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Advancing towards generalist agents necessitates the concurrent processing of multiple tasks using a

uni�ed model, thereby underscoring the growing signi�cance of simultaneous model training on

multiple downstream tasks. A common issue in multi-task learning is the occurrence of gradient

con�ict, which leads to potential competition among different tasks during joint training. This

competition often results in improvements in one task at the expense of deterioration in another.

Although several optimization methods have been developed to address this issue by manipulating

task gradients for better task balancing, they cannot decrease the incidence of gradient con�ict. In

this paper, we systematically investigate the occurrence of gradient con�ict across different methods

and propose a strategy to reduce such con�icts through sparse training (ST), wherein only a portion of

the model’s parameters are updated during training while keeping the rest unchanged. Our extensive

experiments demonstrate that ST effectively mitigates con�icting gradients and leads to superior

performance. Furthermore, ST can be easily integrated with gradient manipulation techniques, thus

enhancing their effectiveness.

Corresponding authors: Shanghang Zhang, shanghang@pku.edu.cn; Ekaterina Shutova,

e.shutova@uva.nl

1. Introduction

Attaining the status of a generalist agent necessitates addressing multiple tasks within a uni�ed

architecture, thereby emphasizing the signi�cance of multi-task learning (MTL)  [1], which involves
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concurrently acquiring pro�ciency in multiple tasks and striving for superior overall performance

compared to learning these tasks separately.

The primary concern for MTL lies in the phenomenon of task competition when the model is jointly

trained by optimizing the average loss across all tasks. As a result, a subset of tasks demonstrates

superior performance while others remain sub-optimized compared to their individual learning

counterparts. One of the reasons behind it, from an optimization perspective, is gradient con�ict (GC) [2],

wherein the direction and magnitude of gradients between tasks differ signi�cantly. This can result in

the average gradient biasing towards optimizing one task while providing relatively smaller and

sometimes even negative optimization for other tasks when updating the network [2][3].

Numerous works have employed the gradient manipulation method to directly or indirectly adjust the

gradients of tasks to mitigate the issue of gradient con�ict in tasks. The former involves direct alteration

of task gradients through manually designed criteria when con�icts arise  [2][4][5], while the latter

modi�es task gradients by adjusting weights of loss for each task  [6][7][8][3]. Although these methods

effectively modify the gradients con�icting with each other, they do not decrease the occurrence of

con�icting gradients during training [9].

A simple approach to mitigate the occurrence of con�icting gradients is to convert those layers in which

gradient con�ict frequently arises into task-speci�c layers, thereby reducing the likelihood of gradient

con�icts within the remaining shared layers  [9]. However, this strategy introduces additional modules

and disrupts the internal structure of the original model, resulting in increased computational costs.

Furthermore, identifying frequently con�icting layers adds extra computational costs. This becomes

prohibitively expensive as the model size continues to expand, and thus prompting our fundamental

inquiry:
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Figure 1. The average occurrence percentage of gradient con�ict over epochs (all epochs/last 50% epochs)

during training on the SAM model with NYUv2 datasets is evaluated using various methods, including joint

training and gradient manipulation techniques.

(Q)  Is there a universally applicable approach to proactively mitigate the occurrence of gradient con�icts as well

as preserve architectural integrity for MTL?

To tackle this issue, we propose a novel perspective on mitigating gradient con�ict in MTL, termed

Sparse Training (ST), wherein a subset of parameters from the original model are selected to learn

multiple tasks simultaneously while keeping the remaining parameters frozen. The intuition behind this

lies in the reduction of a high-dimensional optimization problem to a low-dimensional one, which

effectively alleviates the optimization complexity. Moreover, restricting the gradient updates of

individual tasks to in�uence only a subset of parameters, rather than all parameters, effectively reduces

potential interference between tasks.

Our key �ndings demonstrate that ST can effectively reduce the incidence of gradient con�ict,

particularly during the later stages of training, as illustrated in Fig. 1. A summary of our contributions is

as follows: i) We provide a novel perspective, sparse training, for proactively reducing the incidence of

gradient con�ict during training while keeping the architecture intact; ii) Sparse training can be easily

applied to improve various gradient manipulation methods by reducing the occurrence the gradient

con�ict over different datasets and architectures; iii) In addition to conventional research that primarily

focuses on smaller models (MTAN[10] and SegNet[11]), we provide a comprehensive assessment of larger

pre-trained models, including SAM[12], ViT[13], Swin Transformer[14], using various gradient

manipulation techniques, such as PCGrad[2], CAGrad[5], GradDrop[4], MGDA[6], IMTL-G[7]  and

NashMTL[8], to stimulate research in the �eld of sparse training for MTL. Our �ndings demonstrate that
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as the model size increases, the issue of gradient con�ict becomes more exacerbated, as shown in Fig. 5a,

underscoring the signi�cance of investigating the gradient con�ict in large-scale models.

2. Related work

Multi-task optimization for MTL

The recent works[2][5][4][6][7][8][3] have achieved impressive results in addressing task imbalance issues in

MTL by directly or indirectly modifying con�icting task gradients. Speci�cally, some works[2][5]

[4]  propose to form a new update gradient at each training step by directly altering gradients based on

certain criteria. Other works[6][7][8][3][15]  learn dynamic loss scale to balance different tasks during

training, and thus indirectly altering the gradient of tasks. However, these methods only address GC

when it occurs and do not proactively prevent it. In this paper, we sparsely train an MTL model,

effectively reducing the incidence of GC.

Training with subset of parameters

Several methods have already been proposed in single-task learning. Some of them select a subset of

parameters based on a certain pre-de�ned rule, such as gradient[16][17] and magnitude of parameters[18].

