v1: 4 July 2023

Research Article

On Bundles of Varieties V_2^3 in PG(4, q) and Their Codes

Peer-approved: 4 July 2023

© The Author(s) 2023. This is an Open Access article under the CC BY 4.0 license.

Qeios, Vol. 5 (2023) ISSN: 2632-3834 Rita Vincenti¹

1. University of Perugia, Italy

In this note we use the spatial representation in $\Sigma = PG(4,q)$ of the projective plane $\Pi = PG(2,q^2)$, by fixing a hyperplane Σ' with a regular spread S of lines. We consider a bundle \mathcal{X} of varieties V_2^3 of Σ having in common the q+1 points of a conic \mathcal{C}^2 of a plane $\pi_0, \pi_0 \cap \Sigma' = l_0 \in S$, thus representing an affine line of Π , and a further affine point $O \notin \pi_0$. This subset \mathcal{X} of Σ represents a bundle of non-affine Baer subplanes of Π , each of them having one point at infinity (corresponding to a line of S), having in common a subline of affine points of Π and a further affine point. Then \mathcal{X} is considered as a projective system of Σ and, by using such a representation of Π , we can calculate the ground parameters of the code $C_{\mathcal{X}}$ arising from it.

Corresponding author: Rita Vincenti, aliceiw213@gmail.com

Mathematics Subject Classification: 51E20, 51A05, 94B05, 94B27

1. Introduction

It is known that a projective translation plane Π of order $n = q^2$ of dimension 2 over its kernel F = GF(q) can be represented by a 4-dimensional projective space $\Sigma = PG(4,q)$ over F, fixing a hyperplane $\Sigma' = PG(3,q)$ and a spread S of lines of Σ' . The points of Π are represented by (i) the points of $\Sigma \setminus \Sigma'$ and (ii) the lines of S. The lines of Π are represented by (i) the planes α of $\Sigma \setminus \Sigma'$ such that $\alpha \cap \Sigma'$ belongs to S and by (ii) the spread S. The translation line l of Π is represented by S (cf. [1]).

A Baer subplane B of Π has order q and it is *dense* in the sense that a line of Π either is a line of B (that is, meets B in a *subline* of q + 1 points, such a subplane is *affine*) or it meets B in one point (such a subplane is *non-affine*).

The *affine* Baer subplanes *B* of Π are represented by the *transversal* planes β to *S*, that is, the planes of $\Sigma \setminus \Sigma'$ such that the line $\beta \cap \Sigma' \notin S$ meets q + 1 lines of *S*. In such a way *l* is a line of *B* (cf. ^[2], pp. 68–72). Of

course all that holds also in case Π is the Desarguesian plane $PG(2, q^2)$ when S is a regular spread (cf. [3], [2]).

A variety V_2^3 of Σ with a line l_∞ in S as the minimum (linear) order directrix, a conic C^2 as a 2nd order directrix with $C^2 \subset \pi_0$, $\pi_0 \cap \Sigma' = l_0 \in S \setminus l_\infty$ and $C^2 \cap l_0 = \emptyset$, represents a non-affine Baer subplane of II having one point on the translation line l and the subline C^2 of the line π_0 (cf. ^[3]).

In this paper we consider bundles of q + 1 varieties V_2^3 of $\Sigma = PG(4,q)$ with the linear directrix in S and having in common a same conic C^2 as a 2nd order directrix and one further affine point. By using the spatial representation of $\Pi = PG(2,q^2)$ in PG(4,q), we can characterize such a bundle \mathcal{X} from the intersection point of view, construct a linear code $C_{\mathcal{X}}$ arising from it and show that its ground parameters allow $C_{\mathcal{X}}$ to correct an enough large number of errors.

2. Preliminary Notes

Let F = GF(q) be a finite field, $q = p^s$, p prime. Denote F^{r+1} the (r + 1)-dimensional vector space over F, $P^r = PrF^{r+1} = PG(r,q)$ the r-dimensional projective space contraction of F^{r+1} over F. Let \overline{F} be the algebraic closure of the field F = GF(q).

