
18 December 2024, Preprint v1 · CC-BY 4.0 PREPRINT

Review Article

Agent Centric Operating System – A
Comprehensive Review and Outlook for
Operating System

Shian Jia1, Xinbo Wang1, Mingli Song1, Gang Chen1

1. College of Computer Science and Technology, Zhejiang University, China

The operating system (OS) is the backbone of modern computing, providing essential services and

managing resources for computer hardware and software. This review paper o�ers an in-depth

analysis of operating systems’ evolution, current state, and prospects. We begin with an overview of

the concept and signi�cance of operating systems in the digital era. In the second section, we delve

into the existing released operating systems, examining their architectures, functionalities, and the

ecosystems they support. We then explore recent advances in OS evolution, highlighting innovations

in real-time processing, distributed computing, and security. The third section focuses on the new

era of operating systems, discussing emerging trends like the Internet of Things (IoT), cloud

computing, and arti�cial intelligence (AI) integration. We also consider the challenges and

opportunities presented by these developments. This review concludes with a synthesis of the

current landscape and a forward-looking discussion on the future trajectories of operating systems,

including open issues and areas ripe for further research and innovation. Finally, we put forward a

new OS architecture.

Shian Jia and Xinbo Wang equally contributed to this work.

1. Introduction

The OS stands as the cornerstone of contemporary computing, serving as the intermediary between

hardware and software, and providing the essential services required for e�ective resource

management and application execution. This paper provides an in-depth examination of the

evolutionary trajectory, present status, and prospective developments of operating systems. It begins

Qeios

qeios.com doi.org/10.32388/XPJYHO 1

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

with exploring the fundamental concept and importance of operating systems in the digital age,

emphasizing their pivotal role in facilitating technological advancements.

Subsequently, we delve into a detailed analysis of existing operating systems, covering a broad

spectrum from embedded systems to desktop, mobile, and cloud-based platforms. Each type of

operating system has evolved to cater to speci�c requirements and operational contexts,

demonstrating remarkable adaptability and innovation. Embedded systems are optimized for real-

time processing and resource-constrained environments, making them essential in areas such as

smart home devices, automotive electronics, and industrial automation. Desktop operating systems

provide robust functionalities and user-friendly interfaces for various applications. Mobile operating

systems focus on power e�ciency and user experience, supporting on-the-go connectivity and

applications. Server operating systems leverage extensive resources to deliver scalable, resilient

services for enterprise and data-intensive tasks. This comprehensive overview underscores the

specialized nature of operating systems across di�erent computing domains.

Figure 1. Evolution of Computing Eras and Corresponding Growth in Connected Devices.

This diagram illustrates the progression through various computing eras, highlighting the

exponential increase in connected devices from tens of thousands during the Mainframe Era

to an estimated 100 billion in the Internet of Things era. Each era represents signi�cant

technological advancements leading to greater connectivity and device proliferation.

qeios.com doi.org/10.32388/XPJYHO 2

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

In the new era of operating systems, we introduce Agent-Centric Operating System (ACOS), a

revolutionary concept that embodies the principles of modularity, adaptability, and cross-platform

compatibility. ACOS proposes the abstraction of all system components into agents, fostering a

�exible and scalable architecture capable of adapting to the unique characteristics of various resource

platforms. This approach simpli�es system maintenance and updates and enhances the e�ciency and

responsiveness of operating systems across a wide array of devices.

In this paper, we aim to provide a comprehensive overview of the current state and future directions of

OSs. Our contributions are multifaceted. First, we thoroughly analyze existing operating systems,

encompassing embedded, desktop, mobile, and server platforms, highlighting their unique features

and applications. Second, we explore recent advancements in critical areas such as AI-optimized

scheduling, heterogeneous computing, and security and discuss their implications for the evolution of

operating systems. Third, we introduce ACOS, a novel operating system concept that emphasizes

modularity, adaptability, and cross-platform compatibility, and outline its potential to transform the

landscape of operating system design. Finally, we identify current challenges in the �eld and propose

future research directions to address these issues, ensuring that operating systems continue to meet

the evolving needs of users and technology.

The organization of this paper starts with an overview of operating systems’ signi�cance and

foundational concepts in section 1. Following this in section 2, we o�er a detailed review of existing

operating systems and their key features. Subsequently, in section 3 we discuss recent advancements

and emerging trends in the �eld, underscoring the transformative impact of technological

innovations. Then presented in section 4 is the introduction of ACOS and its innovative design

philosophy, followed by a critical analysis of the challenges and opportunities associated with

developing next-generation operating systems. Finally, in section 5 we conclude the paper by

summarizing the current landscape of operating system development and suggesting avenues for

future research and innovation.

qeios.com doi.org/10.32388/XPJYHO 3

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

Figure 2. Historical Timeline of Operating Systems Across Di�erent Device Categories. This �gure

provides a comprehensive overview of operating systems across server, desktop, mobile, and

embedded categories over time, spanning from the early days of computing in the mid-20th century

up until recent years.

2. Existing Released Operating Systems

2.1. Embedded Operating Systems

2.1.1. Introduction

Embedded operating systems are specialized software designed to serve the unique needs of

embedded systems, which are prevalent in various applications ranging from household appliances

and industrial control devices to automotive electronics and aerospace instrumentation. These OSs are

characterized by their real-time capabilities, enabling them to respond to external events within

predetermined timeframes. They operate under constrained resource environments, necessitating

e�cient execution within limited memory and storage spaces. They are also highly customizable,

allowing them to be tailored to �t speci�c hardware platforms and prioritize stability and reliability,

given their operation in harsh and variable conditions.

qeios.com doi.org/10.32388/XPJYHO 4

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

2.1.2. Characteristics

Embedded operating systems are distinguished by their stringent real-time constraints, mandating

that they respond to stimuli within a precise temporal framework. This is particularly critical in

safety-critical applications such as automotive systems, where latency can have dire consequences. As

such, the design of embedded operating systems is optimized to ensure timely task processing

una�ected by the overhead of concurrent operations.

In addition to real-time performance, these operating systems face challenges due to the limitations

of resources. Many embedded devices, constrained by cost, size, or power consumption, are equipped

with low-performance processors and have restricted memory and storage capacities. This

necessitates that both the operating system and the applications running atop it be lean and e�cient,

capable of functioning smoothly on such modest hardware. Moreover, the hardware con�guration for

a single embedded device is often unique, demanding that the operating system be tailored to support

only a speci�c set of hardware, thus reducing the demand on system resources.

Furthermore, embedded operating systems emphasize a high degree of customizability. This is

primarily due to the signi�cant variance in hardware architecture and interface requirements among

embedded devices. Embedded operating systems o�er a �exible, modular structure to accommodate

these di�erences, enabling developers to select and con�gure the necessary functional modules based

on the speci�c application scenario. This �exibility facilitates adaptation to diverse hardware

products’ needs, minimizes code volume, and enhances overall system performance.

Lastly, stability and reliability are critical characteristics of embedded operating systems that cannot

be overlooked. As many embedded systems operate unattended and often under extreme conditions

such as signi�cant temperature �uctuations, strong electromagnetic interference in industrial

settings, or remote areas that are di�cult to maintain, the operating system must be capable of long-

term fault-free operation and possess a certain degree of fault tolerance. Consequently, the design of

embedded operating systems typically incorporates a suite of mechanisms to ensure reliable system

operation, including error detection and correction, fault isolation, and other techniques. These

features collectively ensure that embedded operating systems are up to the complex tasks of their

respective domains.

qeios.com doi.org/10.32388/XPJYHO 5

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

2.1.3. Development History

Figure 3. Chronological Development of Embedded Operating Systems and Associated Technological

Milestones. This �gure chronicles the evolution of embedded operating systems from their origins in

the late 20th century to contemporary platforms, alongside pivotal technological advancements that

have driven innovation in this domain.

qeios.com doi.org/10.32388/XPJYHO 6

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

OS ISA Supported
Kernel

Architecture

Open

Sourced

OS-9
X86, ARM, MIPS, PowerPC, Motorola 6809, Motorola

680x0, ColdFire, SuperH
Microkernel No

QNX X86, ARM Microkernel No

VxWorks X86, ARM, RISC-V, MIPS, PowerPC, SuperH Monolithic No

LynxOS Motorola 68010, X86, ARM, PowerPC Monolithic No

Linux

Alpha, ARC, ARM, C-SKY, Hexagon, LoongArch, MIPS,

Motorola 68000, MicroBlaze, Nios II, OpenRISC, PA-RISC,

PowerPC, RISC-V, S/390, SuperH, SPARC, x86, Xtensa

Monolithic Yes

µC/OS PIC, AVR, ARM, MIPS, ColdFire, X86, RISC-V, MSP430 Microkernel Partial

Windows

CE
X86, ARM Hybrid No

ThreadX

ARC, ARM, Black�n, CEVA, C6x, MIPS, NXP, PIC, PowerPC,

RISC-V, RX, SuperH, SHARC, TI, V850, Xtensa, X86,

Cold�re

Microkernel No

eCos

ARM, CalmRISC, FR-V, X86, Matsushita AM3x, Motorola

68000, NEC V850, PowerPC, SuperH, Hitachi H8,MIPS,

Nios II, SPARC

Hybrid Yes

FreeRTOS

Robust Support including: ARM, MicroBlaze, RISC-V, PIC,

H8/S, SuperH, RX, 8052, ColdFire, V850, 78K0R, Xtensa,

Nios II, FR, RISC-V, X86, AVR, MSP430

Microkernel Yes

Contiki
ARM, 8051, AVR, MSP430, NXP LPC, STM32,

CC2538,CC26xx
Microkernel Yes

NuttX
ARM, AVR, HCS12, LM32, MIPS, RISC-V, SuperH, Xtensa,

Z80
Monolithic Yes

Mbed OS ARM Microkernel Yes

qeios.com doi.org/10.32388/XPJYHO 7

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

OS ISA Supported
Kernel

Architecture

Open

Sourced

Zephyr ARM, ARC, MIPS, NiosII, RISC-V, Xtensa, SPARC, X86 Monolithic No

Fuchsia X86, ARM Microkernel Yes

TockOS ARM, RISC-V Monolithic Yes

HarmonyOS ARM, X86, RISC-V Hybrid Partial

Table 1. Embedded OS Characteristic

With the rapid advancement of microprocessor technology, embedded operating systems have

gradually become a critical component in meeting the needs of small computing devices and

embedded systems. In 1979, Motorola introduced OS-9, a multitasking operating system designed for

emerging small computers and embedded systems. OS-9, with its exceptional real-time performance

and support for various hardware platforms, became an essential choice in early embedded

applications. The birth of this system re�ected the market’s strong demand for e�cient management

and scheduling of limited computing resources at the time.

Entering the 1980s, the demand for system reliability and security signi�cantly increased as the

application scenarios of embedded systems became increasingly complex. In 1982, QNX[1] emerged as

a real-time operating system with a microkernel architecture. Its kernel retained only the core

functions required for operation, with most system components running in user space and inter-

process communication achieved through a messaging mechanism. This design greatly enhanced

system stability and security, marking a signi�cant step in modular design and scalability of

embedded operating systems to address more complex application scenarios.

As the informatization process in the aerospace and defense sectors accelerated, embedded operating

systems’ real-time processing capabilities and reliability attracted increasing attention. In 1987, Wind

River Systems released VxWorks[2], an operating system speci�cally designed to meet real-time and

high-reliability requirements. VxWorks supports multiple processor architectures and is highly

qeios.com doi.org/10.32388/XPJYHO 8

https://en.wikipedia.org/wiki/OS-9
https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

customizable, adapting to speci�c hardware needs and thus gaining widespread application in the

aviation, aerospace, and defense sectors.

However, early embedded systems faced signi�cant challenges in cross-platform application

compatibility due to the lack of uni�ed standards. To address this issue, in 1988, Lynx Software

Technologies introduced LynxOS[3], a real-time operating system based on the POSIX standard. The

system supports hard real-time task scheduling, making it particularly suitable for critical task

systems with high reliability and security requirements. The introduction of LynxOS re�ected the

trend of embedded operating systems moving towards standardization and the industry’s increased

expectations for system security and reliability.

Entering the 1990s, the rise of the Internet and the proliferation of personal computers(PCs) propelled

the development of the open-source software movement. In 1991, Linus Torvalds released the �rst

version of Linux[4], which, although initially not designed for embedded systems, quickly became one

of the important operating systems in the embedded �eld due to its openness, portability, and

extensive community support. Concurrently, Jean J. Labrosse developed µC/OS, a real-time operating

system speci�cally designed for embedded applications, which gained popularity for its lightweight

nature, ease of portability, and excellent interrupt handling capabilities.

Entering the 21st century, the diversi�cation trend of embedded operating systems became

increasingly evident. In 1996, Microsoft released Windows CE[5], an operating system designed for

embedded devices, aiming to provide a user experience similar to desktop Windows. Due to its

development environment being compatible with desktop Windows, Windows CE has found

widespread application in industrial control devices and mobile devices.

With the rise of mobile Internet and the IoT, low power consumption and fast startup have become

new requirements for embedded systems. To meet these needs, operating systems such as

ThreadX[6] (1997) and eCos[7] (1998) were introduced. During this period, embedded operating

systems had to satisfy real-time requirements while adapting to the resource-constrained

characteristics of IoT devices.

The rapid development of IoT and edge computing has driven embedded operating systems further to

penetrate �elds such as sensor networks and smart homes. In the early 2000s, operating systems such

as FreeRTOS[8] (2003), Contiki[9] (2003), NuttX[10] (2007), and Mbed OS[11] (2009) emerged. Most of

qeios.com doi.org/10.32388/XPJYHO 9

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

these systems are designed for low-power microcontrollers and are speci�cally optimized for sensor

networks and smart home applications.

Furthermore, with the increasing demand for device interconnectivity, some embedded operating

systems have placed greater emphasis on cross-platform compatibility and data security. Major

technology companies and open-source communities have introduced embedded operating systems,

such as Google’s Fuchsia[12] (2016), Huawei’s HarmonyOS[13] (2019), and TockOS[14] (2016), which

speci�cally addresses security and memory safety in resource-constrained environments. These

e�orts aim to secure a signi�cant position in the IoT and smart device market.

Overall, the development history of embedded operating systems demonstrates how technological

advancements continuously adapt to and drive changes in market demands. From early simple task

scheduling to today’s complex distributed systems, each stage of development of embedded operating

systems has solved the technical challenges of their time within a speci�c historical context, laying a

solid foundation for future progress.

2.2. Mobile Operating Systems

2.2.1. Introduction

Mobile operating systems are designed for smartphones, tablet computers, and other portable devices.

They provide users with a user-friendly interface and support a variety of basic and advanced

functionalities. With the proliferation of mobile devices worldwide, mobile operating systems have

become integral to modern digital life. They enable people to access the Internet anytime and

anywhere and o�er rich tools for entertainment, social interaction, work, and learning.

qeios.com doi.org/10.32388/XPJYHO 10

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

Figure 4. Historical Timeline of Mobile Operating System Evolution and Key Technological

Advancements. This �gure presents a chronological timeline of the development of mobile operating

systems from 1991 to 2019, along with signi�cant technological milestones that contributed to their

advancement. The timeline highlights the introduction of various mobile OSes. Additionally, it

underscores critical innovations.

2.2.2. Characteristics

Mobile operating systems are typically con�gured with a focus on high performance and low power

consumption to meet portability demands and extended use. In terms of processing capabilities,

modern smartphones and tablet computers predominantly utilize multi-core processors based on the

ARM architecture, with clock speeds exceeding 1 GHz. Common designs include quad-core, octa-core,

and even more cores, providing ample computational power for multitasking and high-performance

applications. Regarding memory capacity, current mobile devices typically have at least 2GB to 16GB

or more RAM to ensure a smooth operational experience and rapid application switching. Storage-

wise, built-in storage capacities start at 32GB, with high-end devices o�ering up to 512GB or even 1TB

of storage space, and some devices support storage expansion via microSD cards. In terms of

peripheral chip functionality, mobile devices integrate a wealth of connectivity and sensor

technologies, including Wi-Fi, Bluetooth, NFC, GPS, cellular network modules, as well as

accelerometers, gyroscopes, proximity sensors, ambient light sensors, etc. These components

collectively provide users with comprehensive communication capabilities and intelligent sensing

functions. Modern mobile devices commonly support high-de�nition displays, high-quality cameras,

and biometric technologies such as �ngerprint or facial recognition to enhance user experience and

security.

One of the most notable features of mobile operating systems is their support for touchscreens.

Compared to traditional keyboard and mouse input methods, touchscreens o�er a more intuitive and

qeios.com doi.org/10.32388/XPJYHO 11

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

direct mode of interaction, allowing users to complete complex tasks with simple gesture operations.

Multi-touch technology further enhances this experience by allowing multiple �ngers to operate on

the screen simultaneously, enabling functions such as zooming and rotating, greatly enriching the

user’s interactive experience.

To fully leverage mobile devices’ characteristics, mobile operating systems have built-in support for

various hardware functionalities, including wireless network connections (Wi-Fi, Bluetooth, cellular

networks), Global Positioning System (GPS), cameras, accelerometers, gyroscopes, etc. This

integration transforms mobile devices from simple communication tools into versatile platforms that

o�er a wide range of functions, including communication, navigation, photography, and �tness

tracking. With these hardware capabilities, users can easily access location information, take photos,

and engage in video calls, among other activities.

Mobile operating systems typically provide an o�cial app store through which users can download

and install various applications. These applications span multiple domains, such as gaming, social

networking, o�ce productivity, and health, signi�cantly enriching the functionality of mobile devices

and o�ering users the possibility of personalized customization. The presence of app stores also

fosters the development of the developer economy, encouraging more individuals to participate in the

development of mobile applications.

