Research Article

On Bundles of Varieties V₂³ in PG(4, q) and Their Codes

Rita Vincenti¹

1. University of Perugia, Italy

In this note we use the spatial representation in $\Sigma = PG(4,q)$ of the projective plane $\Pi = PG(2,q^2)$, by fixing a hyperplane Σ' with a regular spread S of lines. We consider a bundle X of varieties V_2 of Σ having in common the q+1 points of a conic \mathcal{C}^2 of a plane $\pi_0,\pi_0\cap\Sigma'=l_0\in\mathcal{S}$, thus representing an affine line of Π , and a further affine point $O \notin \pi_0$. This subset \mathcal{X} of Σ represents a bundle of nonaffine Baer subplanes of Π , each of them having one point at infinity (corresponding to a line of S), having in common a subline of affine points of Π and a further affine point. Then $\mathcal X$ is considered as a projective system of Σ and, by using such a representation of Π , we can calculate the ground parameters of the code $C_{\mathcal{X}}$ arising from it.

Corresponding author: Rita Vincenti, aliceiw213@gmail.com

Mathematics Subject Classification: 51E20, 51A05, 94B05, 94B27

1. Introduction

It is known that a projective translation plane Π of order $n=q^2$ of dimension 2 over its kernel F = GF(q) can be represented by a 4-dimensional projective space $\Sigma = PG(4,q)$ over F, fixing a hyperplane $\Sigma' = PG(3,q)$ and a spread S of lines of Σ' . The points of Π are represented by (i) the points of $\Sigma \setminus \Sigma'$ and (ii) the lines of S. The lines of Π are represented by (i) the planes α of $\Sigma \setminus \Sigma'$ such that $\alpha \cap \Sigma'$ belongs to S and by (ii) the spread S. The translation line l of Π is represented by S (cf. [1]).

A Baer subplane B of Π has order q and it is dense in the sense that a line of Π either is a line of B (that is, meets B in a subline of q+1 points, such a subplane is *affine*) or it meets B in one point (such a subplane is non-affine).

The affine Baer subplanes B of Π are represented by the transversal planes β to \mathcal{S} , that is, the planes of $\Sigma \setminus \Sigma'$ such that the line $\beta \cap \Sigma' \notin \mathcal{S}$ meets q+1 lines of \mathcal{S} . In such a way l is a line of B (cf. $\overline{[2]}$, pp. 68–72). Of course all that holds also in case Π is the Desarguesian plane $PG(2,q^2)$ when \mathcal{S} is a regular spread (cf. $\overline{[3]}$, $\overline{[2]}$).

A variety V_2^3 of Σ with a line l_∞ in $\mathcal S$ as the minimum (linear) order directrix, a conic $\mathcal C^2$ as a 2nd order directrix with $\mathcal C^2 \subset \pi_0$, $\pi_0 \cap \Sigma' = l_0 \in \mathcal S \setminus l_\infty$ and $\mathcal C^2 \cap l_0 = \emptyset$, represents a non-affine Baer subplane of Π having one point on the translation line l and the subline $\mathcal C^2$ of the line π_0 (cf. $\overline{[3]}$).

In this paper we consider bundles of q+1 varieties V_2^3 of $\Sigma=PG(4,q)$ with the linear directrix in $\mathcal S$ and having in common a same conic $\mathcal C^2$ as a 2nd order directrix and one further affine point. By using the spatial representation of $\Pi=PG(2,q^2)$ in PG(4,q), we can characterize such a bundle $\mathcal X$ from the intersection point of view, construct a linear code $\mathcal C_{\mathcal X}$ arising from it and show that its ground parameters allow $\mathcal C_{\mathcal X}$ to correct an enough large number of errors.

2. Preliminary Notes

Let F = GF(q) be a finite field, $q = p^s$, p prime. Denote F^{r+1} the (r+1)-dimensional vector space over F, $P^r = PrF^{r+1} = PG(r,q)$ the r-dimensional projective space contraction of F^{r+1} over F. Let \overline{F} be the algebraic closure of the field F = GF(q).