Denote S_t with $t \ge 2$ a subspace of P^r of dimension t. A hyperplane S_{r-1} will be denoted also by H, a plane by

The geometry P^r is considered a sub-geometry of $\overline{P^r}$, the projective geometry over \overline{F} . We refer to the points of P^r as the *rational points* of $\overline{P^r}$.

Definition 2.1. A variety V_u^v of dimension u and of order v of P^r is the set of the rational points of a projective variety \overline{V}_u^v of \overline{P}^r defined by a finite set of polynomials with coefficients in the field F.

From ^[4], p.290, 7.- for $r \ge 4$ follows

Lemma 2.2. The ruled variety V_2^{r-1} of PG(r,q) is generated by the lines connecting the corresponding points of two birationally (or, projectively) equivalent curves in two complementary subspaces, of order m and r - 1 - m, respectively. It has order the sum of the orders of the curves as there are no fixed points.

Let P^4 be the projective geometry PG(4, q).

Lemma 2.3. A variety V_2^3 of PG(4, q) is obtained by joining the corresponding points of a directrix line l and a directrix conic C in a plane π , l and C being projectively equivalent and with $l \cap \pi = \emptyset$.

Proof. See [5] p. 90.

Choose a coordinate system in P^4 so that it is a coordinate system for \overline{P}^4 too, denote a point $P \approx (x_1, x_2, y_1, y_2, t) := \overline{F}^*(x_1, x_2, y_1, y_2, t),$ $\overline{F}^* = \overline{F} \setminus \{0\}.$

P is a rational point if there exists $(x_1, x_2, y_1, y_2, t) \in F^5$ such that $P \approx (x_1, x_2, y_1, y_2, t)$. A variety V of P^4 is the set of the rational points of $\overline{P^4}$ solutions of a finite set of polynomials of $F[x_1, x_2, y_1, y_2, t]$.

Lemma 2.4. The variety V_2^3 can be represented as the definite intersection of two quadrics of PG(4,q), that is, the cone of planes $Q_1 : sx_2^2 - x_1^2 - sx_2t = 0$ (where *s* is a non square of GF(q)) and the cone of planes $Q_2 : x_1y_1 - x_2y_2 = 0$. The plane $\pi' : x_1 = 0, x_2 = 0$ is contained in both quadrics so that, by Bezout, the order of the intersection variety is 4 - 1 = 3.

Proof. See [3] Theorem 1.1, [5] p. 92.

Let $\Pi = PG(2,q^2)$ be the Desarguesian plane over $GF(q^2)$. Denote l the line at infinity of Π . In the spatial representation of Π in $P^4 = PG(4,q)$ fix a hyperplane $\Sigma' = PG(3,q)$ and a regular spread S of lines of Σ' , where $|S| = q^2 + 1$.

Lemma 2.5. The points of Π are represented by (i) the points of $\Sigma \setminus \Sigma'$ (the affine points of Π) and by (ii) the lines of S (the points at infinity of Π). The lines of Π are

represented by (i) the planes α of $\Sigma \setminus \Sigma'$ such that $\alpha \cap \Sigma'$ belongs to S and by (ii) the spread S, representing the line at infinity l.

Proof. See $\frac{[1]}{1}$ the Bruck and Bose representation and $\frac{[2]}{2}$, p. 775.

Definition 2.6. A Baer subplane of $\Pi = PG(2, q^2)$ is an affine subplane if it meets the line at infinity l of Π in a subline l_1 , it is a non-affine subplane if it meets the line l in one point.

Lemma 2.7.

(i) Two affine Baer subplanes of Π having in common the subline l_1 can meet in at most one further point.

(ii) The Baer subplanes having in common only a subline l_1 are q^2 .

(*iii*) The Baer subplanes having in common a subline l_1 and one further point are q + 1.