Mobile operating systems emphasize battery management and energy-saving features, considering

mobile devices’ portability. By e�ectively managing system resources, such as Central Processing Unit

(CPU) frequency modulation and background app restrictions, mobile operating systems can extend

device usage time and reduce the need for users to recharge frequently. Additionally, these systems

o�er a range of power management tools to help users monitor and optimize their device’s power

consumption.

qeios.com doi.org/10.32388/XPJYHO 12

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

2.2.3. Development History

OS ISA Supported
Kernel

Architecture

Open

Sourced

Linux

Alpha, ARC, ARM, C-SKY, Hexagon, LoongArch, MIPS,

Motorola 68000, MicroBlaze, Nios II, OpenRISC, PA-

RISC, PowerPC, RISC-V, S/390, SuperH, SPARC, x86,

Xtensa

Monolithic Yes

PalmOS ARM, MIPS Microkernel No

Symbian ARM, X86 Microkernel No

Windows

Mobile
ARM Hybrid No

iOS ARM Hybrid No

Android ARM, X86, RISC-V Monolithic CFS

webOS ARM, X86 Monolithic Partial

Tizen ARM, X86, MIPS Hybrid Yes

Fuchsia ARM, X86 Microkernel Yes

HarmonyOS ARM, RISC-V, X86, Xtensa, C-SKY Hybrid Partial

TABLE II. Mobile OS Characteristic

By the late 1990s, the hardware capabilities of mobile phones were continuously enhanced,

particularly with improvements in processor performance, storage capacity, and battery technology,

enabling mobile devices to run more complex operating systems. Concurrently, as user demands for

mobile communication expanded from simple call functions to text messaging, email, and basic

internet access, mobile phone manufacturers began to explore platforms suitable for multitasking and

qeios.com doi.org/10.32388/XPJYHO 13

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

application development. In 1998, the Symbian[15] operating system emerged, a collaborative

development by several mobile phone manufacturers aimed at providing uni�ed support for high-end

mobile phones. Symbian supported multiple hardware architectures and o�ered a rich set of

Application Programming Interfaces (APIs), providing developers with a robust environment for

application development. However, Symbian’s relatively closed architecture struggled to adapt

�exibly to the rapidly evolving touchscreen technology especially in applying multi-touch

capabilities, and eventually got replaced by emerging smartphone operating systems.

With the increasing demand for mobile o�ce solutions, Palm, Inc. introduced the Palm OS[16] in 1996,

an operating system speci�cally designed for mobile devices, focusing on personal information

management (PIM) and productivity. The Palm OS featured a user-friendly interface and e�cient data

synchronization capabilities, making it ideal for managing contacts, calendars, and to-do lists. Its

lightweight design and long battery life were particularly appealing to business professionals who

needed reliable and portable devices for on-the-go use. The inclusion of a stylus and a Gra�ti

handwriting recognition system allowed users to input data quickly and accurately, enhancing the

overall user experience. The Palm OS achieved signi�cant success in the early mobile market,

establishing itself as a leading platform for personal digital assistants (PDAs) and laying the

groundwork for future mobile operating systems.

With the rise of mobile o�ce needs for business, RIM (Research In Motion) launched the BlackBerry

OS[17] in 1999, an operating system speci�cally designed for enterprise users, focusing on meeting

email and instant messaging needs. The BlackBerry OS combined physical keyboards with the

BlackBerry Messenger service, achieving signi�cant success in the enterprise market. Its hardware-

centric design allowed business users to handle information quickly and securely.

Entering the early 2000s, with the proliferation of the internet, mobile devices were no longer just

communication tools but had become multifunctional information terminals, with users expecting to

perform more complex computing tasks through their mobile phones. In 2000, Microsoft introduced

Windows Mobile, an operating system based on the Windows CE core, attempting to transplant the

desktop PC experience to mobile phones. Windows Mobile[18] supported touchscreen operations and

came with built-in productivity tools like O�ce suites, meeting the mobile o�ce needs of some users.

However, Windows Mobile did not achieve widespread success due to its complex interface design and

high hardware requirements, which resulted in poor performance on resource-limited mobile devices.

qeios.com doi.org/10.32388/XPJYHO 14

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

With the maturation of touchscreen technology and signi�cant improvements in processor

performance, mobile device interaction methods and functionalities underwent revolutionary

changes. Apple’s iOS[19] operating system, released in 2007, completely transformed how mobile

devices were used. iOS replaced the physical keyboard with a full touchscreen interface, allowing users

to perform intuitive operations through multi-touch, greatly enhancing the user experience.

Additionally, iOS introduced the App Store as an application distribution platform, allowing third-

party developers to create applications for this platform, establishing an ecosystem that signi�cantly

promoted the prosperity of mobile applications.

Following Apple’s lead in the market, mobile device manufacturers gradually recognized the necessity

of software openness and �exibility. In 2008, Google launched the Android[20] operating system based

on the Linux kernel. Android’s open architecture allowed device manufacturers to deeply customize

the system and supported a variety of hardware con�gurations, from high-end smartphones to entry-

level devices, enabling Android to dominate the market quickly. Android not only attracted a large

number of developers through its open ecosystem, but Google Play Store also provided users with a

vast selection of applications, meeting diverse user needs.

In 2012, the Tizen Association, led by Samsung and Intel, introduced Tizen[21], another Linux-based

operating system aimed at a wide range of devices, including smartphones, tablets, and smart TVs.

Tizen was designed to o�er a highly customizable and �exible platform, supporting both open-source

and proprietary applications. It featured a robust multimedia framework and strong integration with

web technologies, aligning with the growing trend of web-centric computing. Tizen aimed to provide

a seamless user experience across multiple devices, emphasizing connectivity and interoperability.

However, despite its technical merits, Tizen faced challenges in building a substantial app ecosystem

and gaining widespread adoption, primarily due to the dominance of Android and iOS in the mobile

market. Nonetheless, Tizen continues to be developed and is used in certain niche markets, such as

wearables and smart home devices.

With the rapid development of IoT and AI technologies, user demands for mobile operating systems

gradually expanded to include cross-device connectivity and intelligent interaction. In 2016, Google

�rst revealed the Fuchsia[12] operating system, a next-generation operating system based on a

microkernel aimed at providing a uni�ed cross-platform solution that can run on everything from

mobile phones to smart home devices. Fuchsia’s design is well-prepared for future AI and natural user

interfaces, such as voice and gesture interactions.

qeios.com doi.org/10.32388/XPJYHO 15

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

In response to the need for IoT and multi-device collaboration, Huawei launched HarmonyOS[13] in

2019. This distributed operating system aims to break through the limitations of single devices to

achieve seamless collaboration between diverse devices such as smartphones, tablets, smartwatches,

and smart home devices. HarmonyOS aims to provide users with a uni�ed service experience, allowing

them to switch and interact freely within the same ecosystem, regardless of device performance

di�erences. The launch of this system signi�es that mobile operating systems are gradually moving

towards the development of a full-scenario smart living direction.

2.3. Desktop Operating Systems

Figure 5. Chronological Development of Desktop Operating Systems and Associated Technological

Milestones. This timeline traces the historical progression of desktop operating systems from their

inception to modern times, alongside signi�cant technological advancements that in�uenced their

evolution.

2.3.1. Introduction

A desktop operating system refers to a category of software designed to provide management and

control functionalities for PCs, laptops, and workstations. It o�ers users a Graphical User Interface

(GUI) that facilitates interaction with computer hardware through mouse clicks and keyboard inputs,

enabling the execution of various operations. Since the 1980s, desktop operating systems have become

the core of personal computing, profoundly altering people’s working methods and lifestyles.

2.3.2. Characteristics

The con�guration of devices running desktop operating systems typically aims at providing robust

computational capabilities and rich multimedia experiences. In terms of processors, modern desktops

and laptops predominantly utilize multi-core processors based on x86 or ARM architectures, with

qeios.com doi.org/10.32388/XPJYHO 16

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

clock speeds ranging from 2GHz to over 5GHz and core counts varying from dual-core to sixteen cores

or more to support complex applications and multitasking. Regarding memory capacity,

contemporary desktop devices usually have at least 8GB to 64GB or more of RAM to ensure e�cient

data processing and a smooth user experience. For storage, devices commonly adopt Solid State Drives

(SSDs) as primary storage media, with capacities ranging from 128GB to several terabytes; some

devices also incorporate Hard Disk Drives (HDDs) to o�er additional storage space. In peripheral

functions, desktop devices integrate high-performance Graphics Processing Units (GPUs) to support

graphics-intensive applications such as gaming and professional design software. They also feature

high-speed network interfaces (such as Gigabit Ethernet or Wi-Fi 6), USB 3.0 or higher ports,

Thunderbolt, HDMI, and audio interfaces to enable rapid data transfer and multimedia connectivity.

Moreover, modern desktop devices support multi-monitor outputs, high-quality audio systems, and

advanced cooling designs to ensure stable operation and an excellent user experience.

The primary purpose of desktop operating systems is to provide users with a friendly interface to

execute a variety of complex tasks, ranging from daily home entertainment to professional o�ce

applications. By o�ering a uni�ed interface standard, desktop operating systems simplify the learning

curve, allowing even novice computer users to get started quickly. Additionally, desktop operating

systems support multitasking, enabling users to run multiple applications simultaneously without

worrying about system crashes or performance degradation. This capability is particularly crucial for

users who need to handle multiple tasks concurrently.

Support for a multi-user environment is an important feature of desktop operating systems. In certain

scenarios, especially in corporate or educational settings, a single computer may be shared by multiple

users. To protect the security and privacy of personal data, desktop operating systems provide account

management systems that allow each user to have their own login credentials and set di�erent

permission levels. This way, each user can work freely within their own environment without a�ecting

the data of other users.

In addition to basic functionalities, most desktop operating systems pre-install common applications

such as o�ce suites, web browsers, and media players. These applications are intended to assist users

in completing routine tasks more e�ciently, such as editing documents, browsing the web, and

playing music or videos. Furthermore, desktop operating systems support various methods for

installing and managing applications, including application stores, software package management

systems, and sideloading, enabling users to extend their computers’ functionality easily.

qeios.com doi.org/10.32388/XPJYHO 17

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

User experience and ease of use are critical metrics for evaluating the quality of a desktop operating

system. Over time, the design of operating systems has increasingly emphasized humanization,

striving to reduce the learning cost for users and enhance e�ciency. Modern desktop operating

systems typically feature intuitive user interfaces, clear icons and menu layouts, and powerful search

functions. Additionally, to cater to the preferences of di�erent users, operating systems permit

customization of visual elements such as desktop backgrounds, window colors, and font sizes.

Over the past few decades, desktop operating systems have undergone tremendous transformations

and developments. From early command-line interfaces (CLI) to today’s GUIs, from single-user

systems to multi-user systems, and from supporting only a few languages to accommodating multiple

languages globally, every change has signi�cantly enhanced the user experience. Although the

importance of desktop operating systems seems to have diminished with the proliferation of mobile

devices, they remain indispensable for users requiring high-performance computing and professional

applications.

qeios.com doi.org/10.32388/XPJYHO 18

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

2.3.3. Development History

OS ISA Supported Kernel Architecture
Open

Sourced

Unix Varies, including: X86, ARM, MIPS, PowerPC, SPARC
Varies: Monolithic,

Microkernel, Hybrid
No

MS-DOS X86 Monolithic No

macOS X86, ARM Hybrid No

Windows X86, ARM Hybrid No

AmigaOS Motorola 68000, PowerPC Microkernel No

OS/2 X86, PowerPC Hybrid No

Linux

Alpha, ARC, ARM, C-SKY, Hexagon, LoongArch, MIPS,

Motorola 68000, MicroBlaze, Nios II, OpenRISC, PA-

RISC, PowerPC, RISC-V, S/390, SuperH, SPARC, x86,

Xtensa

Monolithic Yes

BSD
Varies, including: X86, ARM, MIPS, PowerPC, RISC-V,

SPARC
Monolithic Yes

BeOS PowerPC, X86 Hybrid No

RedoxOS X86 Microkernel Yes

Fuchsia ARM, X86 Microkernel Yes

Table 3. Desktop OS Characteristic

The evolution of desktop operating systems re�ects continuous advancements in hardware

technology and changes in user demands. From early text-based processing to later GUIs to the

qeios.com doi.org/10.32388/XPJYHO 19

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

widespread application of multimedia and the Internet in the 21st century, desktop operating systems

have evolved continuously to adapt to changing computing environments.

By the end of 1960s, with improvements in computer hardware performance and the demand for

multi-user systems, operating system design began to mature. Unix[22], born in 1969 at Bell Labs,

established foundational principles through its hierarchical �le system and multitasking capabilities.

Unix’s modularity, simplicity, and portability philosophy allowed it to run across di�erent hardware

platforms. By the 1980s, Unix’s in�uence had expanded, and many subsequent operating systems

directly or indirectly adopted Unix’s design concepts.

Building on the success of Unix, the Berkeley Software Distribution (BSD) [23] emerged in 1977 at the

University of California, Berkeley. BSD extended Unix by adding features such as the virtual memory

system, TCP/IP networking support, and the Berkeley sockets API, which became essential for internet

communication. These enhancements signi�cantly improved the performance and functionality of

Unix-based systems, making them more suitable for academic and research environments. BSD’s

emphasis on open-source software and collaborative development fostered a vibrant community of

developers and researchers, contributing to numerous innovations and improvements. By the 1980s,

BSD had become a cornerstone in the development of networked computing, in�uencing the creation

of several derivatives and contributing to the widespread adoption of Unix-like systems in both

academia and industry.

In the 1980s, breakthroughs in microprocessor technology enabled PCs to reach a broader market.

IBM launched its �rst PC in 1981, powered by Intel’s 8088 processor, marking the beginning of the

personal computing era. Accompanying this hardware was Microsoft’s DOS[24], a single-user, single-

task command-line operating system that allowed direct interaction with hardware via a command

prompt. Despite its limited functionality, MS-DOS laid the groundwork for more sophisticated

graphical operating systems.

By the mid-1980s, processor speed and memory capacity advancements improved computer graphics

processing abilities. The demand for more intuitive user interactions drove the development of GUIs.

In 1984, Apple introduced the Macintosh computer, equipped with System Software (later renamed

macOS[25]), the �rst widely used commercial operating system featuring a GUI. macOS utilized

desktop metaphors, window management, menus, and a mouse to facilitate more intuitive and

convenient interaction between users and computers. The introduction of GUI signi�cantly lowered

qeios.com doi.org/10.32388/XPJYHO 20

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

the barrier to computer use and transformed computers into tools for creativity, design, and

multimedia work.

Around the same time, Microsoft released Windows[26] in 1985 as an extension to DOS. The initial

versions of Windows were graphical environments built on top of DOS. While still technically

dependent on the command-line operating system, these versions improved user experience through

simple graphical interfaces. As computing hardware evolved, particularly with the advent of GPU,

graphical interfaces became mainstream in desktop operating systems.

In the 1990s, signi�cant increases in processor performance made multitasking and multimedia

computing core requirements of desktop computing. Microsoft’s Windows NT[27], released in 1993,

featured a more stable and modular kernel design to support multiprocessor systems and advanced

memory management features. Windows NT introduced advanced networking support (e.g., TCP/IP

protocols), aligning with the growing trend of internet usage and becoming an ideal choice for

enterprise servers and workstations. Simultaneously, Microsoft continued enhancing user interfaces

and multimedia support through Windows 95 and Windows 98 updates.

During this period, operating systems like AmigaOS[28] (1985) promoted the development of

multimedia creation and entertainment applications. AmigaOS’s multitasking and advanced graphic

and sound processing capabilities distinguished it in game development and multimedia creation,

re�ecting users’ expectations for entertainment features in computing devices.

With the rise of the Internet, open-source software gained widespread support. In 1991, Linus

Torvalds released the Linux[4] kernel, based on Unix’s design principles, o�ering personal users a

free, open-source, and highly customizable operating system. Linux rapidly succeeded in server

environments and gained a foothold in desktop computing through various distributions such as

Debian and Red Hat. Its success was mainly due to its openness and community support, driving

innovation in software development during the Internet age.

Similarly, Unix-based open-source operating systems like FreeBSD[23] (1993) emerged, inheriting

Unix’s stability and security while demonstrating superior performance in server and embedded

systems.

Entering the 21st century, with the popularization of multi-core processors, SSD storage devices, and

high-speed networking technologies, users placed higher demands on the performance and security

of desktop operating systems. The emergence of operating systems like BeOS[29] in the early 2000s

qeios.com doi.org/10.32388/XPJYHO 21

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

re�ected the market’s need for multimedia processing capabilities. Although BeOS failed to gain

widespread adoption due to poor marketing, its optimization for multiprocessor support and real-

time processing represented innovative directions in multimedia computing.

In recent years, experimental operating systems like Redox OS[30] (2015), written entirely in Rust,

have explored more modern and secure operating system architectures. Redox’s appearance re�ects

ongoing exploration in the �eld of operating systems towards higher security and performance.

With the rapid development of cloud computing and the IoT, the role of operating systems has

changed. In 2016, Google introduced the Fuchsia[12] project, aiming to build a cross-platform

operating system to support wide-ranging applications from smartphones to IoT devices. Fuchsia’s

microkernel design re�ects Google’s vision for future distributed computing environments.

2.4. Server Operating Systems

Figure 6. Timeline of Key Developments in Server Operating Systems and Related Technologies. This

timeline illustrates the chronological sequence of pivotal events and innovations in the realm of server

operating systems and associated technologies, spanning from the introduction of virtual memory in

the late 1950s to the emergence of virtualization in the early 21st century.

2.4.1. Introduction

Server operating systems are specialized software designed to run on server hardware. They are

primarily aimed at providing reliable operational environments for businesses and network services.

These operating systems manage underlying hardware resources and optimize network

communication and data processing capabilities to meet the concurrent requests of numerous users

and applications. Typically deployed in data centers, cloud environments, and wherever high-

qeios.com doi.org/10.32388/XPJYHO 22

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

performance computing and storage services are required, server operating systems are pivotal in

supporting mission-critical applications and services.