Denote S_t with $t \geq 2$ a subspace of P^r of dimension t. A hyperplane S_{r-1} will be denoted also by H, a plane by π .

The geometry P^r is considered a sub-geometry of $\overline{P^r}$, the projective geometry over \overline{F} . We refer to the points of P^r as the *rational points* of $\overline{P^r}$.

Definition 2.1. A variety V_u^v of dimension u and of order v of P^r is the set of the rational points of a projective variety \overline{V}_u^v of \overline{P}^r defined by a finite set of polynomials with coefficients in the field F.

From $^{\underline{[4]}}$, p.290, 7.– for $r \geq 4\,$ follows

Lemma 2.2. The ruled variety V_2^{r-1} of PG(r,q) is generated by the lines connecting the corresponding points of two birationally (or, projectively) equivalent curves in two complementary subspaces, of order m and r-1-m, respectively. It has order the sum of the orders of the curves as there are no fixed points.

Let P^4 be the projective geometry PG(4,q).

Lemma 2.3. A variety V_2^3 of PG(4,q) is obtained by joining the corresponding points of a directrix line l and a directrix conic \mathcal{C} in a plane π , l and \mathcal{C} being projectively equivalent and with $l \cap \pi = \emptyset$.

Proof. See [5] p. 90.

Choose a coordinate system in P^4 so that it is a coordinate system for \overline{P}^4 too, denote a point $P\approx (x_1,x_2,y_1,y_2,t):=\overline{F}^*(x_1,x_2,y_1,y_2,t), \overline{F}^*=\overline{F}\setminus\{0\}.$

P is a *rational point* if there exists $(x_1, x_2, y_1, y_2, t) \in F^5$ such that $P \approx (x_1, x_2, y_1, y_2, t)$. A variety V of P^4 is the set of the rational points of P^4 solutions of a finite set of polynomials of $F[x_1, x_2, y_1, y_2, t]$.

Lemma 2.4. The variety V_2^3 can be represented as the definite intersection of two quadrics of PG(4,q), that is, the cone of planes $\mathcal{Q}_1: sx_2^2-x_1^2-sx_2t=0$ (where s is a non square of GF(q)) and the cone of planes $\mathcal{Q}_2: x_1y_1-x_2y_2=0$. The plane $\pi': x_1=0, x_2=0$ is contained in both quadrics so that, by Bezout, the order of the intersection variety is 4-1=3.

Proof. See [3] Theorem 1.1, [5] p. 92.

Let $\Pi=PG(2,q^2)$ be the Desarguesian plane over $GF(q^2)$. Denote l the line at infinity of Π . In the spatial representation of Π in $P^4=PG(4,q)$ fix a hyperplane $\Sigma'=PG(3,q)$ and a regular spread $\mathcal S$ of lines of Σ' , where $|\mathcal S|=q^2+1$.

Lemma 2.5. The points of Π are represented by (i) the points of $\Sigma \setminus \Sigma'$ (the affine points of Π) and by (ii) the lines of S (the points at infinity of Π). The lines of Π are represented by (i) the planes α of $\Sigma \setminus \Sigma'$ such that $\alpha \cap \Sigma'$ belongs to S and by (ii) the spread S, representing the line at infinity l.

Proof. See [1] the Bruck and Bose representation and [2], p. 775.

Definition 2.6. A Baer subplane of $\Pi = PG(2, q^2)$ is an affine subplane if it meets the line at infinity l of Π in a subline l_1 , it is a non-affine subplane if it meets the line l in one point.

Lemma 2.7.

- (i) Two affine Baer subplanes of Π having in common the subline l_1 can meet in at most one further point.
- (ii) The Baer subplanes having in common only a subline l_1 are q^2 .
- (iii) The Baer subplanes having in common a subline l_1 and one further point are q+1.