Proof. (*i*) Two Baer subplanes having in common a subline l_1 and two further points coincide, because they have in common at least four *reference* (three by three non collinear) points.

Without loosing generality, we can consider two affine Baer subplanes \mathcal{B} and \mathcal{B}' of Π having in common a subline l_1 of l. In the spatial representation of Π , they are represented by two planes B and B' of P^4 , respectively, such that the lines $B \cap \Sigma' = r$ and $B' \cap \Sigma' = r'$ are transversal lines of the same regulus $\mathcal{R} \subset \mathcal{S}$. Denote \mathcal{R}' the opposite regulus to \mathcal{R} .

There are two cases:

(*ii*) If r = r', the planes *B* and *B'* have in common the line *r* meeting the regulus \mathcal{R} in its q + 1 lines so that the subplanes \mathcal{B} and \mathcal{B}' have in common the *subline* l_1 (represented by \mathcal{R}) of the *line l* (represented by \mathcal{S}) and no further (affine) points. Such planes are $\frac{q^4}{q^2} = q^2$ and represent q^2 affine Baer subplanes of II having in common only the subset l_1 of q + 1 points of the line at infinity *l*.

(*iii*) If $r \neq r'$, the planes B and B' have in common an affine point $O \in \Sigma \setminus \Sigma'$ so that the two subplanes \mathcal{B} and \mathcal{B}' meet along the subline l_1 represented by \mathcal{R} and in the affine point O. The regulus \mathcal{R} has q+1 transversal lines $\{t_i | i = 1, \ldots, q+1\}$ belonging to \mathcal{R}' . Each space $O \oplus t_i$ is a transversal plane τ_i , so that $\{\tau_i | i = 1, \ldots, q+1\}$ represent the q+1 affine Baer subplanes of Π having in common l_1 and the affine point O.

Choose and fix a line l_{∞} of the (regular) spread S, a plane π_0 such that $\pi_0 \cap \Sigma' = l_0 \in S \setminus l_{\infty}$ and a nondegenerate conic $C^2 \subset \pi_0 \setminus l_0$. Let Λ be a projectivity between l_{∞} and C^2 . Denote V_2^3 the variety arising by connecting corresponding points of l_{∞} and C^2 via Λ (cf. ^[5], p. 90).

Lemma 2.8. The variety V_2^3 represents a non-affine Baer subplane of Π meeting the line at infinity l in the point l_{∞} and containing the subline C^2 of the line represented by π_0 .

Proof. See [3] and [2].

Let F^n be the *n*-dimensional vector space over F = GF(q).

Definition 2.9. A linear $[n, k]_q$ -code C of length n is a k-dimensional subspace of the vector space F^n .

Definition 2.10. An $[n, k]_q$ -projective system \mathcal{X} is a set of n non necessarily distinct points of the projective geometry $PrF^k = PG(k-1, q)$. It is non-degenerate if these points are not contained in a hyperplane (cf. [6], p. 2).

Assume that \mathcal{X} consists of n distinct points having maximum rank.

Codes and projective systems are linked by a strict connection one can read in ^[6], so that from subsets \mathcal{X} of a projective geometry linear codes $C_{\mathcal{X}}$ can be generated. More precisely, for each point of \mathcal{X} choose a generating vector. Denote \mathcal{M} the matrix having as rows such n vectors and let $C_{\mathcal{X}}$ be the linear code having \mathcal{M}^t as a generator matrix. The code $C_{\mathcal{X}}$ is the kdimensional subspace of F^n which is the image of the mapping from the dual k-dimensional space $(F^k)^*$ onto F^n that calculates every linear form over the points of \mathcal{X} . Hence the length n of codeword of $C_{\mathcal{X}}$ is the cardinality of \mathcal{X} , the dimension of $C_{\mathcal{X}}$ being just k (cf. ^[6], p. 3).

Denote \mathcal{H} the set of all hyperplanes of $P^{k-1} = PrF^k$.