2.4.2. Characteristics

The con�guration of devices running server operating systems is centered around high availability,

reliability, and robust computational capabilities. In terms of processors, servers predominantly

employ high-performance multi-core processors based on X86 architecture, featuring dozens to

hundreds of cores, with clock speeds typically ranging from 2GHz to 5GHz, and support for hyper-

threading technology to enhance concurrent processing capabilities. In recent years, ARM architecture

processors have also begun making inroads into the server space. They are characterized by low power

consumption and high density and suitable for large-scale cloud service deployments.

Regarding memory capacity, server equipment often comes equipped with tens of gigabytes to several

terabytes of RAM, supporting extensive data caching and multitasking to ensure the e�cient

operation of applications. For storage, servers utilize high-speed SSDs alongside HDDs as primary

storage media, employing RAID technology to provide storage tiering, data redundancy, and fault

tolerance, with storage capacities ranging from hundreds of gigabytes to petabytes.

Modern servers frequently include accelerators like GPU, TPU, or Data Processing Unit (DPU), which

provide additional computational power to meet speci�c computational needs, such as machine

learning (ML), high-performance computing, and graphics rendering. These accelerators can

signi�cantly enhance the processing speed of speci�c tasks, particularly when handling large datasets

or executing complex algorithms.

Peripheral server chipsets include high-performance Network Interface Cards (NICs) supporting

10GbE and faster network connections, enabling rapid data transmission. Additionally, servers

integrate dedicated management processors (like IPMI or DRAC) for remote monitoring and system

state management and support hot-swappable hard drives and redundant power supplies to ensure

high availability and stability. These features collectively form the backbone of modern servers’

powerful computing and data processing capabilities, enabling them to support complex enterprise

applications and services.

One notable characteristic of server operating systems is their network and server hardware

performance optimization. To address the demands of large-scale data transmission and processing,

these operating systems are typically equipped with e�cient network stacks capable of handling high

qeios.com doi.org/10.32388/XPJYHO 23

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

bandwidth and low latency requirements. Moreover, server operating systems are optimized for

di�erent hardware architectures to ensure optimal performance on multi-core processors, large

memory volumes, and high-speed storage devices. Such optimizations ensure servers respond

promptly to client requests and process data streams e�ciently.

High concurrency handling and support for multitasking are among the core strengths of server

operating systems. In typical server environments, thousands of users might access a single

application or service simultaneously, necessitating that the operating system e�ectively allocates

resources to ensure the timely processing of each request. Server operating systems generally adopt

multi-threaded or multi-process models and advanced scheduling algorithms to support massive

concurrent connections and tasks. This capability allows servers to handle diverse requests from

various sources without compromising overall performance.

Security is an essential characteristic of server operating systems that cannot be overlooked. Since

servers often carry sensitive information and critical business processes, they are prime cyberattack

targets. To protect data and system integrity, server operating systems integrate multi-layer security

measures, including �rewalls, intrusion detection systems, data encryption techniques, and regular

security auditing functions. Additionally, many server operating systems provide �ne-grained access

control mechanisms, allowing administrators to restrict access to speci�c resources based on user

roles and permissions.

Data management functions are also vital components of server operating systems. Whether database

services, �le sharing, or email systems, a reliable mechanism for storing and backing up data is

necessary. Server operating systems typically include advanced �le systems supporting RAID

con�gurations to enhance data redundancy and recovery capabilities. They also provide automated

backup tools to help administrators regularly back up important data and restore it quickly when

needed, minimizing the risk of data loss.

Finally, server operating systems are designed to support 24/7 operations. This means they must

possess extremely high stability and reliability to ensure continuous service provision under any

circumstances. To achieve this, server operating systems are typically equipped with automatic fault

recovery features that detect and �x issues at both the hardware and software levels, supporting hot-

swapping technology to replace faulty components without downtime. Furthermore, these operating

systems o�er detailed monitoring and logging functionalities, helping administrators identify

potential problems promptly and take preventive measures.

qeios.com doi.org/10.32388/XPJYHO 24

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

2.4.3. Development History

OS ISA Supported Kernel Architecture
Open

Sourced

IBM 704 Monolithic No

OS/360 S/360, S/370

Varies: Monolithic,

Microkernel,

Hybrid

No

Unix Varies, including: X86, ARM, MIPS, PowerPC, SPARC

Varies: Monolithic,

Microkernel,

Hybrid

No

VMS VAX, Alpha, Itanium, X86 Monolithic Yes

BSD
Varies, including: X86, ARM, MIPS, PowerPC, RISC-V,

SPARC
Monolithic Yes

NetWare X86, MIPS, PowerPC, SPARC, Alpha Hybrid No

Linux

Alpha, ARC, ARM, C-SKY, Hexagon, LoongArch, MIPS,

Motorola 68000, MicroBlaze, Nios II, OpenRISC, PA-

RISC, PowerPC, RISC-V, S/390, SuperH, SPARC, x86,

Xtensa

Monolithic Yes

Solaris X86, SPARC Monolithic No

Windows

Server
X86, ARM Hybrid No

Table 4. Server OS Characteristic

The evolution of server operating systems closely re�ects advancements in hardware technology and

the growing demands of enterprise computing. From the minicomputers of the 1960s to today’s cloud

qeios.com doi.org/10.32388/XPJYHO 25

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

computing and large-scale data centers, the development of server operating systems mirrors the

rapid increase in computing power and supports the thriving growth of critical business and network

services.

In the 1950s, one of the earliest computing systems to introduce input/output (I/O) operations was the

GM-NAA I/O, developed by General Motors and North American Aviation for the IBM 701 computer.

GM-NAA I/O, created in 1956, is considered one of the �rst operating systems. It was designed to

streamline the execution of programs by automating the loading, executing, and outputting processes

of the 701 computer, marking a signi�cant step in automating early computer operations. GM-NAA

I/O introduced key features such as a rudimentary form of scheduling, which allowed it to manage a

sequence of jobs and handle basic I/O operations, which were crucial for the time. This pioneering

system laid the groundwork for more complex and advanced operating systems, highlighting the

importance of e�cient I/O management and job scheduling in managing computational tasks. The

foundational concepts of GM-NAA I/O, such as job scheduling and I/O handling, in�uenced the design

of later operating systems and marked the beginning of operating system development in computing

history.

In the 1960s, the development of server operating systems began to take shape with signi�cant

advancements in computing hardware and the increasing demand for multi-user, multitasking

systems from enterprises and research institutions. One of the earliest and most in�uential systems

was IBM’s OS/360[31], introduced in 1964. OS/360 was designed to support a wide range of IBM

mainframe computers, providing a uni�ed and comprehensive operating environment. Its key

features included robust job scheduling, advanced I/O management, and support for multiple

programming languages. OS/360’s ability to manage complex workloads and large datasets made it a

cornerstone for enterprise computing, setting standards for reliability and e�ciency.

In the 1970s, server operating systems continued to evolve. Unix[22], a pioneering operating system

developed in 1971 by Ken Thompson and Dennis Ritchie at AT&T Bell Labs, was written in C language,

making it more portable across di�erent hardware platforms. Unix’s layered structure and modular

design signi�cantly increased the �exibility of operating systems and introduced features such as �le

systems, process management, and virtual memory. Most importantly, Unix pioneered multi-user

and multitasking capabilities, meeting the urgent need of enterprises and academic institutions for

shared computing resources. With the progress in hardware, Unix became the mainstream operating

qeios.com doi.org/10.32388/XPJYHO 26

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

system for mainframes and minicomputers, laying a solid foundation for later server operating

systems.

As we entered the late 1970s, virtual memory technology matured, enabling servers to manage

memory resources more e�ciently. DEC’s VMS[32] (Virtual Memory System), introduced in 1977, was

a landmark achievement in virtual memory technology. Explicitly designed for DEC’s VAX series of

minicomputers, VMS provided a stable multi-user environment capable of managing a large number

of programs and data e�ciently. Beyond enhancing memory management, VMS supported network

communication protocols and �le systems, gradually promoting the transition of enterprises from

single-system environments to distributed computing environments. VMS was widely applied in

government, research institutions, and large enterprises, occupying a signi�cant position in the

server market then.

In the 1980s, Local Area Network (LAN) technology matured, prompting enterprises to build internal

networks to meet the needs of �le sharing and printing services. To support server operations within

LANs, Novell released NetWare[33] in 1983, marking the gradual integration of network services as a

critical function of server operating systems. With its advanced �le and print services, multi-user

concurrent access, and robust network management capabilities, NetWare quickly became the

preferred platform for building enterprise LANs. With the development of Ethernet and TCP/IP

protocols, NetWare facilitated the popularization of LAN technology in enterprises and laid the

technical foundation for future network operating systems.

With the leap in computer hardware performance in the 1990s, especially the emergence of

multiprocessor systems, enterprises demanded higher performance computing and more complex

network management. In 1993, Microsoft released Windows NT 3.1, the �rst operating system based

on the NT kernel, explicitly designed for workstation and server environments. Windows NT

supported multiprocessor architectures, enhanced memory management, and advanced network

functionalities, meeting the requirements of enterprises for computing performance, system stability,

and security. The modular design of the Windows NT kernel improved system scalability and allowed

enterprises to deploy server roles according to their needs, such as �le servers, database servers, and

application servers.

During the same period, Sun Microsystems introduced Solaris[34], a Unix-based operating system

designed for high-performance servers. Supporting multiple hardware platforms, Solaris o�ered

powerful network functionalities and security features. By introducing scalable thread and storage

qeios.com doi.org/10.32388/XPJYHO 27

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

management systems, Solaris excelled in large-scale computing tasks and distributed environments,

becoming the preferred choice in industries with high-performance computing needs, such as �nance

and telecommunications.

In the mid-to-late 1990s, with the rise of the open-source software movement, the development

model of operating systems fundamentally changed. The release of the Linux[4] kernel in 1991 marked

the rise of open-source operating systems. Based on the Unix kernel, Linux’s openness and modular

design allowed it to rapidly develop within the global developer community, achieving signi�cant

success, particularly in server operating systems. Linux provided �exible multitasking, outstanding

network performance, and multi-user support, excelling especially in Web servers, database servers,

and supercomputing. Its scalability and low-cost nature made it an ideal choice for large data centers

and Internet companies like Google and Amazon, gradually capturing a signi�cant share of the global

server market.

Additionally, FreeBSD[23], released in 1993 as an open-source operating system based on Unix,

performed excellently in the server market. FreeBSD inherited the core characteristics of Unix and

further optimized network performance, �le systems, and multitasking capabilities, becoming the

preferred choice for high-performance network servers and embedded systems.

Entering the 21st century, the rapid development of virtualization technology and cloud computing

fundamentally altered server operating systems’ design and deployment methods. The maturity of

hardware virtualization technology enabled servers to run multiple virtual machines, thus improving

the utilization of hardware resources. Consequently, operating systems needed to support more

e�cient resource scheduling and isolation mechanisms. Operating systems like Linux and Windows

Server[35] continuously optimized their kernels and virtualization support functions, meeting the

needs of enterprises in data centers and cloud platforms. Particularly, Linux, the foundation for many

cloud computing platforms, leveraged its lightweight, stable, and �exible characteristics to gain

widespread application in public and private clouds.

3. Recent Advances in OS Evolution

With the continuous advancement of hardware technology, operating systems are undergoing

unprecedented transformations. In recent years, there has been a notable enhancement in the

computational power of CPU and GPU, which has propelled the development of high-performance

qeios.com doi.org/10.32388/XPJYHO 28

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

computing and graphics processing technologies and provided a solid foundation for emerging �elds

such as AI and ML. Concurrently, Neural Processing Units (NPUs), specialized processors optimized

for AI computations, are increasingly becoming standard con�gurations in many modern devices,

further accelerating the advent of the intelligent computing era. However, with the widespread

adoption of heterogeneous computing architectures, such as ”big.LITTLE” designs, operating

systems face new challenges, particularly task scheduling. E�ciently managing di�erent types of

processors to ensure tasks run on the most suitable hardware is an urgent issue that needs to be

addressed.

Echoing this trend, the development of software technologies, such as Large Language Models

(LLMs), also imposes new demands on operating systems. As complex systems capable of

understanding and generating natural language, LLMs require substantial computational resources

for training and operation. These models are running in data centers and beginning to migrate to edge

devices, indicating that future operating systems must be more �exible to support a wide range of

application scenarios. Furthermore, with the proliferation of IoT devices, distributed computing has

become a trend, requiring operating systems to manage local resources and e�ectively coordinate

remote resources across networks.

However, against the backdrop of rapid advancements in both software and hardware, existing

operating systems have revealed speci�c inadequacies and di�culties. On the one hand, traditional

operating systems’ design philosophies and technology stacks struggle to keep pace with hardware

technology, especially in terms of performance optimization and power consumption control. On the

other hand, as user demands for security and privacy protection continue to rise, existing operating

systems also face severe challenges. To adapt to future trends, operating systems must overcome

current limitations and evolve into smarter, safer, and more e�cient architectures to meet the ever-

changing technological requirements. In this process, balancing performance, power consumption,

security, and user experience becomes a critical topic in the evolution of operating systems.

3.1. Operating E�ciency

3.1.1. Scheduling

In contemporary operating systems, scheduling policies are pivotal in ensuring the e�cient

utilization of system resources and optimizing performance. However, as technology evolves and

qeios.com doi.org/10.32388/XPJYHO 29

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

application demands diversify, traditional operating system scheduling strategies encounter many

challenges and issues, particularly in process scheduling, heterogeneous resource allocation, load

balancing, and energy e�ciency optimization.

1) Process scheduling

Traditional heuristic scheduling methodologies, including First-Come, First-Served (FCFS), Shortest

Job First (SJF), and Round-Robin (RR), have shown limitations in meeting the optimal scheduling

demands within today’s intricate operational landscapes. While these methods can be e�cient under

certain conditions, their inability to e�ectively manage tasks with diverse priorities and resource

needs often leads to suboptimal resource allocation, diminished system performance, and prolonged

response times. The advent of AI, especially advancements in ML, has prompted researchers to

investigate applying these sophisticated tools to solve process scheduling problems, aiming to

transcend the constraints posed by conventional approaches and bolster system performance.

Signi�cant achievements have emerged from this area of inquiry. For example, the study

”Comparative Analysis of Process Scheduling Algorithm using AI models” [36] presents an innovative

adaptive dynamic round-robin (ADRR) algorithm, which re�nes process scheduling by modulating

time slice durations according to predicted CPU burst times. The �ndings reveal that the ADRR

algorithm markedly diminishes average waiting times and substantially alleviates the problem of

process starvation. Another investigation, ”Improvement of lottery scheduling algorithm based on

machine learning algorithm” [37], targets the re�nement of the algorithm through the integration of

ML to forecast process turnaround times and recalibrate weight distributions in lottery scheduling.

This enhancement curtails average waiting periods and ampli�es the operational system’s e�ciency,

thus enriching the user experience.

Moreover, scheduling real-time tasks in cloud settings confronts additional layers of complexity. ”A

Deep Reinforcement Learning-Based Preemptive Approach for Cost-Aware Cloud Job

Scheduling” [38] suggests a preemptive strategy grounded in deep reinforcement learning to enhance

the cost-bene�t ratio of job scheduling in cloud platforms. By dynamically modifying the sequence of

job executions, this technique ensures compliance with real-time stipulations while curtailing

expenses. Similarly, the article ”DRLBTSA: Deep reinforcement learning based task-scheduling

algorithm in cloud computing” [39] unveils a task-scheduling algorithm termed DRLBTSA, which

harnesses a deep Q-learning network model to re�ne the scheduling e�cacy of tasks in cloud

qeios.com doi.org/10.32388/XPJYHO 30

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

computing ecosystems. This methodology allows the system to ascertain more judiciously when and

where tasks should be executed, thereby augmenting overall e�ciency and responsiveness.

2) Heterogeneous Resource Allocation

The proliferation of multi-core processors and heterogeneous computing resources necessitates more

intelligent oversight and coordination by operating systems. The architecture of heterogeneous cores,

characterized by disparate performance traits, complicates scheduling e�orts, as extant algorithms

may falter in adapting to such diversity, resulting in imbalanced resource allocation and diminished

scheduling pro�ciency. Nonetheless, the evolution of ML and allied advanced algorithms has spurred

the exploration of novel solutions to these dilemmas.

”A reinforcement learning based job scheduling algorithm for heterogeneous computing

environment”[40] outlines a dual-stage scheduling algorithm that utilizes bidirectional graph

convolutional networks for initial task selection, succeeded by a heuristic technique that amalgamates

optimistic cost tables and task duplication for processor assignment. This strategy facilitates superior

utilization of varied resources within heterogeneous computing environments, elevating overall

scheduling e�ectiveness. Concerning comprehensive resource management within operating

systems, ”SmartOS: towards automated learning and user-adaptive resource allocation in operating

systems”[41] unveils a reinforcement learning-driven method that empowers operating systems to

autonomously learn and dynamically regulate the distribution of CPU, memory, input/output (I/O),

and network bandwidth according to user preferences. This innovation paves the way for creating

more intelligent, user-centric operating systems.

In the realm of microservice management within cloud infrastructures, ” ConAdapter:

Reinforcement Learning-based Fast Concurrency Adaptation for Microservices in

Cloud”[42] introduces the ConAdapter framework, which exploits reinforcement learning to swiftly

pinpoint and modify the ideal soft resource con�guration for pivotal microservices, thereby reducing

breaches of service level objectives (SLOs) and securing service excellence. Additionally, ”Using

machine learning techniques to analyze the performance of concurrent kernel execution on

GPUs”[43] illustrates the application of ML techniques, such as XGBoost, to dissect GPU benchmark

suites, pinpointing essential resource requirement attributes that impact the performance of

concurrent kernel execution, and optimizing the partitioning of GPU resources in heterogeneous

setups.

