical field in space, within which the particles are moving along their actual

physical trajectories; in other words, the paths taken by the particles are not arbitrary but are determined

by the dynamics of the physical field itself.

To describe the motion of these particles analytically, an inertial coordinate system is required, since

particle velocities are reference-frame dependent. In most practical scenarios, we describe the particle

motion relative to the laboratory frame, which can be treated as a quasi-inertial frame. For simplification,

we adopt a Cartesian coordinate system (t, x, y, z) to describe the motion of particles; see Fig. 1.

Figure 1. Observing the particle’s motion from the lab frame (a pseudo-

inertial frame), the velocity vector lives in the tangent space at point p: 

.

dω = S = 0d2

MTp
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A Poincaré-Cartan-like differential 1-form S is defined as follows [2][3][4][5][6]:

Here, S is the action density 1-form per unit volume. The quantity V denotes the volumetric potential

energy density, c represents the wave propagation speed, and    is the momentum density per unit

volume in the i-direction ( ). The components   are defined as the conjugate momenta, which

are the metric dual of the tangent velocity vector    in the tangent space at a point p under

consideration. That is, S is a cotangent vector (a differential 1-form), corresponding to the tangent

velocity vector at point p, with  . This defines a duality between vectors and covectors via the

metric tensor field. The cotangent basis 1-forms are   (and dt). In SI units, the components of   and 

 have dimensions of energy per unit volume, i.e.,   along the time direction. Physically, the 1-form S

represents an infinitesimal variation of the momentum and potential energy density along the actual

path   at a point p in 3+1-dimensional space.

The 1-form can be expressed explicitly in Cartesian coordinates as:

In Section 4, we will see that this formulation offers a significant advantage: the metric tensor is

implicitly embedded into the conjugate momenta,  .

By the way, it should be mentioned here that if the last term ( ) is neglected, the exterior derivative

of equation (1) becomes the symplectic 2-form:

2. Differential 2-form is the Field Strength Tensor

The 1-form of eq. (2) is called a potential of a differential 2-form. (We can also call it a vector potential for

a 2-form).

The exterior derivative of the 1-form yields the differential 2-form. We use the Leibniz rule for the

exterior derivative; it then reads:

since   and  .

The differential parts   and   are now expressed as

S = d − ( ) (cdt).pi xi
V

c
(1)

pi

i = x,y, z pi

∈ M,v
→

Tp

∈ Mpi T ∗
p

dxi pi

V [ ]J

m3

(dt,dx,dy,dz)

S = dx + dy + dz − V dt.px py pz (2)

pi

−V dt

dS = d ∧ d .pi xi (3)

ω = dS = d ( ) ∧ d − d(V ) ∧ dt,pi xi (4)

d (d ) = ( ) = 0xi d2 xi d(dt) = t = 0d2

dpi dV
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Substituting eq. (5) into (4), the exterior derivative (2-form) is

If each term is written out explicitly, e.g.:

Using the antisymmetric property of the wedge product of

and by collecting the same basis terms, we finally get the 2-form:

There are 6 independent terms; if written more compactly, it can be expressed as a strictly upper

triangular matrix:

Since  , we can write this symmetrically by antisymmetrizing the indices:

where   is a differential 2-form basis vector.

Here we define

The coefficients of the 2-forms can be written more compactly:

Working in cotangent space has great advantages because the Christoffel symbols are symmetric in their

lower two indices:

   for μ = (ct,x,y, z).  
⎧

⎩
⎨
d = d ,pi

∂pi

∂xμ
xμ

dV = d ,∂V
∂xμ

xμ
(5)

ω = dS = ( d ) ∧ d + (− d ) ∧ dt.
∂pi
∂xμ

xμ xi
∂V

∂xμ
xμ (6)

 .
⎧

⎩
⎨
⎪

⎪

d = dt + dx + dy + dzpx
∂px

∂t

∂px

∂x

∂px

∂y

∂px

∂z

−dV = − dt − dx − dy − dz∂V
∂t

∂V
∂x

∂V
∂y

∂V
∂z

(7)

d ∧ d = −d ∧ d ,   d ∧ d = 0,xμ xν xν xμ xμ xμ (8)

ω = ( + )dt ∧ dx + ( + )dt ∧ dy + ( + )dt ∧ dz 
∂px
∂t

∂V

∂x

∂py

∂t

∂V

∂y

∂pz
∂t

∂V

∂z

+( − )dx ∧ dy + ( − )dy ∧ dz + ( − )dz ∧ dx.
∂py

∂x

∂px
∂y

∂pz
∂y

∂py

∂z

∂px
∂z

∂pz
∂x

(9)

ω = (d ∧ d ) .∑
μ<ν

4

ωμν xμ xν (10)

d ∧ d = −d ∧ dxμ xν xν xμ

ω = d ∧ d ,   for μ,ν = (ct,x,y, z)
1

2
ωμν xμ xν (11)

d ∧ dxμ xν

= .pt
V

c
(12)

= − .ωμν ∂μpν ∂ν pμ (13)

= .Γk
μν Γk

νμ (14)
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Thus,   is a covariant derivative; namely, it is a (0,2)-tensor:

The coefficients (with two subscripts,  ) of the 2-form are the field strength tensor; accordingly, it is an

antisymmetric (0,2)-tensor. It can “eat” a tangent vector in the first slot, leaving a 1-form. If the

coefficients of the differential 2-form (eq. (11)) are arranged as a 4x4 matrix, it reads:

This arrangement will keep the antisymmetric structures, e.g.:

The antisymmetric 4x4 matrix still keeps the 6 independent terms.