There exists a natural 1-1 correspondence between the equivalence classes of a non-degenerate $[n,k]_q$ -projective system \mathcal{X} and a non-degenerate $[n,k]_q$ -code $C_{\mathcal{X}}$ such that if \mathcal{X} is an $[n,k]_q$ -projective system and $C_{\mathcal{X}}$ is a corresponding code, then the non-zero codewords of $C_{\mathcal{X}}$ correspond to hyperplanes $H \in \mathcal{H}$, up to a non-zero factor. The correspondence preserves the ground parameters.

The weight of a codeword c corresponding to the hyperplane H_c is the number of points of $\mathcal{X} \setminus H_c$, thus the minimum weight (or, the minimum distance) d of the code $C_{\mathcal{X}}$ is $d = |\mathcal{X}| - max\{|\mathcal{X} \cap H| \mid H \in \mathcal{H}\}$. Therefore in order to find the minimum distance of the code $C_{\mathcal{X}}$ it needs to calculate the maximum intersection of \mathcal{X} with the hyperplanes of \mathcal{H} .

A linear code with length n, dimension k and minimum distance d over the field F = GF(q) can be denoted also as an $[n, k, d]_q$ -code.

If *C* is an $[n, k, d]_q$ -code, then *C* is an *s*-errorcorrecting code for all $s \leq \lfloor \frac{d-1}{2} \rfloor$. We call $t = \lfloor \frac{d-1}{2} \rfloor$ the *error-correcting capability of C* (cf. [6], p.3).

3. Main Results

With the notations of the previous section, choose and fix the line $l_0 \in S$, the plane π_0 such that $\pi_0 \cap \Sigma' = l_0 \in S$ and the non-degenerate conic $C^2 \subset \pi_0 \setminus l_0$.

Denote Σ'' a hyperplane of $\Sigma = PG(4, q)$ containing the plane π_0 . Let $\pi = \Sigma'' \cap \Sigma'$. The plane π contains the line l_0 and each of the q^2 points of $\pi \setminus l_0$ belongs to one of the q^2 lines of $S \setminus \{l_0\}$. Let O be a point, $O \in \Sigma'' \setminus \{\pi_0 \cup \pi\}$. Denote Q the quadric cone having vertex the point O and directrix the conic C^2 . Let $C'^2 = Q \cap \pi$. Obviously C'^2 is a non-degenerate conic with $C'^2 \cap l_0 = \emptyset$.

Let $\{R_i | i = 1, \ldots, q + 1\}$ be the set of the q + 1 points of C^2 , $\{r_i | i = 1, \ldots, q + 1\}$ the q + 1 lines of the cone Q with $R_i \in r_i$, $\{R'_i = r_i \cap C'^2 | i = 1, \ldots, q + 1\}$ the corresponding set of q + 1 points of C'^2 with $R'_i \in r_i$, $\{s_i | i = 1, \ldots, q + 1\}$ the q + 1 lines of S with $\{R'_i \in s_i | i = 1, \ldots, q + 1\}$.

For each line s_i let λ_i be a projectivity between s_i and \mathcal{C}^2 such that $\lambda_i(R'_i)=R_i$

Denote S_i the point at infinity of the plane Π represented by the line $s_i \in S$, p_0 the line of Π represented by the plane π_0 and c_2 the subline of p_0 corresponding to C^2 .

Let \mathcal{V}_i be the variety V_2^3 having the conic \mathcal{C}^2 and the line s_i as directrices constructed via λ_i . Note that, by construction, the line r_i is one of the q + 1 generatrix lines of \mathcal{V}_i .

From Lemma 2.8 follows that each of the q + 1 variety \mathcal{V}_i is a non-affine Baer subplane of Π meeting the line l in the point S_i , containing $c_2 \subset p_0$ and the point O.

Define $\mathcal{V}:=igcup_i\mathcal{V}_i$ the union of the points of all varieties \mathcal{V}_i for all $i=1,\ldots,q+1$.