μ

μ

qeios.com doi.org/10.32388/XPJYHO 31

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

Ultimately, ”Operating systems for resource-adaptive intelligent software: Challenges and

opportunities”[44] deliberates on achieving intelligent adaptation to �uctuations in heterogeneous

resources via resource disaggregation, service-oriented resource provisioning, and learning-based

resource scheduling and allocation. This addresses present-day challenges and opens up fresh vistas

and prospects for developing future operating systems.

3) Load Balancing

Load balancing is a cornerstone technology for optimizing resource utilization and boosting system

throughput in distributed systems and data center environments. Traditional scheduling strategies,

however, frequently fall short in managing dynamically changing workloads. This can result in

speci�c nodes being overloaded while others remain underutilized, negatively impacting overall

system performance and stability. Recognizing these challenges, researchers have increasingly

focused on integrating ML and other advanced algorithms into load balancing practices to foster more

intelligent and e�cient resource management.

In the paper ”Machine Learning for Load Balancing in the Linux Kernel”[45], the authors propose an

ML-based resource-aware load balancer that mirrors the principles of the Completely Fair Scheduler

(CFS). By leveraging extensive training datasets gathered from real-world operations, this method

e�ectively manages compute-intensive workloads and mitigates resource contention, improving

system response times and ensuring the equitable distribution of resources. Consequently, this

approach enhances system stability and reliability and sets a precedent for applying ML to traditional

scheduling mechanisms.

Another contribution to the �eld comes from the study ”Batch Jobs Load Balancing Scheduling in

Cloud Computing Using Distributional Reinforcement Learning”[46], which introduces a

groundbreaking load balancing scheduling algorithm grounded in Distributional Reinforcement

Learning. This innovative method learns the distribution of cumulative rewards through quantile

regression, enabling it to adjust task allocations dynamically. As a result, it achieves superior cluster

load balancing and boosts the e�ciency of task completion, o�ering valuable insights and practical

solutions for load balancing in expansive cloud computing environments.

Addressing the complexities of heterogeneous computing systems, the paper ”A Machine Learning-

Based Resource-E�cient Task Scheduler for Heterogeneous Computer Systems”[47] presents a load

balancing task scheduler enhanced with an ML-based device predictor. This scheduler employs ML to

qeios.com doi.org/10.32388/XPJYHO 32

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

forecast the load conditions of various devices and assign tasks accordingly, e�ectively tackling the

challenge of load imbalance in heterogeneous computing environments. Doing so not only elevates

resource utilization but also signi�cantly improves the system’s overall performance, underscoring

the potential of ML in optimizing resource management across diverse computing platforms.

4) Energy E�ciency Optimization

As High Performance Computing (HPC) becomes increasingly pervasive in areas such as scienti�c

research, engineering simulation, and big data processing, the demand for high-density

computational power continues to rise, and thermal dissipation e�ciency and energy e�ciency have

become critical factors that cannot be ignored. Moreover, in energy-limited settings, such as mobile

devices and IoT devices, extending device battery life is paramount in system design. Traditional

scheduling methods, often lacking in consideration for energy consumption, not only lead to energy

wastage but also hinder the optimal performance of devices. Therefore, developing low-energy

consumption scheduling strategies to prolong device battery life has emerged as a signi�cant

challenge for modern operating system scheduling.

Researchers have started exploring innovative approaches that combine high-performance

computing requirements with energy e�ciency optimization to tackle this challenge. One such

example is presented in the paper ”Automatic Energy-E�cient Job Scheduling in HPC: A Novel

SLURM Plugin Approach” [48], which introduces an energy-e�cient job scheduling method

speci�cally designed for high-performance computing environments. This method involves the

development of a new SLURM plugin that utilizes application-speci�c energy models to guide job

scheduling decisions, e�ectively reducing energy consumption while preserving computational

performance.

In the rapidly evolving domain of federated learning, the paper ”Scheduling Algorithms for Federated

Learning With Minimal Energy Consumption” [49] delves into the optimization of energy

consumption during training on heterogeneous devices by re�ning workload distribution. The authors

propose an optimal solution strategy based on the multiple-choice minimum cost maximum

knapsack packing problem and introduce four algorithms tailored for scenarios with monotonically

increasing cost functions. These methods promote energy conservation and enhance resource

utilization in distributed learning contexts.

qeios.com doi.org/10.32388/XPJYHO 33

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

Furthermore, in the context of Industry 4.0 and IoT environments, the paper ”Heterogeneous Energy-

Aware Load Balancing for Industry 4.0 and IoT Environments” [50] proposes an ML-based resource-

aware processor selection method. This approach achieves e�ective load balancing in heterogeneous

clusters and signi�cantly reduces both execution time and energy consumption by assigning tasks to

energy-e�cient cores. These advancements underscore the importance of integrating energy

e�ciency into scheduling strategies across diverse computing platforms, re�ecting a broader trend

toward sustainable and optimized computing practices.

3.1.2. Memory

In the realm of memory management within modern operating systems, the growing complexity of

workloads and the exponential increase in data volumes have rendered traditional static memory

allocation strategies insu�cient for achieving e�cient resource utilization. To address these

challenges, AI technologies, particularly ML, are increasingly integrated into memory management to

elevate intelligence and e�ciency.

Zhang et al. [51] introduced a Software-De�ned Address Mapping (SDAM) mechanism that leverages

ML to automatically detect program access patterns and optimize data placement within 3D stacked

memory. This mechanism enhances bandwidth utilization and overall system performance and

provides robust support for data-intensive applications, improving memory access e�ciency.

Lagar-Cavilla et al. [52] proposed a software-de�ned remote memory scheme for warehouse-scale

computing systems. This scheme proactively compresses infrequently accessed cold memory pages,

e�ectively creating a remote memory layer. Doing so increases the available memory capacity and

reduces energy consumption through diminished migration frequency between hot and cold data,

thus optimizing memory usage and energy e�ciency.

The Kleio project [53] represents a hybrid memory page scheduler that combines hierarchical storage

management based on historical data with intelligent data placement decisions informed by deep

neural networks. Kleio optimizes data layout for heterogeneous memory architectures, further

enhancing the response speed and e�ciency of the memory subsystem. This approach ensures that

data is placed in the most appropriate memory tier, improving overall system performance.

In memory allocation, LLAMA [54] is an innovative memory allocator that uses ML to predict the

lifecycle of objects, optimizing memory utilization rates and reducing fragmentation in large-page

qeios.com doi.org/10.32388/XPJYHO 34

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

memory. By accurately predicting object lifecycles, LLAMA improves memory allocation e�ciency and

reduces the performance overhead associated with frequent allocation and deallocation operations,

leading to more e�ective memory management.

Lastly, the Adaptive Huge-Page Subrelease strategy[55] focuses on optimizing the performance of

non-migratory memory allocators in warehouse-scale computers. This strategy dynamically

determines when to split large pages and return them to the operating system, enhancing overall

performance. It introduces a new metric called ”actual fragmentation” to measure the impact on large

page coverage when applications rapidly release and reacquire memory, providing a more nuanced

understanding of memory fragmentation and its e�ects on system performance.

These advancements in memory management highlight the potential of AI and ML in addressing the

complexities of modern computing environments, leading to more e�cient and intelligent memory

utilization.

3.1.3. I/O

ML technology is emerging as a potent tool in operating system I/O optimization. Researchers have

begun exploring utilizing ML to enhance the I/O subsystem within operating systems to accommodate

modern, complex, and dynamic workloads.

The SmartOS project[41] introduces a reinforcement learning-based resource management approach,

enabling the operating system to automatically learn and dynamically adjust the allocation of CPU,

memory, I/O, and network bandwidth based on user priorities. This method enhances the system’s

adaptive capabilities and facilitates optimal resource allocation according to real-time demands.

The LinnOS study[56] focuses on the unpredictable performance issues of �ash memory storage,

employing a lightweight neural network to infer the performance of SSDs. This has achieved

predictable performance for storage applications and signi�cantly reduced I/O latency, crucial for

improving the response time and user experience of databases and cloud storage services.

In the application of ML, a study proposes a method to accelerate I/O[57] by overlapping data

replication and reading, using local storage in high-performance computing clusters to alleviate the

I/O bottleneck caused by large-scale training datasets. This approach is particularly suitable for ML

frameworks such as Chainer, enhancing their reading bandwidth and the performance of data-parallel

training.

qeios.com doi.org/10.32388/XPJYHO 35

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

Furthermore, addressing the remote access issue of GPU in AI applications, a study[58] proposes a

GPU-centric method that determines the minimum network latency and bandwidth requirements for

remote GPU invocation, ensuring that AI applications do not su�er in performance and may even be

enhanced.

Lastly, the KML framework[59] is another attempt to integrate ML into the operating system’s I/O

subsystem, aiming to improve I/O performance and support adaptive con�guration through ML. This

framework provides the operating system with a �exible approach to handling diverse I/O demands,

especially in scenarios requiring high throughput and low latency.

These studies demonstrate the potential of ML in optimizing operating system I/O. They address

issues such as resource allocation, performance prediction, data handling, and network requirements

from various perspectives and propel the development of operating systems toward greater

intelligence.

3.2. Security

3.2.1. Threat Identi�cation and Intervention

Threat identi�cation and intervention are indispensable pillars in safeguarding the security of

information systems. They are crucial for the rapid detection and response to potential threats,

thereby preserving data integrity, availability, and con�dentiality. With the escalation in software

complexity and the proliferation of diverse attack vectors, traditional security strategies struggle to

cope with contemporary threats. Thus, harnessing advanced technologies, notably ML and

automation, to augment threat identi�cation and intervention capabilities has emerged as a central

theme in ongoing research.

In software engineering, ”Automated program repair: a step towards software

automation”[60] delineates a methodology employing ML to automate the debugging process. This

innovation targets reducing time spent on error correction, tackling the enduring issues faced in

software development, and the complexities of collaboration within distributed teams. Automation

facilitates the enhancement of both the quality and security of software products.

For Deep Learning (DL) models, ”Toward actionable testing of deep learning models”[61] outlines a

comprehensive testing strategy aimed at identifying property violations or vulnerabilities. This

approach guarantees these models’ reliability, security, and robustness, laying a sturdy groundwork

qeios.com doi.org/10.32388/XPJYHO 36

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

for their deployment in real-world applications. Rigorous testing serves to pinpoint and resolve

inherent �aws, mitigating the risk of failures in critical operations.

In the context of the IoT, ”A novel insider attack and machine learning based detection for the

Internet of Things”[62] identi�es a new type of insider attack exploiting the RPL protocol’s

vulnerabilities, known as the sinkhole attack. It proposes a security framework utilizing ML to

recognize unusual behavior patterns, thereby detecting and preempting such attacks and fortifying

the security of IoT ecosystems.

Addressing the lifecycle management of IoT devices, ”Reboot-oriented IoT: Life cycle management in

trusted execution environment for disposable IoT devices”[63] presents the RO-IoT framework. This

framework employs autonomous updates of entire operating system images and leverages a Trusted

Execution Environment (TEE) along with Public Key Infrastructure (PKI) certi�cates to manage the

lifecycle of IoT devices, ensuring their security and dependability.

To combat software vulnerabilities, ”VulRepair: A T5-based automated software vulnerability

repair”[64] introduces VulRepair, a method that leverages the T5 model and Byte Pair Encoding (BPE)

for automatic vulnerability repairs. This technique enhances repair accuracy and feasibility,

alleviating the burden on security professionals and accelerating the remediation process.

In malware detection for Android devices, ”MSN-droid: The Android malware detector based on

multi-class features and deep belief network”[65] integrates multiple feature layers, including native

layer, permission, and system API features, with a Deep Belief Network (DBN). This integration results

in precise malware detection, boosting the e�cacy and precision of such detection mechanisms

through a layered analytical approach.

For stealthy ”Living-O�-The-Land” (LOL) attacks, ”Living-o�-the-land command detection using

active learning” proposes an active learning framework called LOLAL. This framework selects

uncertain and anomalous samples iteratively, incorporating analyst feedback. It demonstrates

e�ective detection even with minimal labeled data, thus enabling swift identi�cation and prevention

of these covert attacks.

To detect mobile malware, ”Dynamic detection of mobile malware using smartphone data and

machine learning”[66] o�ers a method that applies dynamic hardware features and ML classi�ers like

random forests to identify Android-based mobile Trojans. Despite lacking privileged access, this

qeios.com doi.org/10.32388/XPJYHO 37

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

method achieves commendable classi�cation results, providing a viable solution for malware

detection on mobile platforms.

Lastly, ”Patching locking bugs statically with Crayons”[67] describes a static automated program

repair technology that integrates static analysis with ML to address misuse of sequential locking APIs

in the Linux kernel. This technology markedly improves repair success rates by identifying potential

locking errors via static analysis and suggesting �xes through ML, bolstering the resilience and

security of kernel code.

3.2.2. Privacy protection

Privacy protection is a critical pillar within contemporary information technology, committed to

shielding personal information from unauthorized disclosure or misuse throughout data collection,

storage, and processing. As the pace of digital transformation quickens, the signi�cance of privacy-

preserving technologies has grown, compelling researchers to delve into diverse methodologies to

fortify privacy safeguards while concurrently enabling e�ective data utilization.

In the context of federated learning, the work ”PPFL: Enhancing privacy in federated learning with

con�dential computing”[68] delineates an innovative ML framework that synergizes federated

learning, di�erential privacy, TEEs, and multi-party computation techniques. This amalgamation is

designed to mitigate privacy risks associated with centralized data aggregation by enabling model

training on distributed datasets without directly exchanging original data. Consequently, this

approach diminishes the likelihood of data breaches, bolstering privacy protections for users while

maintaining the precision of predictive models.

Complementarily, the study ”An e�cient method for analyzing widget intent of Android

system”[69] presents a methodological advancement by integrating DL architectures such as

MobilenetV3 and BiLSTM to analyze user intent through the extraction of both visual and textual data.

This methodology enhances the accuracy of privacy-related detections and streamlines the training

process, thus o�ering a more personalized and secure service to users without compromising their

privacy.

Furthermore, ”DarkNetz: towards model privacy at the edge using trusted execution

environments”[70] explores a strategy that leverages TEEs alongside model partitioning on edge

devices to minimize the potential attack surface of deep neural networks. By conducting sensitive

qeios.com doi.org/10.32388/XPJYHO 38

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

computations locally, this technique mitigates the necessity for transmitting sensitive data over

networks, thereby curtailing the risk of data exposure. The architecture of DarkNetz ensures

heightened security for both models and data while preserving the performance integrity of the

models in question.

3.3. Structure Optimization

Operating system architecture optimization aims to provide a more �exible and modular organization

that can adapt to evolving technological demands and increasingly complex computational

environments. Traditional operating system architectures are becoming increasingly limited in

modern computing challenges, such as resource management in cloud environments, e�cient

construction of unikernels, and personalized user interaction requirements. Therefore, researchers

are exploring new methods and technologies to enhance the �exibility and modularity of operating

systems.

One notable advancement involves leveraging ML to augment user interaction within operating

systems. Zhang et al.[71] have introduced an innovative framework that integrates LLMs with ML

algorithms and interactive design principles to emulate authentic user behavior. This methodology

facilitates the establishment of credible virtual A/B testing environments and propels the ongoing

re�nement of personalized services, ensuring that operating systems are more intuitive and

responsive to user needs.

Another signi�cant development pertains to the simpli�cation of unikernel customization and

application portability. Kuenzer et al.[72] have pioneered the Unikraft platform, which adopts a fully

modularized approach to operating system primitives and furnishes a suite of versatile, high-

performance APIs. By doing so, Unikraft empowers developers to construct and deploy specialized

unikernels with relative ease, bolstering the resulting systems’ security and e�ciency.

Moreover, advancements in kernel-bypass techniques have been instrumental in shaping the future of

network stack design. Chen et al.[73] have conducted a comprehensive survey of user-space network

stack con�gurations and evaluated various kernel-bypass methodologies. Their �ndings o�er critical

insights that guide the development of next-generation network stacks, enabling developers to craft

high-performance applications with enhanced network capabilities.

qeios.com doi.org/10.32388/XPJYHO 39

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

The utilization of unikernels in the context of ML has also garnered attention. Leon et al.[74] have

explored strategies to optimize the unikernel construction process, capitalizing on the intrinsic

security and performance attributes of unikernels to facilitate ML inference tasks. This line of inquiry

highlights the untapped potential of unikernels in accelerating ML applications.

Addressing the intricacies of cloud resource management, Pemberton[75] has devised a technique to

synthesize a cohesive ”cloud system interface” from disparate cloud provider APIs. This synthesis

encapsulates the core principles of interface design and delivers a standardized approach to managing

resources across multiple cloud platforms, streamlining the orchestration of large-scale computing

operations.

Zhang et al.[76] have further contributed to the domain by introducing the Demikernel architecture, a

specialized operating system design tailored for microsecond-scale datacenter systems and

heterogeneous kernel-bypass devices. Demikernel’s lightweight and adaptable nature supports

seamless integration with existing systems, achieving sub-microsecond latencies and signi�cantly

boosting operational e�ciency.

The fusion of unikernel optimizations with mainstream operating systems represents another frontier

in OS innovation. Raza et al.[77] have proposed the Unikernel Linux (UKL) project, which seeks to

amalgamate the performance and security bene�ts of unikernels with the extensibility and versatility

of Linux. This initiative underscores a balanced approach to balancing specialized performance gains

with broad compatibility and functionality.

Cadden et al.[78] have addressed the performance bottlenecks associated with serverless computing by

introducing SEUSS, a system designed to expedite function deployment and caching through

unikernel snapshots and page-level sharing mechanisms. SEUSS’s design principles contribute to the

e�ciency and responsiveness of serverless architectures, aligning with the growing demand for

scalable and agile cloud services.