In addition to selecting parameters by hand design, the works in[19][20][21] automatically select the subset

of parameters through optimization. Although sparse training has been extensively investigated in

single-task learning, its application in MTL remains relatively unexplored.[22]  and[23]  learn to share

information between tasks using a sparse model instead of sparse training. Differently, we research the

gradient con�ict via the sparse training perspective.
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Figure 2. Visualization of gradients change for different methods.   and   are two con�icting gradients, and

the green arrow is the actual update vector. The process of sparse training can be interpreted as performing

an orthographic/coordinate projection of con�icting gradients onto the subspace de�ned by the selected

parameters, resulting in better alignment of the projected gradients.

3. Approach

3.1. Background

Multi-task learning (MTL)

aims to learn multiple tasks simultaneously within a single model. Formally, given    tasks ( )

and a model   with parameters  , where   and   are shared parameter with all tasks

and task-speci�c parameters   respectively, the commonly used optimization method for

MTL (referred to as Joint Train) is based on computing the average loss across all tasks with equal

weights:

where each task   is associated with a corresponding loss function  .

Gradient con�ict (GC)

However, optimizing all tasks by aggregating their losses indiscriminately (Eq. (2)) may lead to task

competition, wherein certain tasks demonstrate improvement while others exhibit a decline compared to

training them separately. From an optimization perspective, one of the reasons stems from con�icts in

gi gj
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gradients. Formally, the update of task   may potentially exert a detrimental impact on another task  ,

namely:

where   is the gradient of loss on task   with respect to   and   is the learning

rate. After the �rst-order Taylor approximation, Eq. (3) can be expressed as  . Gradient

con�ict arises when  , leading to  , indicating that task   has a detrimental impact on

task  . Following[2], we provide the de�nition of gradient con�ict:

De�nition 1 (Gradient Con�ict). If  , where   is the angle between gradients of two tasks   and 

, then   and   are deemed to exhibit gradient con�ict.

Gradient manipulation

To alleviate the issue of gradient con�ict, gradient manipulation methods adjust con�icting gradients

based on speci�c criteria and utilize these modi�ed gradients for model updating. Instead of updating

the model on the average gradient in Eq. (1) and Eq. (2):

the gradients of all tasks in gradient manipulation methods are modi�ed as follows:

where   can be either pre-de�ned or dynamically computed for tasks via   and thus achieve the aim of

adjusting the task gradient[3][8][6][7][2][4][5]. However, the results of our experiment suggest that these

methods can only modify gradients when con�icts occur, rather than proactively reducing the

occurrence of GC during training, compared with Joint Train, as shown in Fig. 1.

3.2. Sparse training for multi-task learning

In this study, we investigate the gradient con�ict commonly observed in multi-task learning from a novel

perspective: sparse training, which selectively trains only a subset of the model parameters as opposed to

full parameter training. This perspective is based on the intuition that by converting a high-dimensional
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space optimization problem into a lower-dimensional one, the complexity of optimization can be

effectively reduced. Additionally, by limiting the impact of gradient updates to only a subset of

parameters for each task instead of all parameters, potential interference between tasks can be mitigated.

Sparse training (ST)

entails the initial parameter selection from the original model, and then updating only these parameters

while keeping other parameters �xed during model training. To clarify potential misunderstandings

regarding ST—often confused with sparse networks, where parameters are abandoned for model

compression—we provide the following de�nition to ensure consistency and ease of understanding

throughout this paper.

De�nition 2 (Sparse Training). Given a model   and a binary mask matrix   indicating whether parameters

in    are selected, where  ,    and  , the model is updated by 

. We de�ne this training strategy as sparse training.

Typically, the model architecture in multi-task learning includes a shared encoder as a feature extractor

with task-speci�c decoders for multiple tasks. Therefore, sparse training is used in the encoder, and full

parameters training for the decoders. We detail how the mask is computed in section 3.4. We now apply

sparse training for multi-task learning (Joint Train). The visualization of the gradient change can be

viewed in Fig. 2 and the update with the reformulated gradient from Eq. (5) is as follows

Combination with gradient manipulation methods

The application of sparse training can be seamlessly and effectively extended to improve various gradient

manipulation methods in MTL. The update with the reformulated gradient from Eq. (6) is as follows

3.3. Theoretical analysis for sparse training

After introducing sparse training into MTL, the optimization objective in Eq. (1) can be formed:
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where   is the initialized original model for   and   is identity matrix. According to Lagrangian duality,

Eq. (10) can be reformulated as:

This can be transformed to optimize the upper bound   of regularized problem:

Please see the supplemental material for proof.  [17]  demonstrates that Eq. (12) has better stability and

smaller generalization bound than only optimizing Eq. (1), resulting in better performance.

3.4. Parameter selection per neuron (PSN)

Several promising sparse training methods exist for single-task learning, but they are either time-

consuming, requiring mask updates at each iteration[19][20][21], or memory-intensive due to gradient

calculations for all parameters[16][17]. In MTL, where multiple tasks are trained simultaneously, time

ef�ciency is crucial. Thus, we adopt a one-time selection method, choosing parameters before training

and keeping the mask �xed throughout. We consider the following two aspects for selection, magnitude

of the parameter and involvement of all neurons in the network.

The magnitude of parameters

Several studies have focused on model compression through the elimination of parameters with lower

magnitudes[24][25]. This highlights the signi�cance of parameters with larger magnitudes in neural

networks, which is consistent with our experimental �ndings (See Fig. 5c). The intuition behind this

phenomenon lies in the fact that parameters with larger magnitudes exert a greater in�uence on altering

neuron activation states through the activation function, wherein a neuron becomes active once the

input surpasses a prede�ned threshold. Therefore, we exclusively select parameters with the highest

magnitude for training multiple tasks.