Lemma 3.1. \mathcal{V} represents the bundle of the full set of q + 1 non-affine Baer subplanes having in common the subline c_2 and the point O.

Proof. See (iii) of Lemma 2.7 and $\frac{3}{2}$.

Proposition 3.2. $\Sigma'' \cap \mathcal{V} = \mathcal{Q}$.

Proof. By construction the hyperplane Σ'' contains Q. As for any variety \mathcal{V}_i , $\Sigma'' \cap \mathcal{V}_i$ cannot contain the directrix line s_i (otherwise $\Sigma'' = \Sigma'$), then Σ'' meets \mathcal{V}_i at most in a cubic curve $\mathcal{C}^2 \cup r_i$ (cf. ^[5], (*ii*), p. 93).

Assume $\Sigma'' \cap \mathcal{V}$ contains $\mathcal{C}^2 \cup r_i \subset \mathcal{V}_i$ and a further point $P_j \in V_j$ with $j \neq i$. Hence Σ'' contains the line $r = P_j R_j \in \mathcal{V}_j$ with $R_j \in \mathcal{C}^2$. If $r \neq r_j$, then Σ'' should meet \mathcal{V}_j in $\mathcal{C}^2 \cup r_j \cup r$ where r_j and r are two generatrix lines of \mathcal{V}_j , then the line s_j should belong to Σ'' , a contradiction (cf. [5], (*ii*), p. 93). Hence $\Sigma'' \cap \mathcal{V} = \mathcal{Q}$.

Denote $\mathcal{V}_{aff} = \mathcal{V} \setminus \Sigma'$.

Proposition 3.3.

(*i*) A hyperplane of Σ having maximum intersection with \mathcal{V} is Σ' , and $\Sigma' \cap \mathcal{V}$ consists of the points of the lines $\{s_i | i = 1, \ldots, q+1\} \subset S$.

(*ii*) A hyperplane of Σ having maximum intersection with \mathcal{V}_{aff} is Σ'' and $\Sigma'' \cap \mathcal{V}_{aff}$ consists of the points of $\mathcal{Q} \setminus \mathcal{C}^{\prime 2}$.

Proof. (i) Let $H \in \mathcal{H}$ a hyperplane. If $H = \Sigma'$ then $H \cap \mathcal{V}$ is the set of the $(q+1)^2$ points of $\{s_i | i = 1, \ldots, q+1\} \subset S$. If $H = \Sigma''$ then $H \cap \mathcal{V}$ is the set of the $q^2 + q + 1$ points of \mathcal{Q} .

Let $H \neq \Sigma', \Sigma''$.

Denote $H \cap \Sigma' = \pi', H \cap \Sigma'' = \pi''.$

For *H* there are two possibilities: 1) *H* contains π_0 , 2) *H* does not contain π_0 .

1) It is $\pi'' = \pi_0$ so that it contains \mathcal{C}^2 . Moreover $\pi' \neq \pi$ otherwise $H = \Sigma''$. The plane π' forms bundle with axis the line l_0 with π_0 and π . Each point of π' belongs to one line of $\mathcal{S} \setminus l_0$ then it meets the q+1 points $\{P_i = \pi' \cap s_i | i = 1, \ldots, q+1\}$. Therefore $H \cap \mathcal{V}$ contains at least the q+1 points P_i and the points of \mathcal{C}^2 . Then $|H \cap \mathcal{V}| \geq 2(q+1)$. The maximum intersection is reached if each line $P_i R_i$ coincides with one generatrix line of the variety \mathcal{V}_i for every i, In such a case $|H \cap \mathcal{V}| = (q+1)^2$.

2) Let $\pi'' \cap \Sigma' = l$. Then l is a line of π' too.

