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In this note we use the spatial representation in ¥ = PG(4, q) of the projective

plane Il = PG(2, ¢°), by fixing a hyperplane >’ with a regular spread S of
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lines. We consider a bundle X of varieties V,? of ¥ having in common the

g + 1 points of a conic C? of a plane 7y, Ty N &’ = [, € S, thus representing an
affine line of I1, and a further affine point O ¢ m. This subset X of

¥ represents a bundle of non-affine Baer subplanes of II, each of them having
one point at infinity (corresponding to a line of S), having in common a
subline of affine points of IT and a further affine point. Then X is considered
as a projective system of ¥ and, by using such a representation of IT, we can
calculate the ground parameters of the code Cy arising from it.
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1. Introduction

It is known that a projective translation plane IT of
order n=g¢> of dimension 2 over its kernel
F = GF(q) can be represented by a 4-dimensional
projective space X = PG(4,q9) over F, fixing a
hyperplane ¥’ = PG(3, ¢) and a spread S of lines of '.
The points of II are represented by (i) the points of
¥\ Y and (ii) the lines of S. The lines of II are
represented by (i) the planes a of ¥\ ¥’ such that
any' belongs to & and by (ii) the spread S. The

translation line 7 of IT is represented by S (cf. [11).

A Baer subplane B of IT has order g and it is dense in the
sense that a line of II either is a line of B (that is, meets
B in a subline of g + 1 points, such a subplane is affine)
or it meets B in one point (such a subplane is non-
daffine).

The affine Baer subplanes B of II are represented by the
transversal planes [ to S, that is, the planes of
X\ ¥’ such that the line SN Y ¢ S meets g+ 1 lines

of 8. In such a way [ is a line of B (cf. L2 pp. 68--72). Of
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course all that holds also in case II is the Desarguesian
plane PG(2,q?) when S is a regular spread (cf. 31 [21),

A variety V,? of ¥ with a line [, in S as the minimum
(linear) order directrix, a conic C?> as a 2nd order
directrix with C* C my, mp N =1y € S\ Iy and
C? Ny = 0, represents a non-affine Baer subplane of
IT having one point on the translation line ! and the
subline C? of the line m, (cf. ).

In this paper we consider bundles of ¢+ 1 varieties
V,2 of & = PG(4,q) with the linear directrix in S and
having in common a same conic C> as a 2nd order
directrix and one further affine point. By using the
spatial representation of II = PG(2,¢?) in PG(4,q),
we can characterize such a bundle X from the
intersection point of view, construct a linear code
Cx arising from it and show that its ground parameters
allow Cy to correct an enough large number of errors.

2. Preliminary Notes

Let F = GF(q) be a finite field, ¢ = p*, p prime.
Denote F™*! the (r + 1)-dimensional vector space over

F, P"= PrF"™! = PG(r,q) the r-dimensional
projective space contraction of F7+1 over F. Let F be
the algebraic closure of the field F = GF(q).

Denote S, with ¢t > 2 a subspace of P" of dimension ¢. A
hyperplane S, _; will be denoted also by H, a plane by
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The geometry P” is considered a sub-geometry of P”,
the projective geometry over F'. We refer to the points
of P" as the rational points of P".

Definition 2.1. A variety V, of dimension u and of order
v of P" is the set of the rational points of a projective
variety 172 of P defined by a finite set of polynomials with
coefficients in the field F.

From 4 p.290, 7- for » > 4 follows

Lemma 2.2. The ruled variety V= of PG(r,q) is
generated by the lines connecting the corresponding points
of two birationally (or, projectively) equivalent curves in
two complementary subspaces, of order mandr — 1 — m,
respectively. It has order the sum of the orders of the curves
as there are no fixed points.

Let P* be the projective geometry PG(4,q).

Lemma 2.3. A variety V,® of PG(4,q) is obtained by
joining the corresponding points of a directrix line
l and a directrix conic C in a plane m, [ and C being
projectively equivalent and with [ N 7 = 0.

Proof. See (2! p. 90.

Choose a coordinate system in P* so that it is a
—4

coordinate system for P too, denote a point

Pz(mlaw%yl,y%t) ::F (mlym%ylay?’t))
F —F\{0}.

P is a rational point if there exists
(1,22,91,92,t) € F® such that P ~ (z1,22,91,92,1).
A variety V of P4 is the set of the rational points of

P* solutions of a finite set of polynomials of
F[$17$27y1,y27t]-

Lemma 2.4. The variety V,? can be represented as the
definite intersection of two quadrics of PG(4,q), that is,
the cone of planes Q; : sz% — z? — szot = 0 (Where sisa
non square of GF(q)) and the cone of planes
Qs : T1y1 — xay2 = 0. The plane ' : 1 = 0,23 =0 is
contained in both quadrics so that, by Bezout, the order of
the intersection variety is4 — 1 = 3.