In 3D Cartesian coordinates, there is a relationship between the vector cross product and the wedge

product due to the Hodge dual; it maps the oriented bilinear form (area element 2-forms) to

corresponding perpendicular (orthogonal complements) 1-forms:

where   is the Levi-Civita symbol. Applying the Hodge dual operator to the spatial components:

In vector calculus language, this is the curl of the covector field (metric dual momentum) in 3D. In other

words, we can define a vorticity field using the cotangent momenta:

In index notation, it can be written as a curl operation:

ωμν

= − = ( − ) − ( − ) .ωμν ∇μpν ∇νpμ ∂μpν Γk
μν ∂ν pμ Γk

νμ (15)

μν

ω = .
1

2

⎡

⎣

⎢⎢
⎢⎢

0

−ωtx

−ωty

−ωtz

ωtx

0

−ωxy

−ωxz

ωty

ωxy

0

−ωyz

ωtz

ωxz

ωyz

0

⎤

⎦

⎥⎥
⎥⎥

(16)

⎧

⎩
⎨
⎪

⎪

dt ∧ dx = ( + )dt ∧ dx;       dx ∧ dt = − dx ∧ dtωtx
∂px

∂t
∂V
∂x

ωxt ωtx

dx ∧ dy = ( − )dx ∧ dy;     dy ∧ dx = − dy ∧ dxωxy

∂py

∂x

∂px

∂y
ωyx ωxy

(17)

∗ (d ∧ d ) = d ,xi xj ϵijk xk (18)

ϵijk

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪

∗ ( dx ∧ dy) = ∗ [( − )dx ∧ dy] = dz = dz ωxy

∂py

∂x

∂px

∂y
(∇ × )p

→

z
ωz

∗ ( dy ∧ dz) = ∗ [( − )dy ∧ dz] = dx = dxωyz
∂pz

∂y

∂py

∂z
(∇ × )p

→

x
ωx

∗ ( dz ∧ dx) = ∗ [( − )dz ∧ dx] = dy = dyωzx
∂px

∂z

∂pz

∂x
(∇ × )p

→

y
ωy

(19)

= ∇ × .ω
→

p
→

(20)

= ( ) .ωi εijk∂j pk (21)
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Figure 2. In 3D, the vorticity field is the Hodge dual to the 2-form, e.g.,

Here, we use one subscript ( ) to represent the vorticity field for 3D space in the x-, y-, and z-

directions; see Fig. 2.

Thus, the 2-form can be rewritten more compactly in index notation:

or explicitly:

Here, we use two subscripts ( ) to represent the temporal components and one subscript (

) to represent the (spatial) vorticity components, e.g.:

In this manner, the field strength (0,2)-tensor can be expressed as

  ∗ ( dx ∧ dy) = ∗( − ) dx ∧ dy = dz.ωxy

∂py

∂x

∂px

∂y
ωz

i = 1, 2, 3

ω = dt ∧ d + ( )d ∧ d ,ω
→

ti xi ⋆3 ω
→

ij xi xj (22)

ω = dt ∧ dx + dt ∧ dy + dt ∧ dzωtx ωty ωtz

+  dy ∧ dz + dz ∧ dx + dx ∧ dy.ωx ωy ωz

(23)

ti = tx, ty, tz

i = x,y, z

 .
⎧

⎩
⎨
⎪

⎪

= +ωtx
∂px

∂t
∂V
∂x

= −ωx
∂pz

∂y

∂py

∂z

(24)

ω = .
1

2

⎡

⎣

⎢⎢
⎢⎢

0

−ωtx

−ωty

−ωtz

ωtx

0

−ωz

ωy

ωty

ωz

0

−ωx

ωtz

−ωy

ωx

0

⎤

⎦

⎥⎥
⎥⎥

(25)
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3. Contraction with the Tangent Velocity Yields the Field Dynamic

Equation

The velocity vector along the actual path is a linear combination of local coordinate basis vectors of the

tangent space at a point p,  :

where the Einstein summation convention is used. For ease, the Cartesian expression is also explicitly

written out. Again, c represents the wave propagation speed in the field.   are the particle tangent

velocity components along the x-, y-, and z-directions,  .

It represents the dynamic flow of the particles in the field along the physical path.

Then, the contraction (or interior product) of the 2-form ꞷ with the tangent velocity vector field yields

the dynamic equation of the field; it equals zero, since the orthogonal complements of the Hodge dual

operators:

This means that the 2-form dS is annihilated by the tangent vector   via interior contraction.

The interior product of a 2-form with a tangent velocity vector yields a differential 1-form, defined by

inserting the tangent velocity vector   into the first slot of the 2-form ω. It is also expressed as:

Now, we compute and expand the expression   in Cartesian coordinates.