Let $l = l_0$. The plane π'' contains no generatrix line of the varieties \mathcal{V}_i otherwise l_0 would meet some line s_i , it meets \mathcal{V} in at most a conic \mathcal{C}_Q of \mathcal{Q} . Set $\{P_i \in \mathcal{C}_Q | i = 1, \dots, q+1\}.$

If $\pi' = \pi$, then $\pi' \cap \mathcal{V} = \mathcal{C}'^2$. If $\pi' \neq \pi$, then it contains no line s_i (otherwise $l_0 \cap s_i \neq \emptyset$), it can meet at most q+1 lines s_i in points T_i . In both cases the maximum intersection is reached if the q+1 lines $P_i R'_i$, or $P_i T_i$, respectively, coincide with the generatrix lines of the varieties \mathcal{V}_i . Hence $|H \cap \mathcal{V}| \leq (q+1)^2$.

Let $l \neq l_0$. Denote $r' = \pi'' \cap \pi_0$. Then $l = s_i$ for some i or l meets at most q + 1 lines s_i .

If $\pi' = \pi$, it contains the q+1 points of \mathcal{C}'^2 and according to r' is secant, tangent or external to the conic \mathcal{C}^2 , $|H \cap \mathcal{V}|$ is less or equal to (q+1)+2q=3q+1, (q+1)+q=2q+1 or q+1, respectively.

Assume $\pi' \neq \pi$. The plane π' must contain one line t of S and the q^2 points of the remaining lines of S. Then the plane π' contains the q+1 points of $t = s_i$ for some i, or the q+1 points of the set $\{s_i \cap \pi' | i = 1, \dots, q+1\} \subset \mathcal{V}$.

According to r' is secant, tangent or external to the conic C^2 , H meets \mathcal{V} in 2 generatrix lines, in 1 generatrix line or in no generatrix line. Therefore $|H \cap \mathcal{V}|$ is less or equal to (q+1) + 2q = 3q + 1, (q+1) + q = 2q + 1 or q + 1.

Hence the maximum intersection a hyperplane can have with \mathcal{V} consists of $(q+1)^2$ points. Σ' is one of such hyperplanes.

(*ii*) Let *H* be a hyperplane, $H \neq \Sigma'$. From ^[7], Lemma 11, it is known the maximum intersection a hyperplane of Σ has with a variety V_2^3 consists of two generatrix lines and the directrix line. Of course *H* cannot meet two different varieties in such a way otherwise *H*, containing two lines of *S* would coincides with Σ' . Therefore *H* can meet at least *q* varieties along the conic C^2 and one generatrix line for each variety, then *q* points of the conic C'^2 . In any case *H* contains *O* then the cone Q. Therefore $H = \Sigma''$. Hence the maximum intersection a hyperplane can have with \mathcal{V}_{aff} is $Q \setminus C'^2$ with $|Q \setminus C'^2| = q^2$.

Denote $\mathcal{X} := \mathcal{V}$ the projective system defined by \mathcal{V} , $C_{\mathcal{X}}$ the linear code arising from \mathcal{X} , $\mathcal{X}_{aff} := \mathcal{V}_{aff}$ the projective system defined by \mathcal{V}_{aff} , $C_{\mathcal{X}_{aff}}$ the linear code arising from \mathcal{X}_{aff} .

Theorem 3.4.

(i) $C_{\mathcal{X}}$ is an $[n, k, d]_q$ -code with $n = q^3 + 2q^2 + q + 1$, $k = 5, d = q^3 + q^2 - q$. (ii) $C_{\mathcal{X}_{aff}}$ is an $[n', k, d']_q$ -code with $n' = q^3 + q^2 - q$, $k = 5, d' = q^3 - q$.

Proof. (*i*) Each variety \mathcal{V}_i consists of q + 1 skew lines, hence it has $(q + 1)^2$ points. Every two varieties \mathcal{V}_i and \mathcal{V}_j have in common the conic \mathcal{C}^2 and the point O so that for each variety remain $q^2 + 2q + 1 - (q + 1) - 1 = q^2 + q - 1$ points. The varieties are q + 1 so that the cardinality of \mathcal{X} is $(q^2 + q - 1)(q + 1) = q^3 + 2q^2 - 1$ plus the point O and the (q + 1) points of the conic \mathcal{C}^2 . Hence $|\mathcal{X}| = q^3 + 2q^2 + q + 1$. The length of the code $C_{\mathcal{X}}$ is therefore $n = q^3 + 2q^2 + q + 1$. The dimension of $C_{\mathcal{X}}$ is obviously 5, that is, the vector dimension of Σ .