Proof. See (2! Theorem 1.1, 2 p. 92.

Let IT = PG(2,¢%) be the Desarguesian plane over
GF(q?). Denote [ the line at infinity of II. In the spatial
representation of IT in P* = PG (4, q) fix a hyperplane
¥’ = PG(3,q) and a regular spread S of lines of ',
where |S| = ¢* + 1.

Lemma 2.5. The points of II are represented by (i) the
points of ¥ \ X' (the affine points of I1) and by (ii) the lines
of S (the points at infinity of II). The lines of II are
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represented by (i) the planes a of ¥\ X' such that
a N Y belongs to S and by (ii) the spread S, representing
the line at infinity l.

Proof. See [l the Bruck and Bose representation and [2]
p. 775.

Definition 2.6. A Baer subplane of Il = PG(2,4?) is an
affine subplane if it meets the line at infinity [ of Il in a
subline 1y, it is a non-affine subplane if it meets the line [ in
one point.

Lemma 2.7.

(¢) Two dffine Baer subplanes of II having in common the
subline l; can meet in at most one further point.

(é¢) The Baer subplanes having in common only a subline
1y are ¢>.

(¢i7) The Baer subplanes having in common a subline
l; and one further point are ¢ + 1.

Proof. (i) Two Baer subplanes having in common a
subline /; and two further points coincide, because they
have in common at least four reference (three by three
non collinear) points.

Without loosing generality, we can consider two affine
Baer subplanes B and B’ of II having in common a
subline /; of I. In the spatial representation of II, they
are represented by two planes B and B’ of P*,
respectively, such that the lines BNY =r and
B'NY =17 are transversal lines of the same regulus
R C S.Denote R’ the opposite regulus to R.

There are two cases:

(#) If r = o/, the planes B and B’ have in common the
line » meeting the regulus R in its ¢ 4 1 lines so that
the subplanes B and B’ have in common the subline
l; (represented by R) of the line I (represented by S)
and no further (affine) points. Such planes are
Z—: = ¢® and represent ¢ affine Baer subplanes of
IT having in common only the subset /; of g + 1 points
of the line at infinity [.

(¢i2) If r # 1/, the planes B and B’ have in common an
affine point O € ¥\ ¥’ so that the two subplanes
B and B’ meet along the subline I; represented by
R and in the affine point O. The regulus R has
g+ 1 transversal lines {t;|¢ = 1,...,q+ 1} belonging
to R'. Each space O @t; is a transversal plane 7;, so
that {r;]i=1,...,q+ 1} represent the ¢+ 1 affine
Baer subplanes of II having in common /; and the
affine point O.

Choose and fix a line I, of the (regular) spread S, a
plane my such that 7y "X’ =1y € S\l and a non-
degenerate conic C* C 7 \ ly. Let A be a projectivity
between I,, and C?. Denote V,? the variety arising by
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connecting corresponding points of I, and C> via
A (cf. B p. 90).

Lemma 2.8. The variety V,? represents a non-affine Baer
subplane of II meeting the line at infinity I in the point
I, and containing the subline C* of the line represented by
o-

Proof. See Bland [21,

Let F™ be the n-dimensional vector space over
F = GF(q).

Definition 2.9. A linear [n, k| ,-code C of length n is a k-
dimensional subspace of the vector space F'™.

Definition 2.10. An [n, k] -projective system X is a set of
n non necessarily distinct points of the projective geometry
PrF* = PG(k — 1,q). It is non-degenerate if these points

are not contained in a hyperplane (cf. @, p.2).

Assume that X consists of n distinct points having
maximum rank.

Codes and projective systems are linked by a strict

connection one can read in 8l so that from subsets X of
a projective geometry linear codes () can be
generated. More precisely, for each point of X choose a
generating vector. Denote M the matrix having as rows
such n vectors and let Cy be the linear code having
M? as a generator matrix. The code Cy is the k-
dimensional subspace of F™ which is the image of the
mapping from the dual k-dimensional space (F'*)* onto
F™ that calculates every linear form over the points of X.
Hence the length n of codeword of C'y is the cardinality

of X, the dimension of C being just & (cf. [l p.3).
Denote # the set of all hyperplanes of P*~1 = PrF*,

There exists a natural 1-1 correspondence between the
equivalence classes of a non-degenerate [n,k]q-
projective system X and a non-degenerate [n, k],-code
Cx such that if X is an [n, k],-projective system and

Cx is a corresponding code, then the non-zero
codewords of Cy correspond to hyperplanes H € H, up
to a non-zero factor. The correspondence preserves the
ground parameters.