Using the rule:

and the duality (or natural pairing) between the tangent and cotangent basis vectors:

where    is the Kronecker delta, and through term-by-term contractions, we have the following

expressions for the temporal components:

∈ Mv
→

Tp

= = c + u + v + w ,v
→

vμ
∂

∂xμ
∂

(c∂t)

∂

∂x

∂

∂y

∂

∂z
(26)

(u, v,w)

( )∂

∂xi

(dS) = (ω) = 0.ι
v

→ ι
v

→ (27)

v
→

v
→

(ω) = ω(v, −) = 0.ι
v

→ (28)

(ω)ι
v

→

(d ∧ d ) = (d )d − (d )d ,ι
v

→ xμ xν ι
v

→ xμ xν ι
v

→ xν xμ (29)

d ( ) = ,xμ
∂

∂xν
δ
μ
ν (30)

δ
μ
ν
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Similarly, the spatial components are

Grouping the terms for the same 1-form basis:

The differential 1-form is zero; thus, each coefficient should be zero:

Using the curl definition of eq. (19) and eq. (20), the first three equations can be written as a vector

equation for 3D space:

The fourth equation in vector notation reads:

or explicitly:

The vector    is orthogonal to the tangent vector  , see Fig. 3 for an illustration of the t-x plane. It

indicates that the tangent velocity   is the kernel of the 2-form   in 3D space.

 .

⎧

⎩
⎨

⎪⎪⎪

⎪⎪⎪

( dt ∧ dx) = ∙ dx − u ∙ dtι
v

→ ωtx ωtx ωtx

( dt ∧ dx) = ∙ dy − v ∙ dtι
v

→ ωty ωty ωty

( dt ∧ dz) = ∙ dz − w ∙ dtι
v

→ ωtz ωtz ωtz

(31)

 .

⎧

⎩
⎨

⎪⎪⎪

⎪⎪⎪

( dx ∧ dy) = u ∙ dy − v ∙ dxι
v

→ ωxy ωxy ωxy

( dy ∧ dz) = v ∙ dz − w ∙ dyι
v

→ ωyz ωyz ωyz

( dz ∧ dx) = w ∙ dx − u ∙ dzι
v

→ ωzx ωzx ωzx

(32)

(ω) =ι
v

→ [ + w − v ]dxωtx ωzx ωxy

+ [ + u − w ]dyωty ωxy ωyz

+ [ + v  − u  ]dzωtz ωyz ωzx

+ [ + v  − u  ]dzωtz ωyz ωzx

− [u + v + w ]dt = 0.ωtx ωty ωtz

(33)

.

⎧

⎩

⎨

⎪⎪⎪⎪

⎪⎪⎪⎪

+ w − v = 0ωtx ωzx ωxy

+ u − w = 0ωty ωxy ωyz

+ v  − u  = 0ωtz ωyz ωzx

u + v + w = 0ωtx ωty ωtz

(34)

+ ∇V − × (∇ × ) = 0.
∂ p

→

∂t
v

→
p
→

(35)

∙ = 0,ω
→

t v
→

(36)

( + )u + ( + ) v + ( + )w = 0,
∂px
∂t

∂V

∂x

∂py

∂t

∂V

∂y

∂px
∂t

∂V

∂z
(37)

ω
→

ti v
→

= u + v + wv
→

∂x ∂y ∂z ω
→

ti
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Figure 3. Temporal component of   and the tangent velocity

component   in the t-x plane. In 1D flow, they are “orthogonal” 

4. Dynamic Equations for the Compressible Field

Suppose there exists a compressible physical field in space.

The kinetic and potential energy density per unit volume in a compressible field is expressed as

follows [7]:

where   is the mass density when the flow velocity is zero, relative to the stationary lab frame.   is the

Lorentz factor,

(dt ∧ dx)ωtx

u∂x u = 0.ωtx

V = (α ) ;    T = (γ ) .ρ0 c2 ρ0 v
→2

(38)

ρ0 γ

γ = .
1

1 −
∥
∥
∥M

−→∥
∥
∥

2
− −−−−−−−

√

(39)
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It represents the mass density increasing effect due to the compression of the volume in the direction of

motion, and   is the Mach number vector in fluid dynamics; it is the ratio of the flow velocity of   to

the wave propagation speed of c:

  is the reciprocal of the Lorentz factor  . It is an expansion factor; physically, it represents the

potential energy density decreasing factor due to the relative motion (potential energy changes into

kinetic energy).

It is easy to see that there is a reciprocal relation between   and  :

The Lagrangian density per unit volume is, thus, a quadratic form:

where   is the tangent velocity vector in the Cartesian coordinate system:

The quadratic form of Eq. (42) can be written out explicitly with the help of a covariant metric tensor:

Here, the metric tensor reads:

In this way, we get the conjugate momenta, the metric dual to the tangent velocity vector:

Now, it is defined as a cotangent vector (1-form) at the point p,  . In other words, in contrast to

the tangent vector, the conjugate momenta are equipped with the metric tensor of Eq. (45).