Skiadopoulos et al.[79] have conceptualized DBOS, an operating system paradigm centered around a

distributed transactional database management system (DBMS). This novel architecture serves as a

robust foundation for scalable cluster operations. It integrates essential functionalities like

scheduling, �le management, and inter-process communication, catering to the needs of data-

intensive applications.

qeios.com doi.org/10.32388/XPJYHO 40

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

These contributions rede�ne the boundaries of operating system design, fostering a landscape where

systems are more adaptable, secure, and �nely tuned to meet the speci�c demands of modern

computing workloads.

3.4. OS for AI

Operating Systems for Arti�cial Intelligence (OS for AI) aim to integrate advanced AI technologies to

optimize system performance, enhance user experience, and drive innovation in computing. With the

evolution of AI technologies, particularly the advancements in LLMs, the design of operating systems

has begun to incorporate more AI elements to achieve a more intelligent and personalized computing

environment. These innovations improve the system’s �exibility and e�ciency and provide new

perspectives for designing future computer systems.

A notable example is the AIOS-Agent ecosystem proposed by Ge et al.[80], which envisions a future

where LLMs form the bedrock of intelligent operating systems, facilitating the creation of versatile AI

agent applications through natural language interfaces. This concept represents a paradigm shift in

how we conceptualize and interact with computer systems, moving towards a more intuitive and

dynamic user environment.

Building upon this vision, Mei et al.[81] delve deeper into the practical implementation of an AI-

powered operating system named AIOS. By embedding LLMs directly into the OS, AIOS achieves

enhanced capabilities in resource management, context switching, and security, which are critical for

supporting the concurrent operation of multiple AI agents. This approach not only improves the

computational e�ciency and responsiveness of the system but also sets a new standard for the

seamless integration of AI functionalities into everyday computing tasks.

Packer et al.[82] address the challenge of expanding the contextual awareness of LLMs by introducing

the MemGPT system, which leverages a sophisticated virtual context management mechanism.

Drawing inspiration from the hierarchical memory management techniques used in conventional

operating systems, MemGPT dynamically allocates and manages di�erent types of memory to extend

the e�ective context window of LLMs. This enhancement is crucial for enabling LLMs to perform more

complex and context-sensitive tasks, thereby broadening the scope of applications for AI-driven

systems.

qeios.com doi.org/10.32388/XPJYHO 41

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

Wu et al.[83] present the OS-Copilot framework, which is geared towards the creation of generalist

digital assistants capable of autonomously interacting with the operating system and executing a wide

range of tasks. The framework incorporates self-improvement algorithms that allow these digital

agents to learn from and adapt to user interactions over time, leading to continuous performance

enhancements. Such capabilities underscore the potential of AI to personalize and re�ne the user

experience, making computing more accessible and e�cient.

Xing et al.[84] introduce Prompt Sapper, a novel infrastructure for developing AI-native software

services that harnesses the power of LLMs. Prompt Sapper streamlines the development process,

empowering developers—even those without specialized AI knowledge—to create sophisticated AI

applications. This democratization of AI development tools is expected to spur innovation and

accelerate the adoption of AI technologies across various industries.

Hè et al.[85] focus on personalization and privacy in the cloud-computing era with the introduction of

PerOS, a personalized, self-adapting operating system. PerOS integrates LLM capabilities to o�er a

tailored user experience while ensuring robust data protection measures. The adaptive nature of PerOS

allows it to evolve in response to individual user behaviors and preferences, thus delivering a more

intuitive and secure computing environment.

Lastly, Hong et al.[86] propose MetaGPT, a meta-programming framework that leverages LLMs to

optimize collaboration among multiple agents. By encoding operational protocols into prompt

sequences, MetaGPT facilitates the e�cient coordination of multi-agent systems, thereby enhancing

their collective problem-solving capabilities. This framework exempli�es the potential of LLMs to

transform the landscape of distributed computing and collaborative AI systems.

4. New Era of OS

4.1. Introduction

In the rapidly evolving landscape of computing, the traditional paradigms of OS are being challenged

by the emergence of new technologies and the changing demands of users. The advent of the IoT,

cloud computing, and AI has not only expanded the scope of what an OS must manage but also

introduced a host of new challenges and opportunities. Real-time processing, distributed computing,

and enhanced security are becoming increasingly critical, necessitating a rethinking of how OSes are

designed and implemented. The need for systems that can e�ciently handle vast amounts of data,

qeios.com doi.org/10.32388/XPJYHO 42

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

support complex and dynamic environments, and integrate seamlessly with emerging technologies is

more pressing than ever. This section explores the new era of operating systems, focusing on the

innovative approaches and architectures that are being developed to address these challenges. We

examine how the integration of AI and ML is driving advancements in predictive analytics, adaptive

resource management, and intelligent security. Furthermore, we discuss the concept of an ACOS,

which proposes a modular, adaptable, and cross-platform compatible design, aiming to revolutionize

the way OSes interact with hardware, software, and users. By abstracting system components into

autonomous agents, ACOS seeks to achieve a �exible and scalable architecture that can adapt to

various resource platforms, thereby enhancing system e�ciency and user experience. This section

synthesizes the current landscape and sets the stage for a forward-looking discussion on the future

trajectories of operating systems, highlighting open issues and areas ripe for further research and

innovation.

4.1.1. Challenges in Cross-Platform Adaptation

Few current OSs can run on most devices across all categories, with corresponding distributions often

requiring tailored optimization based on device characteristics. The vast disparity in resource

platforms from high-performance servers to extremely resource-constrained embedded devices

limits the capability of a single OS to cover all scenarios comprehensively. For most operating

systems, supporting a new resource platform typically necessitates substantial modi�cations to core

components, which not only increases development complexity but may also lead to a series of

compatibility issues. Consequently, creating an OS that can seamlessly adapt to all computing devices

remains a signi�cant challenge, thereby restricting the practical emergence and widespread

application of truly cross-platform operating systems.

The considerable di�erences between resource platforms necessitate that OSs consider speci�c

hardware environments and application scenarios during the design phase. Otherwise, maintaining

consistency and e�ciency across di�erent types of devices becomes di�cult. This highlights that

current OS designs still require optimization for speci�c hardware con�gurations to achieve optimal

performance, re�ecting the limitations of operating systems in terms of cross-platform versatility.

qeios.com doi.org/10.32388/XPJYHO 43

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

4.1.2. Poor Strategy Adaptability

Although operating systems have been optimized for speci�c hardware environments and application

scenarios during their design stages, there are inevitable discrepancies between actual hardware

con�gurations, usage scenarios, and preset parameters. Most current operating systems manage

resources and execute tasks using heuristic-based global static strategies, which prove inadequate in

addressing these discrepancies, leading to suboptimal optimization outcomes.

While such static management strategies may be optimal under preset conditions, they lack �exibility

in dynamic real-world environments. When hardware con�gurations or workloads change, static

strategies cannot promptly adjust to new circumstances, thus a�ecting overall performance.

Therefore, the e�ectiveness of optimization solutions in existing operating systems is limited when

facing diverse and continuously changing operational conditions.

4.1.3. Di�culties in Cross-Domain Collaboration

In today’s IoT and cloud computing environment, ine�ective collaboration mechanisms among

devices and systems from di�erent domains lead to low data exchange and resource-sharing

e�ciency. As smart devices and cloud services become more prevalent, cross-device and cross-

platform data sharing and collaboration are becoming increasingly important. However, software for

device collaboration often needs to be developed speci�cally for each domain, signi�cantly increasing

the complexity and cost of system integration.

In most cases, interoperability between devices is constrained by their respective operating systems

and communication protocols, making resource sharing challenging. For instance, in a smart home

scenario, devices from di�erent manufacturers might use various communication standards such as

Wi-Fi, Bluetooth, Zigbee, etc., and their operating systems could di�er. This means that dedicated

adapters or middleware must be written for each pair of devices to achieve seamless collaboration

between these devices, which is time-consuming and labor-intensive.

Furthermore, the lack of standardized data formats and communication protocols can result in data

loss or misinterpretation due to format mismatches, even when physical connections are feasible.

This issue is particularly evident in Industrial IoT (IIoT), where ine�cient information sharing among

sensors, robots, and other automated equipment within a factory can lead to reduced production

e�ciency and increased operational costs.

qeios.com doi.org/10.32388/XPJYHO 44

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

Another issue is redundant computation. When devices cannot e�ectively share computational

resources, each must possess full computational power and storage capacity, wasting resources and

potentially causing performance bottlenecks. For example, in edge computing scenarios, if edge

devices cannot borrow computational capabilities from one another, individual devices may fail to

respond to requests on time under high load conditions due to insu�cient processing power.

4.1.4. Challenges in User Interaction

With the advancement of the Internet of Everything, the variety of devices that user software needs to

support has become increasingly diverse, highlighting the growing disparity between the

development of interaction devices with signi�cant di�erences and the human resources required for

software interaction development. The enrichment of user software by Large Language Models

(LLMs) and AI Agents further exacerbates this disparity, constraining the quality and user experience

of interactions within systems. Speci�cally, user interaction faces the following challenges:

First of all, diverse devices require di�erent interaction. Modern smart devices vary widely, each

posing unique challenges for user interface design. Smartwatches, with tiny screens, require simple

and e�cient interfaces using swipe gestures, button clicks, and voice commands. Smartphones, with

moderate screens, need interfaces that balance information density and usability for touch operations.

Desktop computers, with larger screens, can handle complex interfaces with multiple windows and

detailed settings but must avoid overwhelming users. Smart TVs, used at a distance, need large fonts

and icons for clear visibility and easy remote control operation. Developing distinct interfaces for each

device type is labor-intensive and complicates maintaining consistency, increasing development and

maintenance costs. User habits and expectations also vary across devices, making it challenging to

create a universal user interface design.

Furthermore, modern software requires personalization and dynamic functionality. With the

advancement of technology, especially LLMs and AI Agents, systems can automatically combine tools

and learn user behaviors, generating new applications and expanding functionalities. These new,

personalized, and auto-generated tools require corresponding user interfaces to support their

functions. However, existing user interface generation technologies often fail to adapt quickly to the

needs of these new tools, leading to poor user experiences.

Another issue is the limited �exibility and intuition. Traditional interaction methods are insu�ciently

�exible and intuitive in many scenarios, a�ecting user operational experience. Using text or voice for

qeios.com doi.org/10.32388/XPJYHO 45

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

simple inputs like switching states or selecting items can introduce unnecessary delays and

complexity. Text alone struggles to intuitively express certain states, such as date selection or color

picking. Additionally, the lack of animation and other user feedback mechanisms makes the results

and responses generated by systems less intuitive and appealing.

4.2. Next Generation OS Paradigm

4.2.1. Introduction

With the rapid advancement of information technology, modern computing devices exhibit a trend

toward diversi�cation and heterogeneity. From high-performance servers and PCs to mobile devices

and IoT terminals, these devices display signi�cant di�erences in hardware con�gurations and vary

widely in application scenarios and user requirements. For instance, high-performance servers

typically need to handle large-scale datasets and high-concurrency requests, imposing stringent

computational power and storage capacity demands. In contrast, mobile devices prioritize power

management and user experience, requiring smooth operation and extended battery life within

limited resources. Embedded devices must maintain stable operation in extreme environments while

possessing real-time processing capabilities. This diversity and heterogeneity present unprecedented

challenges for the design of OS.

The varying resource platforms and requirements have led to substantial di�erences in implementing

core components across di�erent device operating systems. These di�erences make it di�cult to

directly reuse modules, forcing developers to undertake independent development e�orts for each OS

environment. For example, a �le system module that performs well on a server may not be directly

transplantable to a mobile device due to the latter’s stricter requirements for memory usage and

power consumption. Similarly, a task scheduler designed for embedded devices may not meet the

high-concurrency demands of a high-performance server. In such cases, developers must invest

considerable time and e�ort into redesigning and implementing these modules to accommodate

di�erent hardware platforms and application scenarios.

Designing a highly modular, scalable, and maintainable operating system has become crucial to

address these challenges. In this context, we propose the concept of ACOS. The central idea behind

ACOS is to abstract all operating system components into independent agents. The OS provides the

foundation and environment for these agents to meet user needs better, while the collaborative

qeios.com doi.org/10.32388/XPJYHO 46

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

outcomes of the agents contribute to the healthy and e�cient operation of the OS. This concept,

encapsulated in our ”Agent for OS, OS for Agent” philosophy, aims to enhance the �exibility and

adaptability of the operating system.

By adopting the ACOS approach, we envision an operating system that dynamically adapts to various

hardware con�gurations and application scenarios. Each agent can be optimized for speci�c tasks and

environments, allowing for e�cient resource utilization and improved performance. Furthermore,

the modular nature of ACOS facilitates more manageable maintenance and updates, enabling the OS to

evolve alongside technological advancements and user needs. This innovative design paradigm holds

the potential to revolutionize the �eld of operating system development, paving the way for more

versatile and e�cient computing solutions.

4.2.2. Agent Abstraction

In the face of increasingly diverse and complex computing environments, the signi�cant di�erences

in hardware con�gurations, application scenarios, and user requirements across various devices pose

substantial challenges to the reusability of core components in OSs. For instance, the resource

management needs of servers and mobile devices di�er markedly; servers emphasize high-

concurrency processing capabilities, whereas mobile devices focus on power consumption control and

user experience. These disparities increase developers’ workload and limit operating systems’

�exibility and adaptability.

To address these challenges, ACOS proposes the concept of ”Anything Anywhere All As Agent,” which

abstracts all operating system components—kernel modules, drivers, or user-space applications—

into agents. Through this conceptual abstraction, ACOS can:

Enhance System Modularity: By abstracting functional modules into agents, ACOS achieves a

highly modular system architecture. This simpli�es replacing and combining components,

promotes loose coupling between di�erent components, and enhances the system’s scalability and

maintainability.

Improve System Adaptability: The loosely coupled design of AI agents allows the OS to �exibly

adjust its composition based on the characteristics of di�erent resource platforms, ensuring

e�cient operation across multiple devices. Additionally, the intelligent attributes of AI agents

enable them to better adapt to environmental changes, enhancing the overall adaptability of the

system.

qeios.com doi.org/10.32388/XPJYHO 47

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

Promote Cross-Platform Compatibility: The agent abstraction facilitates the easy migration of

similar functionalities across di�erent platforms, signi�cantly reducing cross-platform

application porting costs and improving software generality and portability.

Simplify Function Expansion and Optimization: In ACOS, adding or optimizing speci�c functions

requires only introducing or replacing relevant AI agents without extensive modi�cations to the

entire system. Moreover, the ability to dynamically load and unload AI agents further enhances

system �exibility, enabling rapid responses to new requirements and technological changes.

Currently, AI agents are typically de�ned as intelligent entities capable of perceiving environmental

changes, making decisions, and taking action to achieve speci�c goals. Key attributes of AI agents

include autonomy, reactivity, sociality, adaptability, reliability, and security Considering the broad

range of device adaptations and dynamic functional needs of ACOS, AI agents in ACOS must also

satisfy the following additional characteristics:

Figure 7. ACOS Architecture. The �gure depicts the modular architecture of the ACOS. It showcases a

layered design where the User Agent Framework interacts with various applications and services, while

the Agent Communication Interface (ACI) facilitates inter-agent communication. Specialized agents

manage computation, knowledge, security, connectivity, memory, and storage, integrating seamlessly

with underlying hardware components. This structure supports e�cient resource management and

intelligent system operations.

Composability: Composability refers to the ability of AI agents to dynamically combine and

decompose based on task requirements and environmental changes, thereby achieving more

e�cient and �exible task execution and resource allocation. This characteristic enables multiple AI

agents to �exibly integrate into a higher-level agent to accomplish newly emerging tasks. The

resulting composite agent possesses enhanced processing capabilities and a broader perception

range and forms a uni�ed entity by collaborating with its constituent sub-agents, thereby

qeios.com doi.org/10.32388/XPJYHO 48

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

achieving new collective objectives.

Conversely, when faced with simple or speci�c tasks, a complex agent can be decomposed into

multiple independent sub-agents, each focusing on handling particular tasks or functions. This

approach improves resource utilization e�ciency and enhances the system’s reliability and fault

tolerance. By dynamically adjusting the composition of AI agents, the system can optimally allocate

resources and adapt to varying operational conditions, ensuring robust and e�cient performance.

Instrumentality: Instrumentality refers to the capability of an individual agent to serve as the most

basic unit for completing independent tasks and to function as a tool or resource for another agent,

providing speci�c functionalities or services. This characteristic enables AI agents to form

complementary relationships, which leverage each other’s capabilities to accomplish their tasks

more e�ectively. Instrumentality is not limited to hardware agents but can also be applied to

software agents, such as those providing computational, storage, or communication services.

Instrumentality enhances the system’s resource utilization and functional extensibility by

fostering inter-agent cooperation. It ensures that each agent can fully utilize its strengths to

support and service other agents, optimizing the system’s overall performance and e�ciency.

Collaborativeness: Collaborativeness refers to the ability of multiple AI agents to e�ectively

communicate and coordinate with one another to accomplish tasks collectively. This characteristic

enables AI agents to form teams, divide labor, and collaborate to achieve common goals.

Collaborativeness requires agents to possess robust communication capabilities and the ability to

understand and adapt to other AI agents.

Through collaboration, AI agents can share information, coordinate actions, and resolve con�icts,

thereby enhancing the overall e�ciency and e�ectiveness of the system. Collaborativeness is a

critical feature for the e�cient operation of multi-agent systems, as it allows the system to

leverage each agent’s capabilities and resources fully. This synergy ensures the system can

optimize its performance and achieve its objectives more e�ectively.