The weight of a codeword c corresponding to the
hyperplane H, is the number of points of X'\ H,, thus
the minimum weight (or, the minimum distance) d of
the code Cx is d=|X| —maz{|XNH|| H e H}.
Therefore in order to find the minimum distance of the
code Cy it needs to calculate the maximum intersection
of X with the hyperplanes of #.

A linear code with length n, dimension k£ and minimum
distance d over the field F' = GF(q) can be denoted also
asan [n, k, d],-code.
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If C is an [n,k,d];—code, then C is an s-error-
correcting code for all s < Ld;zlJ.We callt = Ld%lj the

error-correcting capability of C' (cfl p.3).

3. Main Results

With the notations of the previous section, choose and
fix the line [y €S, the plane m such that
mNY =l €8S and the non-degenerate conic
C2 C mo \ lp.

Denote 3" a hyperplane of ¥ = PG(4,q) containing
the plane g. Let # = ¥” N ¥'. The plane 7 contains the
line Iy and each of the ¢? points of 7 \ [y belongs to one
of the ¢ lines of S\ {lp}. Let O be a point,
O € ¥"\ {mo U}. Denote Q the quadric cone having
vertex the point O and directrix the conic C%. Let
C”? = QN . Obviously ¢ is a non-degenerate conic
withC? Nl = 0.

Let {R;|t = 1,...,q+ 1} be the set of the ¢ + 1 points
of C2, {rili =1,...,q+ 1} the ¢+ 1 lines of the cone
Q with R; €r, {R,=rnNC?%i=1,...,g+1} the
corresponding set of g+ 1 points of C”? with R cry,
{si]i=1,...,q+1} the g+1 lines of & with
{R} € sili =1,...,q+1}.

For each line s; let \; be a projectivity between s; and
C? such that \; (R]) = R;

Denote S; the point at infinity of the plane
IT represented by the line s; € S, py the line of
IT represented by the plane 7y and c; the subline of
po corresponding to C.

Let V; be the variety V23 having the conic C? and the
line s; as directrices constructed via );. Note that, by
construction, the line r; is one of the ¢ + 1 generatrix
lines of V;.

From Lemma 2.8 follows that each of the ¢ + 1 variety
V; is a non-affine Baer subplane of II meeting the line
lin the point S;, containing ¢, C pg and the point O.

Define V := |J V; the union of the points of all varieties

(2
V;foralli=1,...,q+1.

Lemma 3.1. V represents the bundle of the full set of
g + 1 non-affine Baer subplanes having in common the
subline ¢y and the point O.

Proof. See (iii) of Lemma 2.7 and 2.
Proposition3.2. X" NV = Q.

Proof. By construction the hyperplane ¥ contains Q.
As for any variety V;, ¥’ NV; cannot contain the
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directrix line s; (otherwise X" = X'), then ¥” meets
V; at most in a cubic curve C U r; (cf. [51, (i), p- 93).

Assume X" NV contains C2Ur; C V; and a further
point P; € V; with j # i. Hence X" contains the line
r = P;R; € V; with R; € C*. If r # r;, then X" should
meet V; in C* U r; U r where r; and r are two generatrix
lines of V;, then the line s; should belong to X", a

contradiction (cf. 2] (4),p.93). Hence X" NV = Q.
Denote Vosr =V \ X'.

Proposition 3.3.

(¢) A hyperplane of ¥ having maximum intersection
with V is ¥, and ¥’ NV consists of the points of the
lines {s;|i =1,...,¢q+1} C S.

(#¢) A hyperplane of ¥ having maximum intersection
with V, s is £ and " NV, consists of the points of
Q\Cc”.

Proof. (i) Let H € H a hyperplane. If H = ¥’ then
HNY is the set of the (¢g+1)> points of
{sili=1,...,¢q+1} C S.If H = X" then HNV is the
set of the ¢® + ¢ + 1 points of Q.

Let H £ ¥/, %",
Denote HNY =7n/, HNYX" = =",

For H there are two possibilities: 1) H contains g, 2)
H does not contain 7.

1) It is 7" = m so that it contains C?. Moreover
w' # w otherwise H = X". The plane ' forms bundle
with axis the line ly with w; and w. Each point of
7' belongs to one line of S\ then it meets the
g+ 1 points {P; = 7' Ns;li =1,...,¢q+ 1}. Therefore
H NV contains at least the ¢+ 1 points P; and the
points of C2. Then |[H NV| > 2(¢+ 1). The maximum
intersection is reached if each line P,R; coincides with
one generatrix line of the variety V; for every ¢, In such
acase [HNV| = (g+1)°.