The involvement of all neurons

A simple idea is to select a certain proportion of parameters with the highest magnitude from the neural

network (NN), but this may prevent some neurons from being engaged during training and hinder

effective model training due to the dependence of the NN state on neuron activation. Motivated by

studies highlighting distinct roles for different components in NN[26][16][27], we posit that engaging all

θin
sha

θ I

L = L(Θ) + λ .min
Θ

max
λ
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neurons is crucial for effective model training. The rationale is that each neuron within the network

possesses the inherent capability to �nely adjust its activation state, thereby effectively adapting the

overall NN state to the tasks, especially for learning multiple tasks simultaneously. Our experiments

further substantiate this assertion, as shown in Fig. 5c.

Figure 3. PSN. Top-1 highest-magnitude parameter

among all input connections of each neuron is selected.

PSN

By integrating the two aspects, we select the top-K connections (weight/parameters) with the highest

magnitude among all input connections for each neuron in the network (Please see Fig. 3 for top-1

example). This approach facilitates the training process for �tting tasks by ensuring that every neuron

possesses activation potential, while parameters with higher magnitudes facilitate easier activation of

neurons. In this paper, sparse training refers to using this method to select parameters and training the

selected parameter, unless otherwise speci�ed.

4. Experiments

Our experiments are conducted on comprehensive MTL benchmarks to evaluate the effectiveness of

sparse training. First, we investigate if sparse training reduces gradient con�ict. Subsequently, we
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examine its impact on performance across various MTL setups. The more details of the experiment are

provided in Appendix D.

4.1. Experimental Setup

Dateset

Our MTL datasets are categorized into three groups: i) Dense prediction tasks: NYUv2[28]: An indoor scene

understanding dataset containing 1449 RGBD images with per-pixel labels across 13 classes, including

semantic segmentation, depth estimation, and surface normal prediction. CityScapes[29]: 5000 street-

view RGBD images with per-pixel annotations for 7-class semantic segmentation and depth estimation.

ii) Multiple binary-classi�cation tasks: CelebA[30]: 200,000 facial images of 10,000 celebrities, each with 40

binary attributes for facial features. We use the �rst 10 attributes for 10 binary classi�cation tasks due to

limited computation. iii) Multiple multi-class classi�cation tasks: VTAB[31]: Containing 24 image

understanding tasks with 1000 training examples per task. We use four tasks from it to create two multi-

task benchmarks: Clevr: Simple 3D shapes with counting and depth prediction tasks. SmallNORB:

Arti�cial objects with object azimuth and camera elevation prediction tasks.

Baseline

We evaluate our approach using various baselines including i) single-task learning (STL): Each task is

trained independently; ii) Joint Train: Training all tasks with average task loss; and 6 gradient

manipulation methods including 3 direct and 3 indirect modi�cation techniques. The former includes:

iii) PCGrad: Projecting each task gradient onto the normal plane of other tasks[2]; iv) CAGrad: Enhancing

the optimization of average loss by explicitly regulating the minimum decrease across tasks[5]; and v)

GradDrop: Stochastically dropping speci�c dimensions of the gradients based on their level of con�ict.

The latter includes vi) MGDA: Identifying the same descent direction for each task[6]; vii) IMTL-G:

Determining the update direction by ensuring equal projections on gradients[7]; viii) NashMTL: Treating

MTL as a bargaining game to optimize all tasks[8].

Model

We experiment with several architectures including: i) CNN-based: MTAN[10]  incorporates an attention

mechanism into the SegNet[11]. ii) Transformer-based. SAM[32]  is a strong visual foundation model for
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segmentation. ViT-B/16[13]  and Swin Transformer[14]  are vision classi�cation models pre-trained on

ImageNet21K[33]. All experiments were conducted on pre-trained SAM, ViT and Swin (except for

randomly initialized MTAN), unless otherwise speci�ed.

Evaluation

i. Relative task drop ( ). Following[34], we evaluate the MTL overall performance for a baseline 

 by computing the average performance drop against STL   over   tasks and   metrics for

each  : 

where  ,   are the value of metrics   evaluated with   and   respectively.    if the    is

higher the better and 0 otherwise.

ii. Average incidence of GC ( ). We evaluate the extent of gradient con�ict for a baseline by calculating

the average incidence of GC over epochs during training. Given   tasks,   epochs, and   iterations

per epoch,  , where    and    represent the number of

occurrence of gradient con�icts between two tasks for all task combinations   and the number of

the combinations in each iteration during training, respectively.

4.2. Incidence of gradient con�ict

We train a MTL model using the Joint Train and 6 state-of-the-art gradient manipulation techniques

including PCGrad, CAGrad, GradDrop, MGDA, IMTL-G and NashMTL and then introduce our sparse training

strategy to these methods. Throughout the training process, we record instances of GC between any two

tasks among all tasks for each training iteration and then calculate the average incidence of GC both over

all epochs and the last 50% epochs. The observations of the SAM model on the NYU-v2 dataset are

provided below. Similar results on other datasets and models are shown in Appendix F.3, Appendix F.5,

Appendix F.7 and Appendix F.6.

Gradient manipulation methods cannot effectively reduce the incidence of gradient con�ict

The gradient manipulation methods[2][4][5][8][3][7][6]  aim to modify con�icting gradients that are

prevalent during the joint training of MTL. As shown in Table 1, the average incidence of GC using Joint

train is 31.89% across all training epochs and 35.85% over the last 50% epochs. The incidence of GC

cannot be effectively reduced by any gradient magnitude methods compared with the Joint train, as

shown in Fig. 1 and Table 1. The reason is that these methods can only make the con�icting gradients not

Δm%
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con�ict when the GC occurs, rather than proactively prevent the occurrence of GC. The incidence of GC is

even exacerbated by these methods, particularly MGDA showing a signi�cant increase of 8.55%

compared to Joint Train. Notably, these �ndings are consistent with[9], where they provide the distribution

of the angles between the two task gradients.