Substituting Eq. (46) into Eq. (2), in Cartesian coordinates, the Poincaré–Cartan-like differential 1-form S

for the compressible field is defined as:

This expression provides a key advantage—namely, that the metric tensor is implicitly incorporated into

the definition of the conjugate momenta  . A wave travels in space at the wave speed of c; actually, the

last term is the wave conjugate momentum:

M
−→

v
→

= .M
−→ v

→

c
(40)

α α = 1
γ

α γ

γ ∙ α = 1. (41)

L =T − V = (γ ) − (α ) = g ,ρ0 v
→2

ρ0 c2 v
→T

v
→

(42)

v
→

= = + u + v + w .v
→

vμ∂μ ∂t ∂x ∂x ∂z (43)

L = = ( ) = .ρ0gμνv
μvν ρ0gμνv

μ vν pνv
ν (44)

= diag(−α,γ,γ,γ) .gμν (45)

= = (−αc,γu,γv,γw).pν ρ0gμνv
μ ρ0 (46)

∈ Mpν T ∗
p

S = ( γu)dx + ( γv)dy + ( γw)dz − (α )dt.ρ0 ρ0 ρ0 ρ0c
2 (47)

pν
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In other words, Eq. (47) can also be written as:

It can be seen that the interior product (contraction) of the differential 1-form S with the tangent velocity

 yields the Lagrangian density for compressible fields:

Using the rule of duality (or natural pairing) between the tangent and cotangent basis vectors, Eq. (30).

Substituting these into Eq. (35), we finally get the dynamic equation for compressible flow:

Figure 4. Reciprocal relation between   and  ; when the flow velocity approaches

the wave speed c,   becomes infinitely great;  .

αc = .ρ0
αρ0c

2

c
(48)

S = ( γu)dx + ( γv)dy + ( γw)dz − (α c) (cdt).ρ0 ρ0 ρ0 ρ0 (49)

v
→

L =S( ) .v
→

(50)

+ ∇ (α ) − × [∇ × (γ )] = 0.
∂(γ )ρ0 v

→

∂t
ρ0c

2 v
→

ρ0 v
→

(51)

α γ

γ α ≤ 1.0
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When the flow velocity approaches the wave speed c, the Lorentz factor   becomes infinitely great, while

the expansion factor    approaches zero; see Fig. 4. For compressible fluids, this exhibits a singularity;

namely, when the flow velocity equals the wave speed, the equations become undefined.

When the velocity is zero, both the Lorentz factor and the expansion factor are equal to one, and the

Lagrangian density [8], Eq. (42), becomes:

This is the total energy density per unit volume stored inside the system. In fluid dynamics, it is called

stagnation pressure (it is a scalar function), also known as total pressure, which is the pressure a fluid

possesses when isentropically brought to rest in a lab frame without any loss of mechanical energy (that

is to say, the flow velocity is zero relative to the observer).

The fluid is at a stagnation state; the flow velocity is zero relative to the lab frame (to the observer). Thus,

the tangent velocity vector   at the point p is:

The metric dual action 1-form becomes:

Physically, any small disturbance at a point p (an infinitesimal oscillation of potential energy density

about its equilibrium point) will propagate across the field in the form of a wave at a wave speed of c, and

the wave momentum amounts to  , as long as there is no macroscopic motion relative to the observer.

5. Approximations to the Incompressible Flow Model

When the flow velocity is moderate but still much smaller than the wave speed, or the wave speed

approaches infinity (the elastic compression bulk modulus of the field material is very high, and the

medium is difficult to compress):

Under this approximation, both the mass density compressing factor    and the potential energy

decreasing factor   approach one.

γ

α

L =S( ) = − = − .v
→

ρ0c
2 p0 (52)

∈ Mv
→

Tp

= c = .v
→

∂ct ∂t (53)

S = − c(cdt) = − dt.ρ0 ρ0c
2 (54)

cρ0

=   ≪ 1  or  c →  ∞.M
−→ v

→

c
(55)

γ

α

γ → 1  and  α → 1. (56)
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This condition allows for certain approximations: it simplifies dynamics problems. First of all, the

equation exhibits no singularity anymore; secondly, the potential energy density can be approximated as

a scalar function. Here, we use the thermodynamic pressure in the field to represent the potential energy

density, as commonly used in the literature. It depends merely on the position and time:

It is no longer explicitly defined as a function of the wave propagation speed c. With this definition, any

small disturbances of the pressure (potential energy) in the field propagate instantaneously through the

whole field to the boundary without any time lag, regardless of how big the field is. In other words, an

incompressible assumption does not treat the pressure oscillation as traveling at a finite wave speed in

the field, but rather at an infinitely great wave speed.

In this case, the differential action 1-form degenerates to:

Under this approximation, the dynamic equation (50) degenerates to

This equation shows that the particle’s motion is a combination of a translational flow (the LHS of the

equation) and a rotational motion (the RHS of the equation). It reveals that the particle moves along a

helical (spiral) path. The flow field exhibits eddies and turbulence.