Scalability: Scalability refers to the ability of a multi-agent system to expand its capabilities and

performance by incorporating new agents or functional modules. This characteristic enables the

system to continually upgrade and adapt to changing requirements and technological

advancements, maintaining long-term viability and competitiveness. Scalability requires the

system to have a well-designed modular architecture and requires �exible interfaces and protocols

to facilitate the seamless integration and collaborative operation of new agents.

qeios.com doi.org/10.32388/XPJYHO 49

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

Through scalability, the system can continuously adapt to new application scenarios and

technological developments, ensuring it meets future needs. This ongoing adaptability is crucial for

sustaining the system’s relevance and e�ectiveness in dynamic and evolving environments.

4.2.3. ACOS Architecture

ACOS adopts a �at architectural design, treating all system modules, software, and hardware drivers

abstracted as agents with equal structural status. This design enables ACOS to manage and utilize

various computing resources more e�ectively while enhancing the system’s stability and reliability.

Precisely, the architecture of ACOS consists of several key components:

Agent Communication Interface (ACI): As an intermediary interface, the ACI connects di�erent

types of agents, facilitating e�cient communication between them. This ensures that all agents

can collaborate on an equal structural footing. The ACI achieves higher communication e�ciency

by eliminating the overhead associated with hierarchical designs.

Agents: In ACOS, agents consist of APP/Shell, Kernel, and Hardware Agents.

App/Shell Agents manage user interactions and provide user-facing functionalities; Kernel Agents

handle the management of underlying system resources; Hardware Agents control hardware

devices and provide low-level hardware management.

Hardware: The direct hardware infrastructure on which ACOS operates.

ACOS’s system architecture inherently supports distributed collaboration. Through various physical

links at the hardware level, the communication interface of ACOS can be extended to all devices within

the same connected environment. This signi�cantly expands the scope of agent collaboration,

enhancing the possibilities and potential for task coordination among agents.

qeios.com doi.org/10.32388/XPJYHO 50

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

4.3. Agent for OS

Figure 8. ACOS Knowledge & Memory Management. This �gure illustrates the knowledge and memory

management framework within the ACOS. It demonstrates the process of unifying intermediate

formats, evaluating and dispatching knowledge, and optimizing collaborative performance. The

diagram shows how agents negotiate for format consensus, retain, reformat, or discard information,

and utilize local and global knowledge to achieve high-performance optimization.

4.3.1. Knowledge & Memory Manager Agent

Due to their varying roles, di�erent agents often exhibit signi�cant di�erences in the forms of

knowledge and memory they manage. For example, a network monitoring agent might record detailed

network tra�c data and patterns. In contrast, a task scheduling agent might focus on the execution

characteristics and resource usage of tasks on the device. Suppose knowledge and memory are stored

haphazardly without proper management. In that case, they will become di�cult for other agents to

utilize, leading to information silos among agents and a�ecting the e�ciency and capability of

knowledge utilization within the system.

One of the critical features of agents in ACOS is that they are knowledge-based. A lack of high-quality

knowledge can result in poor agent performance, while a lack of high-quality memory can hinder

knowledge improvement, impacting the user experience and e�ciency of system usage. Therefore, it

is essential to manage and schedule the knowledge and memory generated by system operations, such

as logs, to enhance the capabilities of agents within the system continuously. Speci�cally, the

following aspects require management:

1) Knowledge and Memory Formats

qeios.com doi.org/10.32388/XPJYHO 51

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

Di�erent agents manage their knowledge and memory in ways that re�ect their primary tasks and

capabilities. This variation makes it di�cult for one agent to understand and utilize the knowledge

and memory of another agent to optimize its knowledge. To break down the isolation of knowledge

and memory among agents, when introducing new agents, it is necessary to negotiate and collect the

formats of their persistent knowledge and memory, ensuring they adopt formats that align with the

system-wide standards. Additionally, mappings should be established between these formats and the

system-wide standard formats to enable the system to comprehensively understand the state of

knowledge and memory, facilitating subsequent integrated utilization.

2) Storage Forms

The di�erences in agent tasks lead to variations in how they store knowledge and memory. For

instance, some agents require high-frequency, fast-recovery log storage, while others manage

knowledge and memory that consume signi�cant storage space. ACOS should meet these

di�erentiated needs by managing the storage of agent knowledge and memory, thereby improving the

e�ciency of production and utilization and facilitating management and application.

3) Log Processing

During the operation of agents, a large volume of logs is generated, many of which lack the value

necessary for knowledge utilization. To enhance the e�ciency of log utilization, the Knowledge

Manager will perform data cleaning, format conversion, removal of redundant information, and

annotation and evaluation of the logs. Speci�cally, data cleaning involves removing invalid or

erroneous log entries; format conversion ensures that all logs conform to a uniform standard; the

removal of redundant information prevents the unnecessary occupation of storage space; and

annotation and evaluation involve adding tags and weights to necessary log entries to facilitate

subsequent analysis and utilization. Through these steps, the Knowledge Manager can signi�cantly

improve the quality and usability of log data, providing robust support for the intelligent management

and optimization of the system.

4) Update Scheduling

Agents have varying knowledge requirements. Some agents, such as those performing static data

analysis, may not require frequent knowledge updates due to the nature of their tasks. Conversely,

agents responsible for dynamic environment sensing or customer service may need more frequent

updates to adapt quickly to environmental changes or user needs. The devices on which agents reside

qeios.com doi.org/10.32388/XPJYHO 52

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

also in�uence knowledge updates; for example, edge computing devices, constrained by

computational power, often cannot perform frequent updates. Therefore, ACOS should be able to

schedule knowledge updates and optimizations for agents based on their characteristics and the

knowledge and memory generation within the system.

5) Knowledge Selection

When optimizing knowledge, an agent’s internal knowledge and memory may have limitations,

leading to suboptimal results in multi-agent collaborations. Therefore, knowledge selection and

infusion are necessary to help agents focus on the characteristics of their environment, ensuring that

the behavior goals of agents within the system are aligned. ACOS should select appropriate portions of

knowledge from the knowledge bases of other managed agents and provide them as supplementary

knowledge to enhance agents’ comprehensive capabilities and development.

4.3.2. Compute Scheduler Agent

Figure 9. ACOS Resource Managing Manicheism. Figure illustrating the concept of Agent Centric

Resource Scheduling in an operating system environment, demonstrating how resources from

computing pools (CPU, NPU, GPU and so on) and storage pools (NVM, SSD, HDD and so on) are

allocated transparently to individual agents based on their requirements, followed by scheduling

strategies aimed at optimizing performance and cost balance, spatial-temporal defragmentation, and

achieving global optimum resource utilization.

qeios.com doi.org/10.32388/XPJYHO 53

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

In modern computing environments, the operating system, the core program responsible for

managing computer hardware and software resources, is crucial in delivering high-performance

computing services. The operating system’s e�ciency and �exibility are essential for optimizing

resource utilization. With the widespread adoption of multi-core processors and the advancement of

heterogeneous computing architectures, the available resource types within a system have expanded

signi�cantly. Traditional process scheduling mechanisms based on �xed rules are now facing

unprecedented challenges.

The Compute Scheduler Agent is designed to e�ciently integrate and manage internal computing

resources within the system to address evolving workload patterns and the demand for multi-

objective performance optimization. This goes beyond traditional CPU time-slice allocation and

extends to the comprehensive scheduling of various computing units, including GPU, NPU, and DPU.

By adopting a holistic and in-depth resource integration strategy, the Compute Scheduler Agent can

more �exibly adapt to di�erent computational demands, ensuring that the hardware potential is

maximized across various application scenarios.

The Compute Scheduler Agent must collaborate closely with computational hardware agents such as

CPU, GPU, NPU, and DPU Agents to create an e�cient and coordinated working environment. This

involves not only identifying and aggregating all available computing resources but also having the

capability to allocate these resources e�ectively to di�erent tasks. Particularly in handling large-scale

parallel computing tasks, the Compute Scheduler Agent can employ optimization algorithms to

facilitate e�ective collaboration among multiple computing units, thereby enhancing the overall

computational e�ciency of the system. Additionally, by abstracting heterogeneous computing

resources into a uni�ed compute pool, the Compute Scheduler Agent can dynamically adjust resource

allocation strategies based on the speci�c characteristics of each task, ensuring that every task

receives the most suitable computational support for its execution conditions. This approach

improves the overall computational e�ciency of the system.

The Compute Scheduler Agent focuses on optimization in the following areas:

1) Resource Utilization

Enhancing the system’s overall e�ciency by minimizing idle times for resources. This means that

when tasks are waiting to be executed, the scheduler should be capable of rapidly identifying and

allocating appropriate resources to these tasks, thereby avoiding performance wastage due to resource

idleness. Furthermore, e�ective resource allocation strategies can promote e�cient collaboration

qeios.com doi.org/10.32388/XPJYHO 54

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

among tasks for multi-core and heterogeneous computing environments, improving the system’s

overall performance.

2) Dynamic Adaptability

The scheduler must possess high �exibility and self-adjustment capabilities to adapt to application

requirements and system load changes. This requires scheduling policies to quickly respond to

external environmental changes, such as the addition of new tasks or changes in the priority of

existing tasks, without compromising system stability. Dynamic adaptability ensures the system can

consistently provide e�cient service under various operating conditions, particularly in highly

uncertain and dynamic application scenarios.

3) Energy E�ciency Optimization

While ensuring performance requirements are met, measures are taken to minimize unnecessary

energy consumption. This involves strategically scheduling the use of computational resources during

task execution, such as dynamically adjusting processor frequency and voltage to save power or

optimizing the physical layout of tasks to reduce communication overhead. E�ective energy

management can extend operational time and enhance user experience for battery-powered devices.

In large-scale data centers, it can help reduce operational costs and carbon emissions.

4) User Intent Ful�llment

Deeply understanding and predicting user habits and preferences to align scheduling decisions more

closely with actual user needs. For instance, in personal computing environments, the scheduler can

quickly respond to user actions, such as launching applications, and prioritize these tasks to ensure

they receive su�cient computational resources. In enterprise applications, resources should be

�exibly allocated based on the characteristics of business processes to support the e�cient operation

of critical business tasks. By doing so, the system can improve response times and processing

capabilities and signi�cantly enhance user satisfaction and work e�ciency.

To provide superior scheduling choices compared to traditional rule-based heuristics, the Compute

Scheduler Agent must acquire knowledge about the system and processes, enabling device-speci�c

and environment-adapted scheduling decisions. This is re�ected explicitly in the following aspects:

Computational Unit Con�guration: Understanding the current device’s computational

architecture, including the number, type, and instruction sets of cores. For instance, for processors

with multiple cores of di�erent performance levels (such as ”big.LITTLE” designs), the scheduler

qeios.com doi.org/10.32388/XPJYHO 55

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

must be able to distinguish and fully utilize the characteristics of these cores to enhance parallel

processing capabilities and system response speed.

Task Characteristic Analysis: Collecting and evaluating each process’s requirements and current

states, such as computational intensity, I/O operation frequency, and estimated execution time.

The runtime status of processes and their associated tasks helps the scheduler make more timely

and accurate decisions. For example, for tasks nearing completion, the scheduler can appropriately

extend their time slices to release computational resources sooner; tasks performing critical

computations should ensure they receive the necessary support to prevent starvation and other

issues.

User Behavior Patterns: Gaining a deep understanding of user usage habits, including the types of

frequently run applications and peak workload periods. By continuously observing and learning

user behavior, the scheduler can predict future resource demands and prepare accordingly. For

example, suppose it is observed that users typically open email clients to check messages in the

morning. In that case, the scheduler can pre-activate relevant services before this period to reduce

startup time and enhance user experience.

The extensive coverage of device types in ACOS necessitates that the system operates e�ectively

across platforms with signi�cant performance variations. Consequently, the process scheduling

methods must be meticulously designed to meet the high demands for real-time performance. For

devices ranging from low to high performance, the tools available to the Compute Scheduler Agent

include, but are not limited to:

Rule-Based Heuristic Scheduling: Optimizing scheduling parameters through device virtualization

or leveraging the computational power within the environment to enhance performance.

Multi-Scheduler Algorithm Coordination: Dynamically switching between di�erent scheduling

methods based on changes in load scenarios to meet dynamic requirements.

AI Scheduling with ML/DL: Utilize lightweight ML and DL models to intelligently generate

scheduling decisions and continuously update these decisions using knowledge within the system.

4.3.3. Memory Manager Agent

With the increasing complexity of computing architectures and the diversi�cation of application

requirements, traditional memory management mechanisms have gradually revealed several

limitations. For example, �xed memory allocation strategies struggle to adapt to dynamically

qeios.com doi.org/10.32388/XPJYHO 56

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

changing workloads, often leading to memory fragmentation and resource wastage. The lack of

intelligent analysis of memory usage patterns results in sluggish system responses to sudden memory

demands. Additionally, traditional memory management mechanisms often overlook the speci�c

needs of di�erent application scenarios, such as the distinct memory requirements of real-time and

batch-processing tasks. These issues impact the system’s overall performance and can lead to

decreased system stability and degraded user experience.

To address these challenges, the Memory Manager Agent is an essential component in the ACOS

architecture, aiming to improve memory resource utilization and overall system performance through

intelligent decision-making. Speci�cally, the optimization goals of the Memory Manager Agent focus

on the following areas:

1) Memory Utilization E�ciency

Ensuring that memory resources are fully utilized and minimizing additional memory overhead

caused by fragmentation and lifecycle inconsistencies. This means that when there is a memory

request, the Manager can quickly and accurately allocate appropriately sized and positioned memory

blocks to the requester. Simultaneously, it should promptly reclaim memory when it is no longer

needed, enhancing the continuity and availability of memory space.

2) Dynamic Adaptability

Responding to changes in system memory demands, such as application startups, shutdowns, or

shifts in memory usage patterns. This requires the Manager to have self-adjustment capabilities,

enabling it to dynamically modify memory management strategies based on the current system state

and predicted future trends. For instance, the detection of increased system memory pressure can

trigger memory compression or migration operations to alleviate memory congestion.

3) System Stability

Optimizing memory usage while ensuring system stability and reliability are not compromised. This

includes preventing system crashes or signi�cant performance degradation due to improper memory

management. Safe memory management strategies can e�ectively mitigate these issues, such as

setting memory usage caps and reserving emergency memory regions.

4) User Demand Responsiveness

Understanding and adapting to changes in user memory usage demands, especially in multi-user or

multi-task environments. For example, graphic-intensive applications or big data processing tasks

qeios.com doi.org/10.32388/XPJYHO 57

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

can be prioritized for more memory allocation, while lightweight tasks can be allocated less memory

to achieve balanced resource distribution.

To achieve these goals, the Memory Manager Agent must possess the following characteristics:

Compute Resource Awareness: Understanding the current device’s memory architecture, including

both physical and virtual memory’s capacity, speed, and latency.

Memory Demand Analysis and Negotiation: Collecting and evaluating each process’s actual

memory requirements and expected behaviors, such as memory consumption rates and peak

memory usage. By negotiating with agents regarding memory usage and occupancy duration,

memory utilization e�ciency can be improved.

System State Monitoring: Continuously monitoring the system’s memory usage, including critical

metrics such as total memory occupancy and free memory levels. It should execute memory

compression and migration operations when necessary to maintain optimal system performance.

4.3.4. Storage Manager Agent

In today’s complex computing ecosystem, storage management, serving as a critical bridge between

applications and underlying hardware, has become increasingly signi�cant. With technological

advancements, the variety and quantity of storage media in modern systems have grown

substantially, ranging from high-speed non-volatile memory (NVM) to SSDs, traditional HDDs, and

even tape storage. Each medium possesses unique performance characteristics and cost-e�ectiveness.

This diversity brings �exibility but poses new challenges in e�ciently managing and utilizing these

resources.

Storage Manager aims to construct a storage system that meets high-performance demands while

ensuring high reliability. This is achieved through intelligent data placement strategies, e�cient

storage optimization mechanisms, and comprehensive data protection measures. To accomplish this

goal, the Storage Manager Agent must transcend traditional single-tier storage solutions and adopt a

more �exible and adaptable hierarchical storage architecture. This architecture allows data to be

automatically placed on the most appropriate storage tier based on access patterns, importance, and

other factors, thereby achieving an optimal balance between speed, capacity, and cost. Additionally,

the architecture must ensure the smoothness and e�ciency of data migration processes to minimize

the system overhead associated with data movement.

qeios.com doi.org/10.32388/XPJYHO 58

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

Building on this foundation, the Storage Manager Agent must also possess high transparency,

presenting a uni�ed and continuous storage space view to upper-layer applications and other system

components regardless of the actual storage tier. This transparency simpli�es application design and

enhances the overall �exibility and maintainability of the system. To achieve this, the Storage

Manager Agent must e�ectively manage the abstraction layer of storage resources, ensuring that

upper-layer applications do not need to concern themselves with the speci�c implementation details

of the underlying storage.

To ensure data security and integrity, the Storage Manager Agent incorporates disaster recovery

mechanisms that automatically execute multi-level backup strategies based on the importance of

di�erent data. These mechanisms include local redundant backups and may involve cross-

geographical data replication to meet the ”3 copies, 2 types of media, at least one o�site” (3-2-1)

principle, thereby enhancing data availability and durability.

Since data access patterns can change over time, the Storage Manager Agent adopts dynamic data

migration strategies. It regularly analyzes data’s access frequency and importance, moving active data

to faster storage tiers and infrequently accessed data to lower-cost media. This adaptive storage

optimization process is ongoing and automatically adjusts according to changes in the system’s

internal and external environments, ensuring the system remains optimal.

Finally, the Storage Manager Agent strongly emphasizes data security in response to growing

demands for data privacy protection. It implements strict data isolation measures and selective

encryption techniques to ensure the security of sensitive information throughout its lifecycle.

Whether data is stored at rest or transmitted, it is e�ectively protected against unauthorized access

and leakage.