Sparse training effectively decreases the occurrence of gradient con�ict

As shown in Fig. 1, after combining sparse training with all methods, including Joint Train and gradient

manipulation methods, the average incidence of gradient con�ict is effectively reduced over all epochs.

For example, ST in Joint Train reduced the incidence over all epochs by 5.56%. The phenomenon of

gradient con�ict reduction is consistently observed in nearly every training epoch, as illustrated in Fig. 4,

which further demonstrates the effectiveness of ST for decreasing gradient con�ict. In addition, all

methods with ST exhibit a greater improvement in the average incidence of gradient con�ict during the

last 50% epochs compared to all epochs, which implies a greater level of prevention of gradient con�ict

with the progress of sparse training. For instance of NashMTL, there is a threefold improvement in the

average incidence of gradient con�ict during the last 50% epochs compared to all epochs.
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Methods

Average incidence of GC ( )

All epochs Last 50% epochs

Joint Train 31.89 35.85

w/ ST 26.33 (5.56) 29.14 (6.71)

PCGrad 33.69 38.70

w/ ST 30.33 (3.36) 33.46 (5.24)

CAGrad 34.26 39.97

w/ ST 31.50 (2.76) 34.68 (5.29)

GradDrop 33.56 38.45

w/ ST 30.95 (2.61) 33.93 (4.52)

MGDA 40.44 44.77

w/ ST 40.05 (0.39) 42.34 (2.43)

IMTL-G 32.15 37.13

w/ ST 28.45 (3.70) 31.34 (5.79)

NashMTL 36.67 39.58

w/ ST 35.51 (1.16) 35.48 (4.10)

Table 1. Average incidence of GC between tasks for different methods. We compute the average incidence of

GC over all epochs and the last 50% epochs during training SAM on NYUv2. The improvement by sparse

training is provided in ( ).

%

∙

qeios.com doi.org/10.32388/XLQW1L 13

https://www.qeios.com/
https://doi.org/10.32388/XLQW1L


Figure 4. The incidence of GC between tasks during training SAM on NYUv2 dataset. The top and

bottom �gures are Joint Train and PCGrad respectively. Please see Fig. 7 in Appendix F.2 for more

results on other gradient manipulation methods.

4.3. Performance on diverse benchmarks

It is natural to investigate whether reducing gradient con�ict during training through sparsity can

enhance performance on common benchmarks. In this section, we present diverse benchmarks to

demonstrate the effectiveness of ST.
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Table 2. The test performance on NYU-v2 dataset training on SAM model. The green cell color indicates that

sparse training improves the performance of joint training or gradient manipulation methods. The best

result is highlighted in bold.
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Table 3. The test performance on CelebA, Clevr, SmallNORB, NYU-v2 and CityScapes dataset. CelebA is trained

on Swin Transformer. Clevr and SmallNORB are trained on ViT. NYU-v2 and CityScapes are trained on MTAN.

We only present   for limited space. Please see 7, 12 and 11 for detailed results in supplemental materials.

The green cell color indicates that sparse training improves the performance of joint training or gradient

manipulation methods. The best result is highlighted in bold.

Sparse training improves the performance for all state-of-the-art methods

The performance of Joint Train and all gradient manipulation methods is consistently improved by sparse

training, as demonstrated in Table 2 for NYU-v2 benchmarks. Speci�cally, sparse training not only

enhances overall task performance but also improves individual task performance for the majority of

methods. For example, in Table 2, Joint Train demonstrates improvements across all individual tasks

through sparse training. Similarly, as shown in Table 3, all methods exhibit notable improvements by

sparse training on CelebA, Clevr, SmallNORB and CityScapes benchmarks.

Effectiveness on both pre-trained and randomly initialized models

Our study primarily focuses on the sparse training for large pre-trained models, because leveraging prior

knowledge from these models can be bene�cial for MTL and our experimental results demonstrate that

Δm%
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larger models exhibit a more severe gradient con�ict, as shown in Fig. 5a. However, in order to ensure a

fair comparison with related works that manipulate gradients in small and randomly initialized models,

we also conduct experiments under the same setting as theirs to further demonstrate the effectiveness of

sparse training. As shown in Table 3, we observe that even for the small randomly initialized models, the

performance of joint training and all gradient manipulation methods is improved by sparse training.

Please see Tab. 7 and Tab. 12 for the detailed results in the Appendix.

Figure 5. Ablation study for Joint Train with NYU-v2 dataset. (a) The average incidence of GC during joint

training on different sizes of Swin transformers. Please see the numerical statics for all epochs in Tab. 8 in

Appendix F.4. (b) The different number of trainable parameters for MTAN and SAM models. (C) Different

sparse methods training on SAM. Metrics for all tasks are min-max normalized. Please see Tab. 5 for detailed

results in Appendix F.1.

Generalization on different architectures and MTL tasks

To evaluate the generalization across diverse architectures and MTL tasks, we conducted experiments on

both CNN-based models and transformer-based models with varying visual MTL capabilities.

Speci�cally, our MTL tasks encompassed visual classi�cation (CelebA, Clevr and SmallNORB) and visual

dense prediction (NYU-v2 and CityScapes). For the former, we utilized Swin Transformer and ViT as

backbones for multiple binary classi�cation tasks (Tab. 3) and two multi-class classi�cation tasks (Tab. 3,

and Tab. 11 in Appendix), respectively. The latter involved predicting dense masks for each task,

necessitating an encoder-decoder structure to generate corresponding masks. We explored two types of

structures: a symmetrical encoder-decoder structure with a CNN-based model, e.g. MTAN (Tab. 3, and

Tabs. 7 and 12 in Appendix) and an asymmetric structure with a heavy-weight encoder and a light-weight

decoder using a transformer-based model, e.g. SAM (Tab. 2 in Appendix). As shown in these tables, the
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ef�cacy of sparse training in improving all baselines across various architectures and MTL tasks

underscores its robust generalization capability.