Rearranging the pressure gradient to the RHS of the equation:

If both sides have a convective term added, it reads:

Using the vector calculus identity:

eq. (61) can be rewritten compactly as

V = α   ≈ p(x,y, z, t).ρ0c
2 (57)

S = udx + vdy + wdz − ( )d(ct).ρ0 ρ0 ρ0
p

c
(58)

+ ∇p = × [∇ × ( )] .
∂( )ρ0 v

→

∂t
v

→
ρ0 v

→
(59)

= −∇p + × (∇ × ( )) .
∂( )ρ0 v

→

∂t
v

→
ρ0 v

→
(60)

+ ( ∙ ∇)( ) = −∇p + ( ∙ ∇)( )+ × [∇ × ( )] .
∂( )ρ0 v

→

∂t
v

→
ρ0 v

→
v

→
ρ0 v

→
v

→
ρ0 v

→
(61)

∇( ) = ( ∙ ∇)( )+ × [∇ × ( )] ,
1

2
ρ0 v

→2
v

→
ρ0 v

→
v

→
ρ0 v

→
(62)

qeios.com doi.org/10.32388/XL1AOP 14

https://www.qeios.com/
https://doi.org/10.32388/XL1AOP


where T is the volumetric density of the kinetic energy:

It is recognized that the conjugate momenta in Cartesian coordinates can be expressed as

and the Lagrangian density per unit volume (namely, the contraction of the metric dual 1-form and

tangent velocity vector) is

Then, eq. (63) can be expressed more compactly as

The Euler-Lagrange equation is recovered because we assume the tangent velocity vector of eq. (43) is not

an arbitrary vector but rather is along the true path, following a legitimate physical trajectory in the

velocity tangent space. The corresponding conjugate momentum is the metric dual to the tangent

velocity at the point p in question. Namely, the tangent velocity is the kernel of dS, or we can say that the

2-form is “orthogonal” to the tangent vector (similar to the property that the cross product of two vectors

is always orthogonal to both of the original vectors in 3-dimensional space):

If another particle, like a leaf with a density of  , drifts within this field, the drifting velocity of the leaf is 

, relative to the field velocity at point p. In this case, the leaf, or more precisely,  , is not in the kernel

of the 2-form  . The interaction between the field strength tensor   and the leaf produces a force

on the leaf:

This is similar to the Lorentz force expression; namely, the field strength tensor exerts a force on the

flowing particle, similar to the effect that a charged particle experiences when it moves in an

electromagnetic field.

= −∇p + ∇T .
D( )ρ0 v

→

Dt
(63)

T = .
1

2
ρ0 v

→2
(64)

( ) = ,ρ0 v
→ ∂T

∂ v
→

(65)

L =S( ) = T − V = − p.v
→ 1

2
ρ0 v

→2
(66)

( )− ∇L = 0.
d

dt

∂L

∂ v
→ (67)

(dS) = (ω) = 0.ι
v

→ ι
v

→ (68)

q

v
→

q v
→

q

ω = dS ω

= q( + × ) .F
→

q ω
→

t v
→

q ω
→

(69)
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In this case, the space has two components. Like multi-phase, multi-component flow, a two-fluid model

has to be used; each component has its own dynamic equation, but with an extra interaction force term of

eq. (69) between the two fields [9]. This is beyond the content of this article.

6. Approximations to the Navier-Stokes Equations

For simplification, in order to explore the mathematical structure cleanly, eq. (61) can be rewritten as

Here

Likewise, eq. (70) can be rewritten as

In Cartesian coordinates, the kinetic density per unit density is

It can be expressed as a matrix-vector multiplication:

This matrix is the transpose of the gradient of the velocity vector:

It can be decomposed into the sum of a symmetric matrix part and an antisymmetric part:

where

Thus, the kinetic energy gradient can be written as the sum of multiplying the tangent velocity vector by

a symmetric and an antisymmetric matrix.

+ ( ∙ ∇)( ) = −∇ + ( ∙ ∇) + × (∇ × ) .
∂ v

→

∂t
v

→
v

→
p̃ v

→
v

→
v

→
v

→
(70)

= .p̃
p

ρ0
(71)

+ ( ∙ ∇)( ) = −∇ + ∇( ) .
∂ v

→

∂t
v

→
v

→
p̃

1

2
v

→2
(72)

∇( ) = ∇ ( + + ) .
1

2
v

→2 1

2
u2 v2 w2 (73)

∇( ) = .
1

2
v

→2 ⎡

⎣
⎢

u∂x
u∂y

u∂z

v∂x
v∂y

v∂z

w∂x
w∂y

w∂z

⎤

⎦
⎥
⎡

⎣
⎢

u

v

w

⎤

⎦
⎥ (74)

= .J T
⎡

⎣
⎢

u∂x
u∂y

u∂z

v∂x
v∂y

v∂z

w∂x
w∂y

w∂z

⎤

⎦
⎥ (75)

= S + A,J T (76)

S = ( + J)  ;  A = ( − J)
1

2
J T 1

2
J T (77)
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The symmetric part represents the local stretch or shrink in the eigen-basis, while the antisymmetric

part represents the local spinning motion.

Recalling the Stokes hypothesis, the viscous stress tensor in the Navier-Stokes equation for a Newtonian

fluid is modeled as

Comparing this with the Navier-Stokes equations, we can see that the Navier-Stokes equations have

modeled the symmetric matrix-vector multiplication as a divergence of a symmetric viscous stress

tensor:

through an arithmetic mean of the velocity gradient and its transpose, retaining only the symmetric part

and neglecting the spinning or turning of the particles (the antisymmetric part).

Furthermore, from eq. (79) we can see that the symmetric viscous stress tensor model is independent of

the magnitude of the velocity and dependent only on the velocity gradient by Stokes's hypothesis. The

divergence of this symmetric viscous stress tensor is modeled as a net force per unit volume due to

viscous stresses in the Navier-Stokes equations:

7. Dynamic Equations of the Vorticity Field

In 3+1 dimensions, the differential 2-form of the field strength tensor (just like the Faraday tensor, also

called the electromagnetic field strength tensor in electromagnetic theory) can be expressed by eqs. (23)

and (25).