4.3.5. Network Manager Agent

Network management is paramount as a critical link connecting various computing nodes in network-

intensive and distributed computing environments. With the rapid advancement of network

technology and the increasing complexity of application scenarios, traditional network management

strategies have become inadequate in meeting the modern computing system’s demands for high

bandwidth, low latency, and dynamic adaptability. Against this backdrop, the design philosophy of the

Network Manager Agent focuses on establishing an intelligent and e�cient network resource

management system. The goal is to optimize data transmission paths, enhance network resource

qeios.com doi.org/10.32388/XPJYHO 59

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

utilization, and improve the system’s dynamic adaptability, thereby comprehensively elevating

network performance.

The Network Manager Agent aims to address the challenge of e�ectively managing network resources

in highly dynamic network environments, ensuring the e�ciency and reliability of data transmission.

It must possess robust network awareness to achieve this, enabling real-time monitoring of network

conditions, including key performance indicators such as bandwidth, latency, and packet loss rates

across various network interfaces. This deep network insight forms the foundation for the Network

Manager Agent’s intelligent decision-making, allowing it to �exibly adjust data transmission

strategies based on current network conditions, thus ensuring optimal network service quality under

any circumstances.

When handling multiple potential network links, the Network Manager Agent employs advanced

tra�c management and scheduling algorithms to intelligently select the most suitable transmission

paths among multiple network interfaces. This process involves more than simply choosing the

fastest or most stable link; it also considers overall network load balancing to avoid overloading a

single link while considering the rate and latency requirements of data transmission to ensure

e�cient and smooth data �ow through the network. Additionally, the Network Manager must be able

to recognize and learn network patterns by analyzing historical data and current network activities,

predicting potential network congestion or other anomalies, and taking preemptive measures to

maintain stable network operations.

In response to the varying network resource requirements of di�erent applications and services, the

Network Manager Agent also undertakes the task of �ne-grained tra�c control. This means it must

dynamically adjust network resource allocation based on factors such as applications’ importance and

real-time requirements, ensuring that critical applications receive priority data transmission

channels while other applications are served according to the availability of remaining resources. Such

a mechanism enhances the e�ciency of network resource utilization and increases the system’s

�exibility and responsiveness, ensuring that even under suboptimal network conditions, critical tasks

can still be completed successfully.

4.3.6. Security Agent

In modern computing environments, the continuous evolution of network attack techniques has

rendered traditional security measures insu�cient to meet the increasingly complex demands of

qeios.com doi.org/10.32388/XPJYHO 60

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

network security. To address this, the Security Agent focuses on constructing an intelligent security

defense system capable of proactively identifying potential threats and possessing high adaptability to

counter evolving attack methods. By profoundly integrating ML and advanced data analytics, the

Security Agent can learn the normal behavior patterns of various Agents within the system and

e�ectively detect deviations from these norms, thereby assessing the presence of potential security

threats.

To achieve this objective, the Security Agent must �rst be equipped with detailed behavioral

knowledge, encompassing a wide range of known security threat characteristics and patterns.

Through continuous monitoring of the activities of various Agents within the system, the Security

Agent can continually collect new data and compare it with existing behavioral pattern knowledge.

The Security Agent can promptly respond and implement appropriate protective measures when

detecting anomalous behavior—whether a new variant of a known threat or an unknown novel attack.

Furthermore, to enhance threat detection accuracy, the Security Agent can automatically extract

useful features from vast amounts of historical data, continuously re�ning its detection models to

identify unknown threats e�ectively.

Beyond strengthening its own threat detection capabilities, the Security Agent emphasizes

collaborative work with other system components. In network environments, the information

available from a single node is often limited. By sharing threat intelligence with other nodes, the

overall security level of the entire network can be signi�cantly enhanced. Therefore, the Security

Agent is designed with an e�cient threat intelligence exchange mechanism that allows rapid sharing

of the latest threat information between devices of varying performance levels. Devices with weaker

computational capabilities can obtain the latest security updates from higher-performance devices

without bearing the heavy burden of data processing tasks. This collaborative mechanism improves

the network’s response speed to newly emerging threats. It promotes the widespread dissemination of

cybersecurity knowledge across the network, forming a more tightly integrated security defense

network.

4.3.7. Environment Sensing Agent

In developing intelligent environment sensing systems designed for broad device coverage, the

Environment Sensing Agent focuses on integrating and coordinating Sensor Agents distributed across

various geographical locations to capture and understand physical environmental characteristics

qeios.com doi.org/10.32388/XPJYHO 61

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

precisely. The approach is rooted in the deep integration of edge computing and IoT devices within the

ACOS environment. By leveraging these devices’ inherent environmental sensing capabilities, the goal

is to provide detailed and real-time data about the physical world for upper-layer applications and

services.

The core of Environment Sensing Agent is constructing a perception network that can dynamically

adapt to environmental changes. This network must identify and integrate data streams from

di�erent types of sensors and �exibly adjust the frequency, precision, and scope of data collection

based on speci�c environmental requirements and conditions. To achieve this, Environment Sensing

Agent must possess robust data processing and analysis capabilities to ensure that valuable

information is extracted from massive sensor data. This involves understanding and parsing the

information provided by each Sensor Agent, including but not limited to their location, sensing

modality (such as temperature, humidity, light intensity), data format, and sampling rate.

Moreover, the design of Environment Sensing Agent must consider the e�ective management and

maintenance of a large and heterogeneous group of Sensor Agents. Given the low-power

characteristics of IoT devices, the collaboration with the Sensor Agents running on them must

consider factors such as energy consumption and employ reasonable task scheduling and

synchronization mechanisms. This allows Sensor Agents to autonomously or semi-autonomously

adjust their operating modes based on environmental changes and the needs of upper-layer

applications. This design allows Environment Sensing Agent to function as an intelligent sensing

node, operating independently and collaborating with other environmental sensing nodes to form a

multi-layered, multifunctional environmental sensing network.

To achieve comprehensive environmental state perception, Environment Sensing Agent must also

possess advanced data analysis and pattern recognition capabilities. This goes beyond simple data

aggregation to recognizing patterns and trends within the data and even predicting future

environmental changes. Environment Sensing Agent can learn environmental behavior patterns from

historical data, enhancing its predictive capabilities regarding environmental changes. This provides

more accurate and timely data support for decision-making, resource management, and other upper-

layer applications.

qeios.com doi.org/10.32388/XPJYHO 62

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

4.4. OS for Agent

4.4.1. User Agent Interaction

Figure 10. ACOS Agent UI/UX. This �gure presents an overview of the User Interface/User Experience

(UI/UX) design considerations for ACOS Agents within the context of an ACOS. It highlights key aspects

such as input/output forms and types, user interface construction including component selection,

layout de�nition, interaction logic, and the principle of building once but running anywhere anytime.

The diagram emphasizes the importance of tailoring the UI/UX to meet diverse requirements by

considering factors like user abilities, device capabilities, preferences, habits, culture, etc., thereby

enhancing usability and accessibility across di�erent environments and scenarios.

To overcome the limitations of existing agent interaction methods and provide a more intuitive and

user-demand-oriented interaction experience, ACOS proposes a brand-new interaction design

concept. This design concept not only emphasizes the transition from CLI to GUI but also focuses on

fully considering the characteristics of agents (such as input and output types) and user needs (such as

the acceptance of size, color, and interaction methods by di�erent age groups) with minimal user

intervention to produce the most suitable GUI. To achieve this, ACOS has constructed a multi-layered

design framework at its Shell layer, ensuring that every step, from information collection and analysis

to the �nal construction of the user interface, is closely linked and highly automated.

qeios.com doi.org/10.32388/XPJYHO 63

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

1) Knowledge Collection and Organization

At the knowledge collection level, ACOS should thoroughly consider the requirements of various

aspects of agent interaction and obtain and organize necessary information, focusing speci�cally on

the following:

Input/Output Forms of Agents: Understanding the types of inputs and outputs supported by agents,

such as text, images, sound, etc. This helps determine the most suitable user interface components

for the current interaction scenario. For example, if an agent primarily handles image recognition

tasks, the interface may need to integrate camera controls and an image preview area.

Characteristics and Habits of User Interaction: Recording typical interaction methods used by

users, such as touchscreen gestures, mouse clicks, etc. Additionally, personalization settings such

as font size, weight, accessibility features, and text direction must be considered. During system

operation, user behavior data and A/B testing methods can be used to learn user preferences, which

can be applied to improve the interaction interface. This information can help optimize the layout

and control design of the user interface, enhancing user operational e�ciency.

Speci�c Characteristics of Devices: Screen resolution, touch capabilities, physical button

con�gurations, and other characteristics di�er among desktop computers, laptops, tablets, and

smartphones. Based on these characteristics, recommendations can be made for the most suitable

user interface designs.

2) User Interface Construction

At the user interface construction level, appropriate interaction components are selected for

interactive elements based on knowledge about agents, users, and devices, and layouts along with

business logic are generated to form usable interaction interfaces.

This multi-layered design allows ACOS to handle complex interaction scenarios �exibly, providing

users with smooth, intuitive, and personalized interaction experiences, whether for simple

information queries or complex task executions. This design concept not only improves the e�ciency

of user-agent interactions but also greatly enhances the adaptability and accessibility of user

interfaces, opening up new possibilities for future intelligent interaction technologies.

qeios.com doi.org/10.32388/XPJYHO 64

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

4.4.2. Agent Security and Permission Management

Figure 11. ACOS Secure Datapath. This diagram illustrates the secure data path within an ACOS,

highlighting its ability to ensure user data security across all stages of the process. It begins with

verifying users before allowing them access to speci�c agents tailored to their needs or purposes. These

agents then communicate securely over encrypted links to devices that have been veri�ed as safe and

appropriate for handling sensitive information. Finally, purpose-matched target data is delivered back

to authorized users via this protected pathway, ensuring con�dentiality throughout the entire

transaction.

In ACOS, data �ows through four aspects: from the user to the agent, then through a link to the device,

to meet users’ dynamic and diverse needs. Since ACOS supports various device types and facilitates

native distributed agent collaboration, it faces a signi�cant challenge: securely and e�ciently

transmitting data between aspects with di�ering ownership and security capabilities. To tackle this

issue, ACOS emphasizes four core security and permission management characteristics. The goal is to

create a data �ow environment that is both �exible and secure. Speci�cally, each stage of the data �ow

should:

1) Credibly Certi�ed

To prevent sensitive data from being illegally intercepted or tampered with, ACOS ensures that all

stages of data �ow undergo strict authentication processes. This means that a user, an agent, a link, or

a device must all go through a series of authentication steps before participating in data exchange to

qeios.com doi.org/10.32388/XPJYHO 65

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

verify their identity and legitimacy. By doing so, the system can prevent unauthorized entities from

intervening, ensuring that data �ows only through prede�ned, secure paths and safeguarding privacy.

2) Permission Granted

Unauthorized access to unpermitted data poses a threat to user privacy. Therefore, ACOS adopts a

�ne-grained permission management strategy to ensure that participants can only access and

manipulate data relevant to their tasks. This permission management not only assigns permissions

based on participants’ roles but can also dynamically adjust according to task changes. Through this

method, ACOS can ensure the regular operation of system functions while minimizing unnecessary

data exposure, thus protecting user privacy from infringement.

3) Meet Security Capability Standards

Due to various constraints, the security capabilities of each stage in data �ow often di�er. For

example, IoT devices may lack the computational power to run complex encryption algorithms,

whereas computers often have security mechanisms such as Trusted Platform Modules (TPMs). If the

stages through which data �ows are not appropriately chosen, weak links in security may be

introduced, posing potential risks of data leakage and destruction. Therefore, the system needs to

evaluate the security capabilities of each device and the sensitivity of each task/data to decide which

data and tasks can be scheduled to which devices. For susceptible data, the system prioritizes aspects

with more robust security capabilities for processing, while for general data, more relaxed standards

can be adopted to achieve the best balance between security and e�ciency.

4) Ensure Ownership Security

In the distributed collaboration environment of ACOS, each stage may belong to di�erent owners, and

clearly de�ning ownership boundaries at each stage is a crucial means of maintaining data security.

The system needs to identify and manage devices, agents, and links belonging to di�erent owners,

ensuring that data �ow adheres to strict ownership rules. For instance, personal data should not leave

the scope of personal control without permission, and enterprise-sensitive data should only be

processed in secure environments within the enterprise, thereby e�ectively preventing data leakage

risks due to unclear ownership.

4.4.3. Agent Task Scheduling

1) Agent Perception Mechanism

qeios.com doi.org/10.32388/XPJYHO 66

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

To mitigate the overhead associated with continuous Agent polling, ACOS facilitates Agents to

subscribe to events pertinent to their operations. It is imperative that system events are detectable by

the respective Agents, referred to as triggering Agents, to ensure timely action. ACOS employs an

event-driven architecture coupled with temporal management to accomplish this. Whenever

prede�ned conditions are satis�ed—such as the receipt of an external command or the attainment of

a scheduled time—the pertinent Agent is activated to undertake the requisite task. Post-task

completion, the Agent transitions into a dormant state, ready for subsequent activations. This

mechanism ensures Agents remain responsive to both internal and external stimuli, preserving the

system’s dynamism and adaptability.

2) Agent Context Switching and Continuity

When transitioning between operational states, ACOS meticulously maintains the runtime context of

Agents, encompassing ongoing data processing, intermediate results, and con�guration settings. This

provision guarantees seamless continuation of tasks, even when Agents migrate across devices or

undergo temporary hibernation, thus upholding service continuity and stability. By doing so, ACOS

optimizes resource utilization, contributing to the system’s operational e�ciency.

3) Cross-Device Scheduling Strategy

To foster e�ective multi-Agent collaboration, ACOS incorporates a sophisticated cross-device

scheduling framework. This framework dynamically relocates Agents to optimal devices based on

environmental conditions and task speci�cations, thereby enhancing task ful�llment and user

satisfaction. Speci�cally, the system evaluates the capabilities and attributes of available devices to

determine the most suitable platform for executing a given task. For instance, computationally

intensive tasks are directed to devices boasting superior processing power, whereas latency-sensitive

tasks are delegated to edge devices with minimal delay.

4.4.4. Agent Collaboration

1) Agent Topology Design

The topology design within ACOS balances �exibility and e�ciency, allowing Agents to form dynamic

mesh networks at the physical layer, which ensures robust connectivity. Logically, these networks can

be structured in star con�gurations centered around key nodes, facilitating streamlined control and

management. This design principle ensures the system’s adaptability to diverse application scenarios,

whether they demand decentralized decision-making processes or centralized resource allocation.

qeios.com doi.org/10.32388/XPJYHO 67

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

Given the dynamic nature of collaboration networks, where Agents may join or depart unpredictably,

ACOS features an adaptive mechanism for selecting central nodes. This selection process is automated

and context-aware, ensuring the system’s resilience against rapid network changes and Agent

failures, thereby sustaining operational e�ciency and service quality.

Figure 12. Agent Topology Structure. The �gure illustrates the ACOS topology, divided into two

parts: Mesh Physical Data Link and Star Logical Control Link. The left side depicts the physical data

link, where dashed lines represent wireless channels while solid ones indicate wired channels

connecting various nodes in a mesh network con�guration. On the right side is the logical control

link, featuring a central node controlling multiple terminal devices’ data transmission processes

through star topology connections. Together, these components form the overall network

architecture of ACOS.

2) Collaboration Initiation

Upon a new device’s integration into the ACOS environment, the resident Agent promptly initiates a

discovery protocol, notifying the surroundings of its presence via broadcasting or alternative

communication channels. This process extends beyond mere physical proximity to include logical

connections, such as shared data streams or aligned application objectives. The newcomer must

seamlessly integrate into the established collaboration ecosystem, capable of exchanging information

with existing Agents and presenting its capabilities and service interfaces to establish mutual trust

rapidly. This mechanism supports continuous system expansion and optimization, reinforcing the

system’s openness and scalability.

qeios.com doi.org/10.32388/XPJYHO 68

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

For Agents encountering each other for the �rst time, ACOS mandates adherence to a standardized

communication protocol. This ensures interoperability through uniform message formats and

interaction protocols, irrespective of the Agents’ origins or functionalities. During the initial

encounter, the newcomer initiates a self-introduction, disclosing essential details about its

capabilities. Established Agents subsequently evaluate this information to determine the newcomer’s

role within the collaboration network, aligning with their own operational needs. The overarching aim

of this mechanism is to bolster the system’s and Agents’ adaptability to distributed and dynamic

environments, thereby enhancing overall performance and user experience.

5. Conclusion and Outlook

In conclusion, the evolution of OS re�ects the dynamic interplay between technological advancements

and user needs. This review has traced the development from monolithic designs to modern

microkernel architectures, highlighting signi�cant milestones such as the rise of graphical user

interfaces, mobile operating systems, and cloud-based platforms. These advancements have

enhanced system functionality and usability, paving the way for new paradigms like the IoT and edge

computing.

In recent years, the integration of AI and ML into OS has driven innovations in predictive analytics,

adaptive resource management, and intelligent security. While these technologies o�er substantial

bene�ts, they also introduce challenges related to data privacy, transparency, and ethical

considerations.

The ACOS represents a transformative approach to OS design, emphasizing modularity, adaptability,

and cross-platform compatibility. By abstracting system components into autonomous agents, ACOS

achieves a �exible and scalable architecture that can adapt to various resource platforms. This design

simpli�es maintenance and updates, enhances system e�ciency, and improves user experiences

across di�erent devices.

ACOS addresses security and data management through �ne-grained permission management,

ensuring that data access is restricted to relevant tasks and minimizing unnecessary exposure. The

system evaluates device security capabilities and task sensitivities to optimize data �ow paths,

balancing security and e�ciency. Ownership security is maintained to prevent data leakage, ensuring

data remains within appropriate control scopes.

qeios.com doi.org/10.32388/XPJYHO 69

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

Regarding the user interface, ACOS adapts to device-speci�c characteristics, providing smooth,

intuitive, and personalized interactions. The multi-layered design enhances adaptability and

accessibility, opening new possibilities for intelligent interaction technologies.