Proof. (i) Two Baer subplanes having in common a subline l_1 and two further points coincide, because they have in common at least four *reference* (three by three non collinear) points.

Without loosing generality, we can consider two affine Baer subplanes \mathcal{B} and \mathcal{B}' of Π having in common a subline l_1 of l. In the spatial representation of Π , they are represented by two planes B and B' of P^4 ,

respectively, such that the lines $B \cap \Sigma' = r$ and $B' \cap \Sigma' = r'$ are transversal lines of the same regulus $\mathcal{R} \subset \mathcal{S}$. Denote \mathcal{R}' the opposite regulus to \mathcal{R} .

There are two cases:

(ii) If r=r', the planes B and B' have in common the line r meeting the regulus \mathcal{R} in its q+1 lines so that the subplanes \mathcal{B} and \mathcal{B}' have in common the subline l_1 (represented by \mathcal{R}) of the line l (represented by \mathcal{S}) and no further (affine) points. Such planes are $\frac{q^4}{q^2}=q^2$ and represent q^2 affine Baer subplanes of Π having in common only the subset l_1 of q+1 points of the line at infinity l.

(iii) If $r \neq r'$, the planes B and B' have in common an affine point $O \in \Sigma \setminus \Sigma'$ so that the two subplanes \mathcal{B} and \mathcal{B}' meet along the subline l_1 represented by \mathcal{R} and in the affine point O. The regulus \mathcal{R} has q+1 transversal lines $\{t_i|i=1,\ldots,q+1\}$ belonging to \mathcal{R}' . Each space $O \oplus t_i$ is a transversal plane τ_i , so that $\{\tau_i|i=1,\ldots,q+1\}$ represent the q+1 affine Baer subplanes of Π having in common l_1 and the affine point O.

Choose and fix a line l_{∞} of the (regular) spread \mathcal{S} , a plane π_0 such that $\pi_0 \cap \Sigma' = l_0 \in \mathcal{S} \setminus l_{\infty}$ and a non-degenerate conic $\mathcal{C}^2 \subset \pi_0 \setminus l_0$. Let Λ be a projectivity between l_{∞} and \mathcal{C}^2 . Denote V_2^3 the variety arising by connecting corresponding points of l_{∞} and \mathcal{C}^2 via Λ (cf. [5], p. 90).

Lemma 2.8. The variety V_2^3 represents a non-affine Baer subplane of Π meeting the line at infinity l in the point l_{∞} and containing the subline C^2 of the line represented by π_0 .

Proof. See [3] and [2].

Let F^n be the n-dimensional vector space over F = GF(q).

Definition 2.9. A linear $[n,k]_q$ -code C of length n is a k-dimensional subspace of the vector space F^n .

Definition 2.10. An $[n,k]_q$ -projective system \mathcal{X} is a set of n non necessarily distinct points of the projective geometry $PrF^k = PG(k-1,q)$. It is non-degenerate if these points are not contained in a hyperplane (cf. [6], p. 2).

Assume that \mathcal{X} consists of n distinct points having maximum rank.

Codes and projective systems are linked by a strict connection one can read in [6], so that from subsets \mathcal{X} of a projective geometry linear codes $C_{\mathcal{X}}$ can be generated. More precisely, for each point of \mathcal{X} choose a generating vector. Denote \mathcal{M} the matrix having as rows such n vectors and let $C_{\mathcal{X}}$ be the linear code having \mathcal{M}^t as a generator matrix. The code $C_{\mathcal{X}}$ is the k-dimensional subspace of F^n which is the image of the mapping from the dual k-dimensional space $(F^k)^*$ onto F^n that calculates every linear form over the

points of \mathcal{X} . Hence the length n of codeword of $C_{\mathcal{X}}$ is the cardinality of \mathcal{X} , the dimension of $C_{\mathcal{X}}$ being just k (cf. [6], p. 3).

Denote \mathcal{H} the set of all hyperplanes of $P^{k-1} = PrF^k$.