From Proposition 3.3, (i), follows the distance of $C_{\mathcal{X}}$ is $d = n - |\{P \in s_i | i = 1, ..., q + 1\}|$ that is, $d = q^3 + 2q^2 + q + 1 - (q^2 + 2q + 1) = q^3 + q^2 - q$. (ii) The length of the code $C_{\mathcal{X}_{aff}}$ equals $n' = |\mathcal{X}| - |\{P \in s_i | i = 1, ..., q + 1\}| = q^3 + 2q^2 + q + 1$ $- (q^2 + 2q + 1) = q^3 + q^2 - q$. Its dimension is k = 5. From Proposition 3.3, (ii), follows the distance is $d' = n' - |\mathcal{Q} \setminus \mathcal{C}'^2|$ that is, $d' = q^3 + q^2 - q - q^2 = q^3 - q$.

Examples

For q = 2, $C_{\mathcal{X}}$ is a $[19, 5, 10]_2$ -code and it can correct at most $\lfloor \frac{10-1}{2} \rfloor = 4$ errors. For q = 3, $C_{\mathcal{X}}$ is a $[49, 5, 33]_3$ -code and it can correct at most $\lfloor \frac{33-1}{2} \rfloor = 16$ errors.

For q = 2, $C_{\chi_{aff}}$ is a $[10, 5, 6]_2$ -code and it can correct at most $\lfloor \frac{6-1}{2} \rfloor = 2$ errors. For q = 3, $C_{\chi_{aff}}$ is a $[33, 5, 24]_3$ -code and it can correct at most $\lfloor \frac{24-1}{2} \rfloor = 11$ errors.

Other References

- R. Vincenti, Fibrazioni di un S3,q indotte da fibrazioni di un S3,q2 e rappresentazione di sottopiani di Baer di un piano proiettivo, Atti e Mem. Acc. Sci. Lett. e Arti di Modena, Serie VI, Vol. XIX, (1977), 1–18.
- R.Vincenti, On some classical varieties and codes, Technical Report 2000/20, Department of Mathematics and Computer Science, University of Perugia (Italy).

References

- a, bR. H. Bruck, R. C. Bose, Linear representation of proj ective planes in projective spaces, J.of Algebra, 4, (196 6), 117–172.
- 2. ^{a, b, c, d}R. Vincenti, A survey on varieties of PG (4,q) an d Baer subplanes of translation planes, Annals of Discr ete Math., N.H. Pub. Co., 18, (1983), 775–780.
- 3. ^{a, b, c, d, e}R. Vincenti, Alcuni tipi di variet a V23 di S4,q e sottopiani di Baer, Algebra e Geometria Suppl. BUMI, V ol. 2, (1980), 31–44.
- ^AE. Bertini, Introduzione alla geometria proiettiva deg li iperspazi, (1907), Enrico Spoerri Editore, Pisa.
- 5. ^{a, b, c, d, e}R. Vincenti, Finite fields, projective geometry and related topics, Morlacchi Editore, (2021), ISBN 978 -88-9392-259.
- 6. ^{a, b, c, d}R. Vincenti, Varieties and codes from partial rul ed sets, International Mathematical Forum, Vol. 18, no.

1, (2023), 1–14, doi.org/10.12988/imf.2023.912353.

 ^AR. Vincenti, Linear codes from projective varieties: a s urvey, March 21st, 2023, Article on the IntechOpen Edit ed Book Coding Theory Essentials, by D. G. Harkut, (20 23), doi: 10.5772/intechopen.109836

Declarations

Funding: No specific funding was received for this work. **Potential competing interests:** No potential competing interests to declare.