A foundational structure of differential forms is that the second exterior derivative is always zero, as long

as   is locally smooth (the Poincaré Lemma), i.e.,

If it is fully expanded and written out, it reads:

∇( ) = S + A .
1

2
v

→2
v

→
v

→
(78)

τ = 2μS = 2μ ( + J) .J T (79)

∇ ∙ τ ≈ S ,v
→

(80)

+ ( ∙ ∇)( ) = −∇ + ∇ ∙ τ.
∂ v

→

∂t
v

→
v

→
p̃ (81)

dS

dω = (S) = 0d2 (82)

dω = (∇ ∙ )dx ∧ dy ∧ dz + ( − ∇ × ) (dt ∧ d ∧ d ) = 0ω
→

∂t ω
→

k ω
→

ti xi xj (83)
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This is a differential 3-form; it is equal to zero, and each coefficient is thus zero:

where   is the vorticity field, defined by eq. (20):

The first part of eq. (84) says that the vorticity field is divergence-free (similar to the idea that magnetic

monopoles do not exist, as in Gauss’s law for magnetism).

Similar to the electromagnetism theory that moving charged particles will produce magnetic fields, the

motion of mass particles will produce a vorticity field, as expressed by eq. (85). From the viewpoint of

mathematics, it can be hypothesized that if charged particles are brought to rest, they will not produce a

magnetic field, and when the velocity of the mass particles is zero, there is no vorticity field.

 is the vorticity vector in the temporal direction; its components are

Locally, in the field, the macroscopic motion (an infinitesimal change of the momentum along the time

direction) is driven by the spatial gradient of the potential energy density,  .

As mentioned before, it is not defined at  . For a compressible fluid, when the flow velocity is equal to

the wave speed, the vorticity field also exhibits a singularity. When the flow velocity approaches the wave

speed, the mass density increasing factor    becomes great (see eq. (39)), and the vorticity will become

very strong; locally, a hurricane will form.

Conclusions

Differential forms provide an elegant and powerful framework for describing physical fields, revealing

their fundamental geometric and essential dynamic structure. The differential action 1-form  ,

defined as the conjugate momentum, is the metric dual to the tangent velocity vector   and lives

in the cotangent space  . The Lagrangian volumetric density—represented as a scalar field—is given

by the interior product (or natural pairing) of S and  , i.e.,  . The field strength tensor arises

from the exterior derivative of the 1-form,  , forming a differential 2-form whose coefficients

⎧

⎩
⎨

∇ ∙ = 0ω
→

= ∇ ×∂ ω
→

∂t
ω
→

t

(84)

ω
→

= ∇ × (γ )ω
→

ρ0 v
→

(85)

ω
→

t

⎧

⎩

⎨

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

= +ωtx
∂(γ u)ρ0

∂t

∂(α )ρ0c
2

∂x

= +ωty
∂(γ v)ρ0

∂t

∂(α )ρ0c
2

∂y

= +ωtz
∂(γ w)ρ0

∂t

∂(α )ρ0c
2

∂z

(86)

V = α ≤ρ0c
2 ρ0c

2

v = c

γ

S = dpμ xμ

=v
→

vμ∂μ

MT ∗
p

v
→

L =S( )v
→

ω = dS
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constitute an antisymmetric (0,2)-tensor. The dynamic equation of the field is then the interior product

of the tangent velocity vector and the 2-form:  . In reality, fields are more or less compressible,

and wave propagation in the field occurs at a finite wave speed c, which depends on the properties of the

field (materials) under consideration. The dynamic equation exhibits a singularity when the flow velocity

is equal to the wave speed. When the flow velocity is much smaller than the wave speed, or the wave

speed is infinitely great, then the disturbances in the field are instantaneously propagated across the

whole field to the field boundary without any time lag. Under this approximation, the field can be

approximated as incompressible, the dynamic equation will degenerate to an incompressible flow, and

the equation exhibits no singularity. Furthermore, by neglecting the spinning motion (i.e., the

antisymmetric part of the velocity gradient), retaining only the symmetric part, and applying the Stokes

hypothesis, the dynamic equation can be modeled as the Navier-Stokes equations. Finally, using the

fundamental identity from differential geometry that the second exterior derivative always vanishes (

), a homogeneous dynamic equation for the vorticity field is obtained:  , assuming no

sources, sinks, or singularities at the point in question.

Appendix: Mathematical Derivations in Detail

A1. The differential 2-form: 

The Lagrangian density is the interior product of the action 1-form and the tangent velocity vector:

where the differential action 1-form is given:

The differential 1-form lives in the cotangent space    with the cotangent basis    (and dt). It

defines a duality between tangent vectors ( ) and conjugate momenta ( ) by the metric tensor.

The exterior derivative of the 1-form yields the differential 2-form

The RHS has four terms; we expand each term step-by-step in detail.