There exists a natural 1-1 correspondence between the equivalence classes of a non-degenerate $[n,k]_q$ -projective system $\mathcal X$ and a non-degenerate $[n,k]_q$ -code $C_{\mathcal X}$ such that if $\mathcal X$ is an $[n,k]_q$ -projective system and $C_{\mathcal X}$ is a corresponding code, then the non-zero codewords of $C_{\mathcal X}$ correspond to hyperplanes $H\in\mathcal H$, up to a non-zero factor. The correspondence preserves the ground parameters.

The weight of a codeword c corresponding to the hyperplane H_c is the number of points of $\mathcal{X} \setminus H_c$, thus the minimum weight (or, the minimum distance) d of the code $C_{\mathcal{X}}$ is $d = |\mathcal{X}| - max\{|\mathcal{X} \cap H| \mid H \in \mathcal{H}\}$. Therefore in order to find the minimum distance of the code $C_{\mathcal{X}}$ it needs to calculate the maximum intersection of \mathcal{X} with the hyperplanes of \mathcal{H} .

A linear code with length n, dimension k and minimum distance d over the field F = GF(q) can be denoted also as an $[n,k,d]_q$ -code.

If C is an $[n,k,d]_q$ -code, then C is an s-error-correcting code for all $s \leq \lfloor \frac{d-1}{2} \rfloor$. We call $t = \lfloor \frac{d-1}{2} \rfloor$ the error-correcting capability of C (cf. [6], p.3).

3. Main Results

With the notations of the previous section, choose and fix the line $l_0 \in \mathcal{S}$, the plane π_0 such that $\pi_0 \cap \Sigma' = l_0 \in \mathcal{S}$ and the non-degenerate conic $\mathcal{C}^2 \subset \pi_0 \setminus l_0$.

Denote Σ'' a hyperplane of $\Sigma = PG(4,q)$ containing the plane π_0 . Let $\pi = \Sigma'' \cap \Sigma'$. The plane π contains the line l_0 and each of the q^2 points of $\pi \setminus l_0$ belongs to one of the q^2 lines of $\mathcal{S} \setminus \{l_0\}$. Let O be a point, $O \in \Sigma'' \setminus \{\pi_0 \cup \pi\}$. Denote \mathcal{Q} the quadric cone having vertex the point O and directrix the conic \mathcal{C}^2 . Let $\mathcal{C}'^2 = \mathcal{Q} \cap \pi$. Obviously \mathcal{C}'^2 is a non-degenerate conic with $\mathcal{C}'^2 \cap l_0 = \emptyset$.

Let $\{R_i|i=1,\ldots,q+1\}$ be the set of the q+1 points of \mathcal{C}^2 , $\{r_i|i=1,\ldots,q+1\}$ the q+1 lines of the cone \mathcal{Q} with $R_i\in r_i$, $\{R_i'=r_i\cap\mathcal{C}'^2|i=1,\ldots,q+1\}$ the corresponding set of q+1 points of \mathcal{C}'^2 with $R_i'\in r_i$, $\{s_i|i=1,\ldots,q+1\}$ the q+1 lines of \mathcal{S} with $\{R_i'\in s_i|i=1,\ldots,q+1\}$.

For each line s_i let λ_i be a projectivity between s_i and \mathcal{C}^2 such that $\lambda_i(R_i') = R_i$

Denote S_i the point at infinity of the plane Π represented by the line $s_i \in \mathcal{S}$, p_0 the line of Π represented by the plane π_0 and c_2 the subline of p_0 corresponding to \mathcal{C}^2 .

Let V_i be the variety V_2^3 having the conic C^2 and the line s_i as directrices constructed via λ_i . Note that, by construction, the line r_i is one of the q+1 generatrix lines of V_i .

From Lemma 2.8 follows that each of the q+1 variety \mathcal{V}_i is a non-affine Baer subplane of Π meeting the line l in the point S_i , containing $c_2 \subset p_0$ and the point O.