4.4. Ablation study

The larger the model, the more severe gradient con�icts.

In this paper, we focus more on investigating the gradient con�ict in the pre-trained large models as

larger models demonstrated a more severe phenomenon of gradient con�ict. This can be observed in Fig.

5a, where Swin/Tiny demonstrates signi�cantly less gradient con�ict compared to Swin/Base and

Swin/Large. It is worth noting that although larger models tend to experience more severe gradient

con�icts, this does not necessarily lead to inferior performance compared to smaller models with milder

gradient con�icts. This discrepancy can be attributed to differences in model capacity and the prior

knowledge embedded through pre-training. Nevertheless, this observation underscores the importance

of exploring methods to mitigate gradient con�icts in larger models. Within the same model architecture

and size, reducing gradient con�icts has been shown to improve performance, as evidenced by works

such as[2][5]. Addressing severe gradient con�icts in larger models may thus unlock their full potential,

enabling better utilization of their capacity and capabilities.

Effortless search for the number of trainable parameters.

We explore the effect of trainable parameter numbers for ST. The results in Fig. 5b show that the pre-

trained model (SAM) and the randomly initialized model (MTAN) have different optimal trainable

parameter numbers. MTAN requires  60% of the parameters, while SAM needs only  30%, leveraging

information from the pre-trained model. In our paper, most of the experiments use these proportions for

ST and achieve better results (please see Tab. 4 in Appendix D.1 for the detailed number). Additionally, ST

offers a wide range of trainable parameter options that outperform Joint Train, which implies that

hyperparameter search for the number of trainable parameters becomes effortless. Speci�cally, both

models have a  40% probability of yielding superior outcomes.

Effectiveness for both higher magnitude and neural-level selection.

We investigate various parameter selection approaches: Random: Randomly selecting parameters from

the network; Global: Choosing parameters with the highest magnitude from the whole network instead of

the input connections of each neuron in the network (Ours); Reverse: Selecting parameters with the

∼ ∼

∼
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lowest magnitude among input connections of each neuron. For a fair comparison, we maintain the same

selected number. The results in Fig. 5c indicate that higher magnitude values are superior to lower ones

(Ours Reverse). Furthermore, it is crucial to evenly select parameters from the entire network (Ours

Random Global), as Ours ensure that the parameters of input connection for each neuron are selected,

and Random guarantees an equal proportion of parameters is selected in each block of the network,

whereas this is not the case for Global (see Fig. 6 for detailed statistics in Appendix).

5. Conclusion

In this paper, the occurrence of gradient con�ict in multi-task learning is extensively investigated from a

novel perspective: sparse training. Extensive experiments demonstrate that sparse training transferring

high-dimensional space into low-dimensional space effectively reduces the incidence of gradient con�ict

during training while preserving the integrity of the original model. Furthermore, combining sparse

training with other gradient manipulation methods signi�cantly improves performance for multi-task

learning.

Supplementary Material

In this supplemental material, we provide extra details about the content in the main body of the paper.

First, we provide detailed proof for Equation (12) in Appendix A. Then, we discuss the limitations of our

work in Appendix B. Moreover, the broader impacts of our research are discussed in Appendix C. In

addition, we present all hyperparameters and experiment settings in Appendix F for a better

understanding of the experiments and reproduction to the readers. We also provide the extended related

works in Appendix E. Finally, the additional experiment results are demonstrated in Appendix F, which

further indicate the effectiveness of our proposed method and the consistency with the claim in the main

body of the paper.

A. Proof for Equation (12)

According to Lagrangian duality, Eq. (10) can be reformulated as:

>

> >

L =

≥

≥

L(Θ) + λ∥(I − M)( − )min
Θ

max
λ

θsha θin
sha

∥2

L(Θ) + λ∥(I − M)( − )max
λ

min
Θ

θsha θin
sha

∥2

L(Θ) + ∥(I − M)( − )min
Θ

θsha θin
sha

∥2
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where   is the Lagrangian multiplier.

B. Limitations

Due to the limited computational resources, we employ grid searches in the Joint Train method to

determine the optimal hyperparameter for the number of trainable parameters, which is then utilized

across all gradient manipulation methods. However, it is possible that these methods may bene�t from a

more optimized hyperparameter selection for the number of trainable parameters. Furthermore, sparse

training can effectively mitigate gradient con�icts between tasks in MTL by reducing the dimensionality

of parameter space and limiting their impact on updates between tasks. The regularization constitutes

one of the theory’s reasons. Nevertheless, we anticipate that our future research will contribute to a

deeper comprehension of multi-task learning and subsequently enhance the performance of MTL.

C. Broader Impacts

The nature of our research does not directly contribute to societal impact; however, like any machine

learning paper, it has the potential to adversely affect society through automation and job displacement.

While it is challenging to predict speci�c risks, similar to any technology, inadequate regulation may lead

to an exacerbation of social and economic inequality. The positive aspect lies in the potential

environmental impact of our work, as multi-task learning enables information sharing among tasks,

thereby reducing data requirements and further minimizing energy consumption during training.

D. Detailed experiment setting

D.1. Number of trainable parameters

We provide the number of trainable parameters for all experiments conducted in our paper. As shown in

Table 4, most of them have the same percentage of trainable parameters within a model across different

methods. In addition, in general, we can observe that sparse training for the pre-trained model needs 

30% while that for random initialized model needs  60%.