2)Let 7" N'Y' = [. Then!isaline of 7’ too.

Let I = ly. The plane 7" contains no generatrix line of
the varieties V; otherwise [, would meet some line s;, it
meets V in at most a conic Co of Q. Set
{P,eCgli=1,...,q+1}.

If ©' = 7, then 7’ NV = C?. If n’ # =, then it contains
no line s; (otherwise Iy N s; # (), it can meet at most
q + 1 lines s; in points 7;. In both cases the maximum
intersection is reached if the ¢ + 1 lines P,R!, or PT;,
respectively, coincide with the generatrix lines of the
varieties V;. Hence |[H N V| < (¢ + 1)

Let [ # ly. Denote ' = «" N my. Then [ = s; for some
i or I meets at most ¢ + 1 lines s;.
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If #' =, it contains the ¢+ 1 points of C? and
according to 7’ is secant, tangent or external to the
conic C?>, |HNV| is less or equal to
(@+1)+2¢g=3g+1, (g+1)+qg=2¢+1 or g+1,
respectively.

Assume 7’ # 7. The plane 7’ must contain one line ¢ of
S and the ¢ points of the remaining lines of S. Then
the plane n’ contains the g+ 1 points of ¢t = s; for
some ¢, or the g+ 1 points of the set
{sin@’|i=1,...q+1} C V.

According to ' is secant, tangent or external to the
conic ¢*, H meets V in 2 generatrix lines, in 1
generatrix line or in no generatrix line. Therefore
|[HNYV| is less or equal to (¢g+1)+2¢g=3g+1,
(g+1)+g=2q+1lorg+1.

Hence the maximum intersection a hyperplane can
have with V) consists of (¢ + 1)? points. ¥’ is one of
such hyperplanes.

(74) Let H be a hyperplane, H # ¥'. From [N Lemma
11, it is known the maximum intersection a hyperplane
of ¥ has with a variety V,? consists of two generatrix
lines and the directrix line. Of course H cannot meet
two different varieties in such a way otherwise H,
containing two lines of & would coincides with ¥'.
Therefore H can meet at least ¢ varieties along the
conic C? and one generatrix line for each variety, then
¢ points of the conic €. In any case H contains O then
the cone Q. Therefore H = ¥”. Hence the maximum
intersection a hyperplane can have with Vs is
Q\ C?with |Q\ C?| = ¢2.

Denote X :=V the projective system defined by V,
Cy the linear code arising from X, Xt := Vs the
projective system defined by V¢, Cx,;, the linear code
arising from X, ;.

Theorem 3.4.

(i) Cx is an [n,k,d],-code with n = ¢* + 2¢*> + ¢+ 1,
k=5d=¢>+¢*>—¢q

(i) Cux,, is an [0/, k,d']-code with n' = ¢* + ¢* — g,
k=5,d =q¢*—q

Proof. (i) Each variety V; consists of g+ 1 skew lines,
hence it has (¢ + 1) points. Every two varieties V; and
V; have in common the conic C* and the point O so
that for each variety remain
@ +2¢+1—(q+1)—1=¢>+q—1 points. The
varieties are ¢+ 1 so that the cardinality of X is
(¢ +q—1)(g+1)=¢>+2¢*—1 plus the point
O and the (¢+1) points of the conic C*>. Hence
|X| = ¢® + 2¢® + g+ 1. The length of the code Cy is
thereforen = ¢® 4+ 2¢%2 + ¢+ 1.
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The dimension of Cy is obviously 5, that is, the vector
dimension of .

From Proposition 3.3, (2), follows the distance of Cy is
d=n—|{Pesili=1,...,q+ 1} that is,
d=¢+2¢? +q+1- (@ +2¢+1)=¢*+¢" —q

(id) The length of the code Cy,, equals
n=|X-{Pe€sili=1,....q+1}=¢*+2¢* +q+1
—(+2q+1)=¢+¢ —q

Its dimension is k= 5. From Proposition 3.3, (%),
follows the distance is d’ =n' —|Q\ C?| that is,
d=¢+¢-q-¢=¢"-¢

Examples
For g = 2, Cx isa[19,5,10],-code and it can correct at
most L&;lj = 4 errors. For ¢ = 3, Cy is a [49,5,33]3-

33—1

code and it can correct at most | =— | = 16 errors.

For g = 2,Cy,,, isa[10,5, 6]; -code and it can correct at

most L%J = 2errors. Forg = 3,Cy, isa [33,5,24]3-

code and it can correct at most LL,;IJ = 11 errors.
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