For the first term, the differential of   reads:

(ω) = 0ι
v

→

= 0d2 dω = 0

ω = dS

L =S( ).v
→

(A1)

S = dx + dy + dz − ( ) cdt.px py pz
V

c
(A2)

∈ Mpi T ∗
p dxi

v
→

p
→

dS = ω = d ∧ dx + d ∧ dy + d ∧ dz − dV ∧ dt.px py pz (A3)

px

d = dt + dx + dy + dz.px
∂px
∂t

∂px
∂x

∂px
∂y

∂px
∂z

(A4)
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Thus:

Since

The wedge product leaves three terms.

Similarly, the second term is:

The third term is:

And the fourth (potential energy density) term is:

Adding all terms together:

Applying the antisymmetric properties of the 2-form basis (e.g.,  ) and collecting the

same basis:

Now we have six independent terms for this 2-form.

We can define:

where

d ∧ dx = dt ∧ dx + dy ∧ dx + dz ∧ dx.px
∂px
∂t

∂px
∂y

∂px
∂z

(A5)

dx ∧ dx = 0. (A6)

d ∧ dy = dt ∧ dy + dx ∧ dy + dz ∧ dy.py
∂py

∂t

∂py

∂x

∂py

∂z
(A7)

d ∧ dz = dt ∧ dz + dx ∧ dz + dy ∧ dz.pz
∂pz
∂t

∂pz
∂x

∂pz
∂y

(A8)

−dV ∧ dt = − dx ∧ dt − dy ∧ dt − dz ∧ dt.
∂V

∂x

∂V

∂y

∂V

∂z
(A9)

dS =  .

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪

dt ∧ dx + dy ∧ dx + dz ∧ dx
∂px

∂t

∂px

∂y

∂px

∂z

dt ∧ dy + dx ∧ dy + dz ∧ dy
∂py

∂t

∂py

∂x

∂py

∂z

dt ∧ dz + dx ∧ dz + dy ∧ dz
∂pz

∂t

∂pz

∂x

∂pz

∂y

− dx ∧ dt − dy ∧ dt − dz ∧ dt∂V
∂x

∂V
∂y

∂V
∂z

(A10)

dt ∧ dx = −dx ∧ dt

ω =( + )dt ∧ dx + ( + )dt ∧ dy + ( + )dt ∧ dz
∂px
∂t

∂V

∂x

∂py

∂t

∂V

∂y

∂pz
∂t

∂V

∂z

+ ( − )dx ∧ dy + ( − )dy ∧ dz + ( − )dz ∧ dx
∂py

∂x

∂px
∂y

∂pz
∂y

∂py

∂z

∂px
∂z

∂pz
∂x

(A11)

= −ωij

∂pj

∂xi
∂pi

∂xj
(A12)
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Then, the 2-form can be expressed as

A2. Interior Product of 2-Form with Tangent Velocity 

Given the particle velocity at point p in the field

Inputting this tangent vector into the first slot of the 2-form (A14), the contraction then becomes a 1-

form. Using the following rule:

and the duality relationship between the tangent and cotangent basis vectors:

The first term

Similarly, for the second and third terms:

Applying the same contraction rule for the spatial terms, we have

Adding all terms together and collecting the same basis, finally, the contraction reads:

The coefficients for the basis dx, dy, and dz are zero; thus, we have three equations:

V = (α ) ;     = = (α ) cρ0 c2 pt
V

c
ρ0 (A13)

ω =   dt ∧ dx + dt ∧ dy + dt ∧ dzωtx ωty ωtz

+   dx ∧ dy + dy ∧ dz + dz ∧ dxωxy ωyz ωzx

(A14)

(ω) = 0ι
v
→

= u + v + w + cv
→ ∂

∂x

∂

∂y

∂

∂z

∂

c∂t
(A15)

d ∧  d ( ,  −) = d ( )d − d ( )dxi xj v
→

xi v
→

xj xj v
→

xi (A16)

d ( ) =xi
∂

∂xj
δij (A17)

dt ∧ dx( ) = dt( )dx − dx( )dt = dx − udtωtx v
→

ωtx v
→

ωtx v
→

ωtx ωtx (A18)

⎧

⎩
⎨
⎪

⎪

dt ∧ dy( ) = dt( )dy − dy( )dt = dy − vdtωty v
→

ωty v
→

ωty v
→

ωty ωty

dt ∧ dz( ) = dt( )dz − dz( )dt = dz − wdtωtz v
→

ωtz v
→

ωtz v
→

ωtz ωtz

(A19)

⎧

⎩

⎨

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

dx ∧ dy( ) = dx( )dy − dy( )dx = udy − vdxωxy v
→

ωxy v
→

ωxy v
→

ωxy ωxy

dy ∧ dz( ) = dy( )dz − dz( )dy = vdz − wdyωyz v
→

ωyz v
→

ωyz v
→

ωyz ωyz

dz ∧ dx( ) = dz( )dx − dx( )dz = wdx − udzωzx v
→

ωzx v
→

ωzx v
→

ωzx ωzx

(A20)

( − v + w)dx + ( + u − w)dyωtx ωxy ωzx ωty ωxy ωyz

+ ( + v − u)dz − ( u + v + w)dt = 0ωtz ωyz ωzx ωtx ωty ωtz

(A21)
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or to be explicitly written as:

According to the vorticity field definition of Eq. (20), we finally get the dynamic equation of Eq. (35).