λ

∼

∼
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Method

Pre-trained model Random initialized model

SAM Swin ViT MTAN

NYU-v2 CelebA Clevr SmallNORB NYU-v2 CityScapes

Joint Train w/ ST 30.97 37.60 29.38 29.38 62.19 76.02

PCGrad w/ ST 30.97 37.60 29.38 19.63 62.19 76.02

CAGrad w/ ST 30.97 72.85 29.38 29.38 62.19 76.02

GradDrop w/ ST 30.97 49.58 29.38 29.38 62.19 76.02

MGDA w/ ST 30.97 37.60 29.38 29.38 62.19 62.19

IMTL-G w/ ST 30.97 37.60 29.38 29.38 62.19 62.19

NashMTL w/ ST 30.97 37.60 29.38 29.38 62.19 83.48

FAMO w/ ST 30.97 37.60 29.38 29.38 62.19 62.19

Table 4. Number of trainable parameters. The values in the table are expressed as percentages (%). As we

select Top-K input parameters among all input connections for each neuron, therefore the same K might lead

to different percentages of trainable parameters for different models. For example, K=300 results in 30.97% in

SAM, 37.60% in Swin, and 29.38% in ViT for the pre-trained model.

D.2. Implementation details

Following the work of Nash[8], we apply all gradient manipulation techniques to the gradients of the

shared weights. We set the hyperparameter c of CAGrad to 0.4, as it has been reported to yield optimal

performance for NYUv2 and Cityscapes datasets[5]. The experiments were conducted on the A100 80G

GPU. Typically, training with SAM using NYU-v2 and Swin with CelebA requires approximately 1 day for a

gradient manipulation method. Training ViT with SmallNORB takes around 18 minutes for a gradient

manipulation method, while training ViT with Clevr takes about 30 minutes. On the other hand, training

MTAN with NYU-v2 demands roughly 18 hours for a gradient manipulation method, whereas training

MTAN with CityScapes necessitates approximately 12 hours.
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SAM, ViT, Swin

For all methods, including single-task learning, the gradient manipulation method, and our sparse

training, we employed a batch size of 3 and searched for the optimal learning rate from the set {2e-4, 5e-

5}, and then the best results are reported. The reason is that we �nd the optimal learning rate for sparse

training is bigger than that for full parameters training. Therefore, for most methods, the optimal

learning rate for sparse training is 2e-4 and that for the full parameters training is 5e-5. we also use data

augmentations for all methods, following[5]. The batch size used is set to be 3 for NYUv2 dataset, and 256

for CelebA, and 128 for SmallNORB and Clevr.

MTAN

Following the works in[8][5], we incorporate data augmentations during training for both Joint Train

method and all gradient manipulation methods. Each method is trained for 200 epochs with an initial

learning rate of 0.0001, which is then reduced to 0.00005 after 100 epochs. For Multi-Task Learning

(MTL) methods, we utilize a Multi-Task Attention Network (MTAN)[10]  based on SegNet architecture

proposed by[11]. Similar to previous studies[5], the STL baseline refers to training task-speci�c SegNet

models. The batch size used is set to be 2 for NYUv2 dataset and 8 for CityScapes dataset respectively. To

align with prior research on MTL including[5][2][11], we report the test performance averaged over the last

10 epochs.

E. Extended related work

Multi-task learning

Multi-task learning[1] aims to improve the overall performance of all tasks. In this work, we focus on a

conventional setup of multi-task learning[35]: given a single input, multi-task models perform different

and related predictions, such as segmentation, depth and surface normal. In other words, the input is

shared by different tasks. In this paper, we roughly divide existing MTL into two categories:

i. Multi-task optimization. Recent works[2][5][4][6][7][8][3]  provide impressive results in solving the

task imbalance during optimization. The rationale behind these works is that re-weighting all task

gradients or losses helps multi-task models reduce con�icting gradients among tasks[5][6].

Speci�cally, some works[4][6][7]  propose to form a new update gradient at each optimization by
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linearly combining task gradients. Other works[3][15]  learn dynamic loss scale to balance different

tasks during training. However, it is challenging to scale up most existing optimization works to

giant foundation models due to non-trivial computational and memory costs. In this paper, we

propose a neuron-based parameter selection to sparsely �ne-tune the pre-trained model, which

boosts the performance of most optimization methods.

ii. Multi-task architecture In this branch, multi-task methods design different architectures to

improve the exchanging or sharing of information among tasks[35]. Regarding where tasks interact,

multi-task architectures are separated into encoder-focused and decoder-focused. The former shares

the information in the encoder by the transformation of activations among tasks[36], learnable task-

speci�c attention modules[10], branching networks for similar tasks[37]  and so on. The latter

recursively uses task predictions to improve overall performance[38][39][40]. However, these

architectures still suffer from the task imbalance issue during multi-task optimization. In this

paper, our work focuses on boosting multi-task optimization. As one of the multi-task optimization

methods, our method can seamlessly generalize to different backbone models.

Training with subset of parameters

several methods already proposed in single-task learning. several methods select a subset of parameters

based on a certain pre-de�ned rule, such as gradient[16][17] and magnitude of parameters[18]. In addition

to selecting parameters by hand design,[19][20][21] automatically select the subset of parameters through

optimization. Although sparse training has been extensively investigated in single-task learning, its

application in multi-task learning remains relatively unexplored.[22][23]  learning to share information

between tasks using a sparse model. Differing from them, in this paper, we systematically research the

gradient con�ict via the sparse training perspective.
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Methods

Segmentation Depth Surface Normal

mIoU  Pix Acc  Abs Err  Rel Err 

Angle Distance  Within 

Mean Median 11.25 22.5 30

Random

Global

Reverse

Ours

Table 5. Different sparse training methods on SAM model with NYU-v2 datasets.

Figure 6. The distribution of selected trainable parameters for different sparse training methods over

different blocks. The experiments are conducted on SAM model with NYU-v2 dataset.

F. Detailed experiment results

In this section, we provide the detailed experiment results conducted in the main body of our paper,

including the average incident of gradient con�ict, the incident of gradient con�ict for all epochs, and

visualization of the gradient con�ict for Joint Train and all gradient manipulation methods.