Define $\mathcal{V}:=igcup_i\mathcal{V}_i$ the union of the points of all varieties \mathcal{V}_i for all $i=1,\dots,q+1$.

Lemma 3.1. V represents the bundle of the full set of q+1 non-affine Baer subplanes having in common the subline c_2 and the point O.

Proof. See (iii) of Lemma 2.7 and [3].

Proposition 3.2. $\Sigma'' \cap \mathcal{V} = \mathcal{Q}$.

Proof. By construction the hyperplane Σ'' contains \mathcal{Q} . As for any variety \mathcal{V}_i , $\Sigma'' \cap \mathcal{V}_i$ cannot contain the directrix line s_i (otherwise $\Sigma'' = \Sigma'$), then Σ'' meets \mathcal{V}_i at most in a cubic curve $\mathcal{C}^2 \cup r_i$ (cf. $\overline{^{[5]}}$, (ii), p. 93). Assume $\Sigma'' \cap \mathcal{V}$ contains $\mathcal{C}^2 \cup r_i \subset \mathcal{V}_i$ and a further point $P_j \in V_j$ with $j \neq i$. Hence Σ'' contains the line $r = P_j R_j \in \mathcal{V}_j$ with $R_j \in \mathcal{C}^2$. If $r \neq r_j$, then Σ'' should meet \mathcal{V}_j in $\mathcal{C}^2 \cup r_j \cup r$ where r_j and r are two generatrix lines of \mathcal{V}_j , then the line s_j should belong to Σ'' , a contradiction (cf. $\overline{^{[5]}}$, (ii), p. 93). Hence $\Sigma'' \cap \mathcal{V} = \mathcal{Q}$.

Denote $\mathcal{V}_{aff} = \mathcal{V} \setminus \Sigma'$.

Proposition 3.3.

- (i) A hyperplane of Σ having maximum intersection with $\mathcal V$ is Σ' , and $\Sigma' \cap \mathcal V$ consists of the points of the lines $\{s_i|i=1,\ldots,q+1\}\subset \mathcal S$.
- (ii) A hyperplane of Σ having maximum intersection with \mathcal{V}_{aff} is Σ'' and $\Sigma'' \cap \mathcal{V}_{aff}$ consists of the points of $Q \setminus \mathcal{C}'^2$.

Proof. (i) Let $H\in\mathcal{H}$ a hyperplane. If $H=\Sigma'$ then $H\cap\mathcal{V}$ is the set of the $(q+1)^2$ points of $\{s_i|i=1,\ldots,q+1\}\subset\mathcal{S}.$ If $H=\Sigma''$ then $H\cap\mathcal{V}$ is the set of the q^2+q+1 points of $\mathcal{Q}.$

Let $H \neq \Sigma', \Sigma''$.

Denote $H \cap \Sigma' = \pi', H \cap \Sigma'' = \pi''$.

For *H* there are two possibilities: 1) *H* contains π_0 , 2) *H* does not contain π_0 .

1) It is $\pi'' = \pi_0$ so that it contains \mathcal{C}^2 . Moreover $\pi' \neq \pi$ otherwise $H = \Sigma''$. The plane π' forms bundle with axis the line l_0 with π_0 and π . Each point of π' belongs to one line of $\mathcal{S} \setminus l_0$ then it meets the

q+1 points $\{P_i=\pi'\cap s_i|i=1,\ldots,q+1\}$. Therefore $H\cap\mathcal{V}$ contains at least the q+1 points P_i and the points of \mathcal{C}^2 . Then $|H\cap\mathcal{V}|\geq 2(q+1)$. The maximum intersection is reached if each line P_iR_i coincides with one generatrix line of the variety \mathcal{V}_i for every i, In such a case $|H\cap\mathcal{V}|=(q+1)^2$.

2) Let $\pi'' \cap \Sigma' = l$. Then l is a line of π' too.