A3. Dynamic equation for the vorticity field 

When the flow velocity is not equal to the wave propagation speed, the Lagrangian density defines a

smooth function, or the differential 1-form is on a smooth manifold; then, locally,

This is a general property of exterior derivatives.

Using the Hodge dual operator, we have the 2-form as Eq. (23):

First, we take the exterior derivatives for the first three terms:

Taking the exterior derivative for the first term of Eq. (A26):

Now, we have

Substituting (A28) into (A27):

Only the   and   terms survive because  .

Similarly, we perform the same procedures for the second and third terms,   and  :

     

⎧

⎩
⎨
⎪

⎪

− v + w = 0ωtx ωxy ωzx

+ u − w = 0ωty ωxy ωyz

+ v − u = 0ωtz ωyz ωzx

(A22)

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪

+ + w( − )− v( − ) = 0
∂px

∂t
∂V
∂x

∂px

∂z

∂pz

∂x

∂py

∂x

∂px

∂y

+ + u( − )− w( − ) = 0
∂py

∂t
∂V
∂y

∂py

∂x

∂px

∂y

∂pz

∂y

∂py

∂z

+ + v( − )− u( − ) = 0
∂pz

∂t
∂V
∂z

∂pz

∂y

∂py

∂z

∂px

∂z

∂pz

∂x

(A23)

+ ∇V − × = 0
∂ p

→

∂t
v

→
ω
→

(A24)

dω = 0

dω = S = 0d2 (A25)

ω = dt ∧ dx + dt ∧ dy + dt ∧ dzωtx ωty ωtz

+ dx ∧ dy + dy ∧ dz + dz ∧ dxωz ωx ωy

(A26)

d ( dt ∧ dx) = d ∧ dt ∧ dxωtx ωtx (A27)

d = dt + dx + dy + dzωtx ∂tωtx ∂xωtx ∂yωtx ∂zωtx (A28)

d ∧ dt ∧ dx = ( dy + dz) ∧ dt ∧ dxωtx ∂yωtx ∂zωtx

= ( )dy ∧ dt ∧ dx + ( )dz ∧ dt ∧ dx∂y ωtx ∂z ωtx

(A29)

dy dz dt ∧ dt = dx ∧ dx = 0

dt ∧ dyωty dt ∧ dzωtz
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We can reorder the wedge products using antisymmetric properties (e.g.,  ,

etc.) and collect the same basis:

Now we take exterior derivatives for the spatial terms (the fourth, fifth, and sixth terms of Eq. (A26)):

The exterior derivative of the fourth term:

The differential of   is thus

Substituting (A33) into (A32), thus

Similarly, only the   and   terms survive since  .

Repeat this procedure for   and  . Adding all terms together and collecting the same

basis, we finally have:

The coefficients are zero; eventually, we get the dynamic equations for the vorticity field:

By the way, if we define the tangent velocity vector for charged particles by Eq. (A15) and the metric dual

1-form by Eq. (A2):

Here,   is defined to be the charge volumetric density when it is at rest relative to the observer,   is the

permeability in space, and c is the photon propagation speed. With the same procedure, we can get the

( )dy ∧ dt ∧ dx + ( )dz ∧ dt ∧ dx∂y ωtx ∂z ωtx

+ ( )dz ∧ dt ∧ dy + ( )dx ∧ dt ∧ dy∂z ωty ∂x ωty

+ ( )dx ∧ dt ∧ dz + ( )dy ∧ dt ∧ dz∂x ωtz ∂y ωtz

(A30)

dt ∧ dx ∧ dy = −dx ∧ dt ∧ dy

[ ( ) − ( )]dt ∧ dx ∧ dy∂y ωtx ∂x ωty

+ [ ( ) − ( )]dt ∧ dy ∧ dz∂z ωty ∂y ωtz

+ [ ( ) − ( )]dt ∧ dz ∧ dx∂x ωtz ∂z ωtx

(A31)

d ( dy ∧ dz) = d ∧ dy ∧ dzωx ωx (A32)

dωx

d = dt + dx + dy + dzωx ∂tωx ∂xωx ∂yωx ∂zωx (A33)

d ( dy ∧ dz) = dt ∧ dy ∧ dz + dx ∧ dy ∧ dzωx ∂tωx ∂xωx (A34)

dt dx dy ∧ dy = dz ∧ dz = 0

dx ∧ dyωz dz ∧ dxωy

dω = ( + + )dx ∧ dy ∧ dz∂xωx ∂yωy ∂zωz

+ ( + − )dt ∧ dy ∧ dz∂tωx ∂zωty ∂yωtz

+ ( + − )dt ∧ dz ∧ dx∂tωy ∂xωtz ∂zωtx

+ [ + − ]dt ∧ dx ∧ dy∂tωz ∂yωtx ∂xωty

(A35)

∇ ∙ = 0ω
→

= ∇ ×
∂ ω

→

∂t
ω
→

t

(A36)

= = (−αc,γu,γv,γw) = (−α c,   ) .pν ρ0gμνv
μ μ0ρ0

4π

μ0

4π
ρ0 J

→
(A37)

ρ0 μ0
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electromagnetic field strength tensor and the dynamic equation; thus, they are unified in a differential

form framework. This is beyond the content of this article.
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