Δm%
↓

↑ ↑ ↓ ↓

↓ t∘ ↑

59.85 80.09 0.3357 0.1359 22.17 16.12 36.08 64.50 75.56 6.014

59.53 79.38 0.3380 0.1373 22.32 16.32 35.62 63.93 75.16 6.855

59.35 79.57 0.3417 0.1396 22.31 16.25 35.98 64.07 75.16 6.960

60.03 79.96 0.3320 0.1353 21.98 15.92 36.69 64.92 75.82 5.314
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F.1. Ablation study

The detailed results for various sparse methods are provided in Tab. 5, which is the full version of Fig. 5c.

It can be observed that, with the exception of Pix Acc in segmentation, our sparse method outperforms

other methods. In addition, we provide the distribution of the selected parameters using different sparse

training over different blocks of the model. As shown in Fig. 6, the parameters selected by our sparse

training method and Random are evenly distributed over the whole network. As for Global selecting the

parameters with the highest magnitude, the distribution of selected parameters is largely different over

different blocks

F.2. NYU-v2 on SAM

The incidence of gradient con�ict for Joint Train and gradient manipulation method over all epochs are

shown in Fig. 7, which is the full version of Fig. 4 in the main body of the paper.
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Figure 7. The number of occurrence gradient con�ictions between tasks during training SAM on NYUv2

dataset.
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F.3. NYU-v2 on MTAN

Methods

Average incidence of GC ( )

All epochs Last 50% epochs

Joint Train 36.01 39.87

w/ ST 33.86 (2.15) 36.45 (3.42)

PCGrad 35.71 39.51

w/ ST 34.05 (1.66) 37.25 (2.26)

CAGrad 37.21 40.93

w/ ST 34.14 (3.07) 37.04 (3.89)

GradDrop 36.37 39.71

w/ ST 34.42 (1.95) 37.10(2.61)

MGDA 37.76 42.1

w/ ST 37.15 ( 0.61) 41.25 (0.85)

IMTL-G 37.14 41.22

w/ ST 35.81 (1.33) 39.17 (2.05)

NashMTL 37.19 40.79

w/ ST 35.83 (1.36) 39.0 (1.79)

Table 6. Average incidence of gradient con�ict between tasks over epochs for different methods. The

improvement by sparse training is provided in ( ). We calculate the average incidence of gradient con�ict

over all epochs and the last 50% epochs during training MTAN on NYUv2.

We also conduct experiments on MTAN with NYU-v2 dataset. MTAN is a random initialized model. As we

can see in Tab. 6, even for the random initialized model, sparse training can also reduce the incidence of

gradient con�ict. The visualization of the occurrence of gradient con�ict for each epoch is shown in Fig.

9 and the average incidence of gradient con�ict across all epochs for different methods is shown in Fig. 8.

%

∙
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As for the performance of the overall tasks on NYU-v2, the sparse training improves not only the overall

performance ( ) but also the performance of each task for all methods including Joint Train and all

gradient manipulation methods, as shown in Tab. 7. In addition, following[8], we conduct the

experiments three times with three different seeds. The    ±    is presented in Tab. 7, we can

observe that the sparse training is robust to the random seed.

Figure 8. The average occurrence percentage of gradient con�ict over epochs (all epochs/last 50% epochs)

during training on MTAN model with NYU-v2 datasets was evaluated using various methods, including joint

training and gradient manipulation techniques.

Δm%

mean std
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Figure 9. The number of occurrence gradient con�ictions between tasks during tuning MTAN on NYUv2

dataset.
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Table 7. The test performance on NYU-v2 dataset training on MTAN model, involving three tasks: semantic

segmentation, depth estimation and surface normal. The result is the mean over three random seeds (std is

presented in (±  ). The green cell color indicates that sparse training improves the performance of joint

training or gradient manipulation methods. The best result is highlighted in bold.

F.4. NYU-v2 on Swin

In order to investigate how the incidence of gradient con�ict changes with varying model sizes, we

conduct experiments on Swin/Tiny, Swin/Base and Swin/Large through the Joint Train. As depicted in

Tab. 8, there is an observed increase in the incidence of gradient con�ict as the model size increases.

Additionally, the performance of tasks improves as the model size increases Tab. 9.

Model / Size Average incidence of GC (%)

Swin / Tiny 37.42

Swin / Base 40.34

Swin / Large 41.84

Table 8. The average incidence of gradient con�ict across all epochs during joint training with NYU-v2 on

different sizes of Swin transformer.

∙
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Model

Segmentation Depth Surface Normal

mIoU  Pix Acc  Abs Err  Rel Err  Angle Distance  Within 

Mean Median 11.25 22.5 30

Swin/Tiny 55.22 76.54 0.3746 0.1542 27.47 21.70 27.81 52.40 64.05

Swin/Base 59.60 79.16 0.3419 0.1388 25.88 19.74 31.23 56.24 67.32

Swin/Large 61.34 80.28 0.3321 0.1345 25.09 18.73 33.05 58.12 68.86

Table 9. The test performance on NYU-v2 dataset jointly training on Swin models.