Let $l=l_0$. The plane π'' contains no generatrix line of the varieties \mathcal{V}_i otherwise l_0 would meet some line s_i , it meets \mathcal{V} in at most a conic \mathcal{C}_Q of \mathcal{Q} . Set $\{P_i \in \mathcal{C}_Q | i=1,\ldots,q+1\}$.

If $\pi' = \pi$, then $\pi' \cap \mathcal{V} = \mathcal{C}'^2$. If $\pi' \neq \pi$, then it contains no line s_i (otherwise $l_0 \cap s_i \neq \emptyset$), it can meet at most q+1 lines s_i in points T_i . In both cases the maximum intersection is reached if the q+1 lines $P_i R_i'$, or $P_i T_i$, respectively, coincide with the generatrix lines of the varieties \mathcal{V}_i . Hence $|H \cap \mathcal{V}| < (q+1)^2$.

Let $l \neq l_0$. Denote $r' = \pi'' \cap \pi_0$. Then $l = s_i$ for some i or l meets at most q + 1 lines s_i .

If $\pi'=\pi$, it contains the q+1 points of \mathcal{C}'^2 and according to r' is secant, tangent or external to the conic \mathcal{C}^2 , $|H\cap\mathcal{V}|$ is less or equal to (q+1)+2q=3q+1, (q+1)+q=2q+1 or q+1, respectively.

Assume $\pi' \neq \pi$. The plane π' must contain one line t of $\mathcal S$ and the q^2 points of the remaining lines of $\mathcal S$. Then the plane π' contains the q+1 points of $t=s_i$ for some i, or the q+1 points of the set $\{s_i \cap \pi' | i=1, \ldots q+1\} \subset \mathcal V$.

According to r' is secant, tangent or external to the conic \mathcal{C}^2 , H meets \mathcal{V} in 2 generatrix lines, in 1 generatrix line or in no generatrix line. Therefore $|H \cap \mathcal{V}|$ is less or equal to (q+1)+2q=3q+1, (q+1)+q=2q+1 or q+1.

Hence the maximum intersection a hyperplane can have with V consists of $(q+1)^2$ points. Σ' is one of such hyperplanes.

(ii) Let H be a hyperplane, $H \neq \Sigma'$. From [T], Lemma 11, it is known the maximum intersection a hyperplane of Σ has with a variety V_2^3 consists of two generatrix lines and the directrix line. Of course H cannot meet two different varieties in such a way otherwise H, containing two lines of $\mathcal S$ would coincides with Σ' . Therefore H can meet at least q varieties along the conic $\mathcal C^2$ and one generatrix line for each variety, then q points of the conic $\mathcal C'^2$. In any case H contains O then the cone $\mathcal Q$. Therefore $H=\Sigma''$. Hence the maximum intersection a hyperplane can have with $\mathcal V_{aff}$ is $\mathcal Q\setminus\mathcal C'^2$ with $|\mathcal Q\setminus\mathcal C'^2|=q^2$.

Denote $\mathcal{X} := \mathcal{V}$ the projective system defined by \mathcal{V} , $C_{\mathcal{X}}$ the linear code arising from \mathcal{X} , $\mathcal{X}_{aff} := \mathcal{V}_{aff}$ the projective system defined by \mathcal{V}_{aff} , $C_{\mathcal{X}_{aff}}$ the linear code arising from \mathcal{X}_{aff} .

Theorem 3.4.

(i)
$$C_{\mathcal{X}}$$
 is an $[n,k,d]_q$ -code with $n=q^3+2q^2+q+1$, $k=5$, $d=q^3+q^2-q$.

(ii)
$$C_{\mathcal{X}_{aff}}$$
 is an $[n',k,d']_q$ -code with $n'=q^3+q^2-q, k=5, d'=q^3-q$.

Proof. (i) Each variety \mathcal{V}_i consists of q+1 skew lines, hence it has $(q+1)^2$ points. Every two varieties \mathcal{V}_i and \mathcal{V}_j have in common the conic \mathcal{C}^2 and the point O so that for each variety remain $q^2+2q+1-(q+1)-1=q^2+q-1$ points. The varieties are q+1 so that the cardinality of \mathcal{X} is $(q^2+q-1)(q+1)=q^3+2q^2-1$ plus the point O and the (q+1) points of the conic \mathcal{C}^2 . Hence $|\mathcal{X}|=q^3+2q^2+q+1$. The length of the code $C_{\mathcal{X}}$ is therefore $n=q^3+2q^2+q+1$.

The dimension of $C_{\mathcal{X}}$ is obviously 5, that is, the vector dimension of Σ .

From Proposition 3.3, (i), follows the distance of $C_{\mathcal{X}}$ is $d=n-|\{P\in s_i|i=1,\ldots,q+1\}|$ that is, $d=q^3+2q^2+q+1-(q^2+2q+1)=q^3+q^2-q$.

(ii) The length of the code $C_{\mathcal{X}_{aff}}$ equals $n'=|\mathcal{X}|-|\{P\in s_i|i=1,\ldots,q+1\}|=q^3+2q^2+q+1-(q^2+2q+1)=q^3+q^2-q.$ Its dimension is k=5. From Proposition 3.3, (ii), follows the distance is $d'=n'-|\mathcal{Q}\setminus\mathcal{C}'^2|$ that is, $d'=q^3+q^2-q-q^2=q^3-q.$

Examples

For q=2, $C_{\mathcal{X}}$ is a $[19,5,10]_2$ -code and it can correct at most $\lfloor \frac{10-1}{2} \rfloor = 4$ errors. For q=3, $C_{\mathcal{X}}$ is a $[49,5,33]_3$ -code and it can correct at most $\lfloor \frac{33-1}{2} \rfloor = 16$ errors.

For q=2, $C_{\mathcal{X}_{aff}}$ is a $[10,5,6]_2$ -code and it can correct at most $\lfloor \frac{6-1}{2} \rfloor = 2$ errors. For q=3, $C_{\mathcal{X}_{aff}}$ is a $[33,5,24]_3$ -code and it can correct at most $\lfloor \frac{24-1}{2} \rfloor = 11$ errors.

Other References

- R. Vincenti, Fibrazioni di un S3,q indotte da fibrazioni di un S3,q2 e rappresentazione di sottopiani di Baer di un piano proiettivo, Atti e Mem. Acc. Sci. Lett. e Arti di Modena, Serie VI, Vol. XIX, (1977), 1-18.
- R.Vincenti, On some classical varieties and codes, Technical Report 2000/20, Department of Mathematics and Computer Science, University of Perugia (Italy).

References

- 1. ^{a, b}R. H. Bruck, R. C. Bose, Linear representation of projective planes in projective spaces, J. of Algebra, 4, (196 6), 117–172.
- 2. a, b, c, dR. Vincenti, A survey on varieties of PG (4,q) and Baer subplanes of translation planes, Annals of Disc rete Math., N.H. Pub. Co., 18, (1983), 775–780.
- 3. a, b, c, d, eR. Vincenti, Alcuni tipi di variet a V23 di S4,q e sottopiani di Baer, Algebra e Geometria Suppl. BUMI, Vol. 2, (1980), 31–44.
- 4. \triangle E. Bertini, Introduzione alla geometria proiettiva degli iperspazi, (1907), Enrico Spoerri Editore, Pisa.
- 5. a, b, c, d, eR. Vincenti, Finite fields, projective geometry and related topics, Morlacchi Editore, (2021), ISBN 978-88-9392-259.
- 6. a, b, c, dR. Vincenti, Varieties and codes from partial ruled sets, International Mathematical Forum, Vol. 18, n o. 1, (2023), 1–14, doi.org/10.12988/imf.2023.912353.
- 7. △R. Vincenti, Linear codes from projective varieties: a survey, March 21st, 2023, Article on the IntechOpen Ed ited Book Coding Theory Essentials, by D. G. Harkut, (2023), doi: 10.5772/intechopen.109836

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.