F.5. CelebA on Swin

Following[8], we train CelebA on Swin for only 30 epochs, because there are many more tasks in this

dataset compared with other datasets, which leads to a signi�cant increase in computation. As we can

observe in Fig. 10, most of the methods including Joint Train and gradient manipulation methods can be

improved by sparse training in terms of average incidence of gradient con�ict between tasks over

epochs. It is noted that the improvement by sparse training here is not signi�cant, which is because of

the limited training epoch. Speci�cally, as shown in Fig. 1 and Fig. 6, our sparse training improves more

for later epochs. As for the performance of CelebA on Swin, please refer to Tab. 3. The visualization for the

occurrence of gradient con�ict for each epoch and average incidence of gradient con�ict over all epochs

for different methods, including Joint Train and all gradient manipulation methods, are shown in Fig. 10

and Fig. 11

↑ ↑ ↓ ↓ ↓ t∘ ↑
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Methods

Average incidence of GC ( )

All epochs Last 50% epochs

Joint Train 47.61 48.78

w/ ST 46.96 (0.65) 48.48 (0.30)

PCGrad 48.48 50.83

w/ ST 47.24 (1.24) 48.88 (1.95)

CAGrad 48.21 50.23

w/ ST 48.33 (-0.12) 50.40 (-0.17)

GradDrop 47.36 48.72

w/ ST 47.13 (0.23) 48.57 (0.15)

MGDA 44.56 45.65

w/ ST 44.30 (0.26) 44.26 (1.39)

IMTL-G 46.89 47.77

w/ ST 45.03 (1.86) 46.32 (1.45)

NashMTL 46.83 47.67

w/ ST 46.78 (0.05) 47.34 (0.33)

Table 10. Average incidence of gradient con�ict between tasks over epochs for different methods. The

improvement by sparse training is provided in ( ). We calculate the average incidence of gradient con�ict

over all epochs and the last 50% epochs during training Swin on CelebA.

%

∙
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Figure 10. The number of occurrence gradient con�ictions between tasks during tuning Swin on CelebA

dataset.
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Figure 11. The average occurrence percentage of gradient con�ict over epochs (all epochs/last 50% epochs)

during training on Swin model with CelebA datasets was evaluated using various methods, including joint

training and gradient manipulation techniques.

F.6. SmallNORB on ViT

SmallNORB is a much more dif�cult benchmark compared to other benchmarks in this paper. It

comprises arti�cial objects observed under varying conditions and includes two tasks: object azimuth

and camera-elevation prediction. As shown in Tab. 11, even for the STL, the Top 1 accuracy only achieves 

30%, therefore, we use Top 5 as an extra metric here. We observed that even for this dif�cult task,

sparse training can still achieve better performance compared with Joint Train and all gradient

manipulation methods.

∼
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Table 11. The test performance on SmallNORB dataset trained on ViT. The green

cell color indicates that sparse training improves the performance of joint

training or gradient manipulation methods. The best result is highlighted in

bold.

F.7. CityScapes on MTAN

We also conduct experiments on MTAN with CityScapes dataset. MTAN is a random initialized model. As

we can see in Figure 13, even for the random initialized model, sparse training can also reduce the

incidence of gradient con�ict. The reduction in the incidence of gradient con�ict for CityScapes is

observed to be comparatively smaller than that for NYU-v2. This discrepancy can be attributed to the fact

that CityScapes, which involves only two tasks, has a lower likelihood of encountering gradient con�icts

between tasks compared to NYU-v2, which encompasses three tasks. The visualization of the occurrence

of gradient con�ict for each epoch is shown in Figure 12 and the average incidence of gradient con�ict

across all epochs for different methods is shown in Table 13. As for the performance of the overall tasks

on CityScapes, the sparse training improves all methods including Joint Train and all gradient

manipulation methods, as shown in Table 12.
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Table 12. The test performance on CityScapes dataset training on MTAN model.

The green cell color indicates that sparse training improves the performance of

joint training or gradient manipulation methods. The best result is highlighted

in bold.
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Methods

Average incidence of GC ( )

All epochs Last 50% epochs

Joint Train 39.72 40.99

w/ ST 38.79 (0.93) 40.02 (0.97)

PCGrad 39.98 41.06

w/ ST 38.66 (1.32) 39.97 (1.09)

CAGrad 39.39 40.94

w/ ST 37.77 (1.62) 39.42 (1.52)

GradDrop 39.32 40.72

w/ ST 39.03 (0.29) 40.12 (0.60)

MGDA 36.37 39.69

w/ ST 36.14 (0.23) 39.38 (0.31)

IMTL-G 37.72 39.51

w/ ST 36.83 (0.89) 38.72 (0.79)

NashMTL 38.40 40.69

w/ ST 38.04 (0.36) 40.26 (0.43)

Table 13. Average incidence of gradient con�ict between tasks over epochs for different methods. The

improvement by sparse training is provided in ( ). We calculate the average incidence of gradient con�ict

over all epochs and the last 50% epochs during training MTAN on CityScapes.

%
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Figure 12. The number of occurrence gradient con�ictions between tasks during tuning MTAN on CityScapes

dataset.
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Figure 13. The average occurrence percentage of gradient con�ict over epochs (all epochs/last 50% epochs)

during training on MTAN model with CityScapes datasets was evaluated using various methods, including

joint training and gradient manipulation techniques.

F.8. FAMO

FAMO[3] is an approximation method for gradient manipulation by using the history of loss to compute

the current task weight. We also try our sparse training with FAMO on NYU-v2, CelebA, Clevr, SmallORB

datasets with ViT, SAM, MTAN and Swin models. As shown in 14, 16, 17 and 15, even for the approximation

method, sparse training method achieves the best results and further show the effectiveness of our

sparse training methods.

Table 14. The test performance on NYU-v2 dataset training on SAM model. The green cell color indicates that

sparse training improves the performance of joint training or gradient manipulation methods. The best

result is highlighted in bold.
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Table 15. The test performance on CelebA, Clevr and NYU-v2 dataset. CelebA is

trained on Swin Transformer and Clevr is trained on ViT. NYU-v2 is trained on

MTAN. The green cell color indicates that sparse training improves the

performance of joint training or gradient manipulation methods. The best result

is highlighted in bold.

Table 16. The test performance on NYU-v2 dataset training on MTAN model. The green cell color indicates

that sparse training improves the performance of joint training or gradient manipulation methods. The best

result is highlighted in bold.

Table 17. The test performance on SmallNORB dataset trained on ViT. The green

cell color indicates that sparse training improves the performance of joint

training or gradient manipulation methods. The best result is highlighted in

bold.
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