Future challenges for ACOS and similar systems include scaling agent communication networks,

developing robust security frameworks, and addressing computational constraints in edge devices.

Research should focus on these areas and integrate emerging technologies.

In summary, the future of operating systems will likely be characterized by greater intelligence,

�exibility, and user-centric design. ACOS exempli�es this vision, o�ering a promising framework for

the next generation of operating systems. By continuing to innovate and address evolving needs, the

�eld can drive signi�cant advancements, paving the way for a more connected, e�cient, and secure

computing environment.

Acknowledgments

The IoT picture in �gure 3 was cited from Wilgengebroed, licensed under a Creative Common

Attribution 2.0 Generic License

The �rst GPU picture in �gure 5, was cited from Konstantin Lanzet, licensed under a Creative Common

Attribution 3.0 Generic License

The �rst GUI picture in �gure 5, was cited from Liberal Classic, licensed under a X11 License

The video game picture in �gure 5 was cited from gwaar, licensed under a Creative Common

Attribution 2.0 Generic License

The RUST picture in �gure 5, was cited from ™/®Rust Foundation, licensed under a Creative Common

Attribution 4.0 Generic License

The i386 picture in �gure 8 was cited from Andre Celere, licensed under a Creative Common

Attribution 4.0 Generic License

The enterprise LAN in �gure 9 was cited from BogdanWSF, licensed under a Creative Common

Attribution 3.0 Generic License

qeios.com doi.org/10.32388/XPJYHO 70

https://www.flickr.com/photos/wilgengebroed/8249565455/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:KL_TI_TMS34020.jpg
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://commons.wikimedia.org/wiki/File:X-Window-System.png
https://www.flickr.com/photos/paulsynnott/2610499050/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://github.com/rust-lang/rust-artwork/blob/master/logo/rust-logo-blk.svg
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://commons.wikimedia.org/wiki/File:80386SL_processor_from_1990.jpg
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://commons.wikimedia.org/wiki/File:Wy%C5%BCsza_Szko%C5%82a_Filologiczna_computer_room.jpg
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

References

1. ^Hildebrand D. "An Architectural Overview of QNX." In: USENIX Workshop on Microkernels and Other K

ernel Architectures. Citeseer; 1992. p. 113–126.

2. ^windriver. "VxWorks." 2024. [Online]. Available: https://www.windriver.com/resource/vxworks-prod

uct-overview.

3. ^Singh IM, Bunnell M (1990). "LynxOS: UNIX Rewritten For Real-Time". Ik_ _. p. 27.

4. a, b, cTorvalds L (2024). "Linux". https://www.linux.org/.

5. ^Levy M. "Windows CE." EDN. 42 (15): 38–44, 1997.

6. ^Lamie W. "ThreadX." 2024. [Online]. Available: https://threadx.io/.

7. ^Domahidi A, Chu E, Boyd S. "ECOS: An SOCP solver for embedded systems." In: 2013 European control c

onference (ECC). IEEE; 2013. p. 3071-3076.

8. ^Barry R, et al. (2008). "FreeRTOS". Internet, Oct. 4: 18.

9. ^Dunkels A, Gronvall B, Voigt T. "Contiki-a lightweight and �exible operating system for tiny networke

d sensors." In: 29th annual IEEE international conference on local computer networks. IEEE; 2004. p. 45

5-462.

10. ^Nutt G. "Nuttx." 2024. Available from: https://nuttx.apache.org/.

11. ^Arm (2024). "Mbed OS". [Online]. Available: https://os.mbed.com/mbed-os/.

12. a, b, cGoogle (2024). "Fuchsia". [Online]. Available: https://fuchsia.dev/.

13. a, bHuawei. "HarmonyOS." 2024. [Online]. Available: https://www.harmonyos.com/en/.

14. ^Levy A, Campbell B, Ghena B, Gi�n DB, Leonard S, Pannuto P, Dutta P, Levis P. "The tock embedded o

perating system." In: Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems. 2

017. p. 1-2.

15. ^Symbian Ltd (2024). "Symbian". [Online]. Available: https://licensing.symbian.org/.

16. ^Jones C. "Palm OS". 1995.

17. ^wiki (2024). "BlackBerry OS". [Online]. Available: https://en.wikipedia.org/wiki/BlackBerry_OS.

18. ^Microsoft (2024). "Windows Mobile". [Online]. Available: https://en.wikipedia.org/wiki/Windows_Mo

bile.

19. ^Apple (2024). "ios". [Online]. Available: https://www.apple.com/ios/ios-18/.

20. ^Gilski P, Stefanski J (2015). "Android os: A review." Tem Journal. 4 (1): 116.

qeios.com doi.org/10.32388/XPJYHO 71

https://www.windriver.com/resource/vxworks-product-overview
https://www.windriver.com/resource/vxworks-product-overview
https://www.linux.org/
https://threadx.io/
https://nuttx.apache.org/
https://os.mbed.com/mbed-os/
https://fuchsia.dev/
https://www.harmonyos.com/en/
https://licensing.symbian.org/
https://en.wikipedia.org/wiki/BlackBerry_OS
https://en.wikipedia.org/wiki/Windows_Mobile
https://en.wikipedia.org/wiki/Windows_Mobile
https://www.apple.com/ios/ios-18/
https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

21. ^Vashisht G, Vashisht R (2014). "A study on the Tizen Operating System". International Journal of Comp

uter Trends and Technology. 12 (1): 14–15.

22. a, bRitchie DM, Thompson K (1974). "The UNIX time-sharing system". Communications of the ACM. 17

(7): 365–375.

23. a, b, cQuarterman JS, Silberschatz A, Peterson JL (1985). "4.2 BSD and 4.3 BSD as examples of the UNIX s

ystem". ACM Computing Surveys (CSUR). 17 (4): 379–418.

24. ^Paterson T. (1983). "An inside look at MS-DOS." Byte. 8 (6): 230.

25. ^Apple (2024). "macOS". [Online]. Available: https://www.apple.com/macos/macos-sequoia/.

26. ^Microsoft (2024). Microsoft Windows. [Online]. Available: https://www.microsoft.com/en-us/window

s.

27. ^Microsoft (2024). "A Brief History of the Windows NT Operating System". [Online]. Available: https://

web.archive.org/web/20000817031621/http://www.microsoft.com/PressPass/features/1998/winntfs.as

p.

28. ^i Chemii F. AmigaOS--internal structure of operating system. Citeseer. 2004.

29. ^ACCESS Co. (2024). The Be Book. [Online]. Available: https://www.haiku-os.org/legacy-docs/bebook/

index.html.

30. ^ReDox (2024). "ReDox OS". [Online]. Available: https://www.redox-os.org/.

31. ^II MFT (1972). "OS/360 and successors." Marketing. 21.

32. ^VMS Software, Inc (2024). VMS Software Documentation. Available from: https://docs.vmssoftware.co

m/.

33. ^Major D, Minshall G, Powell K (1994). "An Overview of the NetWare Operating System." in USENIX Wi

nter, pp. 355–372.

34. ^Oracle (2024). "Oracle Solaris Documentation". [Online]. Available: https://docs.oracle.com/en/operat

ing-systems/solaris.html.

35. ^Microsoft (2024). "Windows Server". [Online]. Available: https://www.microsoft.com/en-us/windows

-server.

36. ^Moni MMA, Niloy M, Chowdhury AH, Khan FJ, Juboraj MFUA, Chakrabarty A. "Comparative analysis o

f process scheduling algorithm using AI models." In: 2022 25th International Conference on Computer a

nd Information Technology (ICCIT). IEEE; 2022. p. 587-592.

qeios.com doi.org/10.32388/XPJYHO 72

https://www.apple.com/macos/macos-sequoia/
https://www.microsoft.com/en-us/windows
https://www.microsoft.com/en-us/windows
https://web.archive.org/web/20000817031621/http://www.microsoft.com/PressPass/features/1998/winntfs.asp
https://web.archive.org/web/20000817031621/http://www.microsoft.com/PressPass/features/1998/winntfs.asp
https://web.archive.org/web/20000817031621/http://www.microsoft.com/PressPass/features/1998/winntfs.asp
https://www.haiku-os.org/legacy-docs/bebook/index.html
https://www.haiku-os.org/legacy-docs/bebook/index.html
https://www.redox-os.org/
https://docs.vmssoftware.com/
https://docs.vmssoftware.com/
https://docs.oracle.com/en/operating-systems/solaris.html
https://docs.oracle.com/en/operating-systems/solaris.html
https://www.microsoft.com/en-us/windows-server
https://www.microsoft.com/en-us/windows-server
https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

37. ^Yang X, Bai Z (2022). "Improvement of lottery scheduling algorithm based on machine learning algori

thm." In: Proceedings of the 2022 2nd International Conference on Control and Intelligent Robotics. pp.

894–897.

38. ^Cheng L, Wang Y, Cheng F, Liu C, Zhao Z, Wang Y (2023). "A deep reinforcement learning-based pree

mptive approach for cost-aware cloud job scheduling". IEEE Transactions on Sustainable Computing. 2

023. Published by IEEE.

39. ^Mangalampalli S, Karri GR, Kumar M, Khalaf OI, Romero CAT, Sahib GA (2024). "DRLBTSA: Deep rein

forcement learning based task-scheduling algorithm in cloud computing". Multimedia Tools and Applic

ations. 83 (3): 8359–8387.

40. ^Song Y, Li C, Tian L, Song H (2023). "A reinforcement learning based job scheduling algorithm for hete

rogeneous computing environment". Computers and Electrical Engineering. 107: 108653.

41. a, bGoodarzy S, Nazari M, Han R, Keller E, Rozner E (2021). "Smartos: Towards automated learning and

user-adaptive resource allocation in operating systems." In: Proceedings of the 12th ACM SIGOPS Asia-

Paci�c Workshop on Systems. pp. 48–55.

42. ^Liu J, Zhang S, Wang Q. "μConAdapter: Reinforcement Learning-based Fast Concurrency Adaptat

ion for Microservices in Cloud." In: Proceedings of the 2023 ACM Symposium on Cloud Computing. 202

3. p. 427--442.

43. ^Carvalho P, Clua E, Paes A, Bentes C, Lopes B, Drummond LMdA. "Using machine learning techniques t

o analyze the performance of concurrent kernel execution on GPUs." Future Generation Computer Syste

ms. 113: 528--540, 2020.

44. ^Liu X, Wang S, Ma Y, Zhang Y, Mei Q, Liu Y, Huang G (2021). "Operating systems for resource-adaptive

intelligent software: Challenges and opportunities." ACM Transactions on Internet Technology (TOIT).

21 (2): 1–19.

45. ^Chen J, Banerjee SS, Kalbarczyk ZT, Iyer RK (2020). "Machine learning for load balancing in the linux

kernel." In: Proceedings of the 11th ACM SIGOPS Asia-Paci�c Workshop on Systems. 2020. pp. 67–74.

46. ^Li T, Ying S, Zhao Y, Shang J (2023). "Batch jobs load balancing scheduling in cloud computing using d

istributional reinforcement learning." IEEE Transactions on Parallel and Distributed Systems. 35(1): 169

–185.

47. ^Hayat A, Khalid YN, Rathore MS, Nadir MN (2023). "A machine learning-based resource-e�cient task

scheduler for heterogeneous computer systems." The Journal of Supercomputing. 79 (14): 15700–15728.

qeios.com doi.org/10.32388/XPJYHO 73

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

48. ^Aaen Springborg A, Albano M, Xavier-de-Souza S. "Automatic Energy-E�cient Job Scheduling in HP

C: A Novel SLURM Plugin Approach." In: Proceedings of the SC'23 Workshops of The International Confe

rence on High Performance Computing, Network, Storage, and Analysis. 2023. p. 1831-1838.

49. ^Pilla LL. "Scheduling algorithms for federated learning with minimal energy consumption." IEEE Tran

sactions on Parallel and Distributed Systems. 34(4):1215-1226, 2023.

50. ^Ahmed U, Lin JC-W, Srivastava G (2022). "Heterogeneous energy-aware load balancing for industry

4.0 and IoT environments". ACM Transactions on Management Information Systems (TMIS). 13 (4): 1–

23.

51. ^Zhang J, Swift M, Li J (2022). "Software-de�ned address mapping: a case on 3d memory." In: Proceedi

ngs of the 27th ACM International Conference on Architectural Support for Programming Languages an

d Operating Systems. pp. 70–83.

52. ^Lagar-Cavilla A, Ahn J, Souhlal S, Agarwal N, Burny R, Butt S, Chang J, Chaugule A, Deng N, Shahid J, e

t al. "Software-de�ned far memory in warehouse-scale computers." In: Proceedings of the Twenty-Fou

rth International Conference on Architectural Support for Programming Languages and Operating Syste

ms. 2019. p. 317-330.

53. ^Doudali TD, Blagodurov S, Vishnu A, Gurumurthi S, Gavrilovska A. "Kleio: A hybrid memory page sched

uler with machine intelligence." In: Proceedings of the 28th International Symposium on High-Perform

ance Parallel and Distributed Computing. 2019. p. 37–48.

54. ^Maas M, Andersen DG, Isard M, Javanmard MM, McKinley KS, Ra�el C (2024). "Combining Machine L

earning and Lifetime-Based Resource Management for Memory Allocation and Beyond." Communicati

ons of the ACM. 67 (4): 87–96.

55. ^Maas M, Kennelly C, Nguyen K, Gove D, McKinley KS, Turner P. "Adaptive huge-page subrelease for no

n-moving memory allocators in warehouse-scale computers." In: Proceedings of the 2021 ACM SIGPLA

N International Symposium on Memory Management. 2021. p. 28–38.

56. ^Hao M, Toksoz L, Li N, Halim EE, Ho�mann H, Gunawi HS. "$\{$LinnOS$\}$: Predictability on unpred

ictable �ash storage with a light neural network." In: 14th USENIX Symposium on Operating Systems De

sign and Implementation (OSDI 20); 2020. p. 173-190.

57. ^Serizawa K, Tatebe O (2019). "Accelerating machine learning i/o by overlapping data staging and min

i-batch generations." In: Proceedings of the 6th IEEE/ACM International Conference on Big Data Comp

uting, Applications and Technologies. pp. 31–34.

qeios.com doi.org/10.32388/XPJYHO 74

https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

58. ^Wang T, Chen Z, Wei X, Gu J, Chen R, Chen H (2024). "Characterizing Network Requirements for GPU A

PI Remoting in AI Applications." arXiv. Available from: https://arxiv.org/abs/2401.13354.

59. ^Akgun IU. Using Machine Learning to Improve Operating Systems' I/O Subsystems [Ph.D. dissertation].

State University of New York at Stony Brook; 2022.

60. ^Roychoudhury A, Xiong Y (2019). "Automated program repair: a step towards software automation". S

cience China. Information Sciences. 62 (10): 200103.

61. ^Xiong Y, Tian Y, Liu Y, Cheung S (2022). "Toward actionable testing of deep learning models". Science

China, Information Sciences. 2022.

62. ^Chowdhury M, Ray B, Chowdhury S, Rajasegarar S (2021). "A novel insider attack and machine learni

ng based detection for the internet of things." ACM Transactions on Internet of Things. 2 (4): 1–23.

63. ^Suzaki K, Tsukamoto A, Green A, Mannan M (2020). "Reboot-oriented IoT: Life cycle management in

trusted execution environment for disposable IoT devices." In: Proceedings of the 36th Annual Computer

Security Applications Conference. pp. 428–441.

64. ^Fu M, Tantithamthavorn C, Le T, Nguyen V, Phung D (2022). "VulRepair: a T5-based automated softw

are vulnerability repair." In: Proceedings of the 30th ACM joint European software engineering confere

nce and symposium on the foundations of software engineering. 2022. pp. 935--947.

65. ^Qin X, Zeng F, Zhang Y (2019). "MSNdroid: the Android malware detector based on multi-class feature

s and deep belief network." In: Proceedings of the ACM Turing Celebration Conference-China. pp. 1–5.

66. ^Panman de Wit JS, Bucur D, van der Ham J (2022). "Dynamic detection of mobile malware using smart

phone data and machine learning". Digital Threats: Research and Practice (DTRAP). 3 (2): 1–24.

67. ^Cruz-Carlon J, Varshosaz M, Le Goues C, Wasowski A (2023). "Patching locking bugs statically with cra

yons". ACM Transactions on Software Engineering and Methodology. 32 (3): 1–28.

68. ^Mo F, Haddadi H, Katevas K, Marin E, Perino D, Kourtellis N (2022). "Pp�: Enhancing privacy in feder

ated learning with con�dential computing". GetMobile: Mobile Computing and Communications. 25

(4): 35–38.

69. ^Qi C, Shao S, Guo Y, Peng J, Xu G (2021). "An E�cient Method for Analyzing Widget Intent of Android S

ystem." In: Proceedings of the 2021 9th International Conference on Communications and Broadband N

etworking. 2021. pp. 78–85.

70. ^Mo F, Shamsabadi AS, Katevas K, Demetriou S, Leontiadis I, Cavallaro A, Haddadi H. "Darknetz: towar

ds model privacy at the edge using trusted execution environments." In: Proceedings of the 18th Interna

tional Conference on Mobile Systems, Applications, and Services. 2020. p. 161–174.

qeios.com doi.org/10.32388/XPJYHO 75

https://arxiv.org/abs/2401.13354
https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

71. ^Zhang C, Lu W, Ni C, Wang H, Wu J (2024). "Enhanced user interaction in operating systems through

machine learning language models." arXiv. Available from: https://arxiv.org/abs/2403.00806.

72. ^Kuenzer S, Bădoiu V-A, Lefeuvre H, Santhanam S, Jung A, Gain G, Soldani C, Lupu C, Teodorescu Ș, Ră

ducanu C, et al. "Unikraft: fast, specialized unikernels the easy way." In: Proceedings of the Sixteenth Eu

ropean Conference on Computer Systems; 2021. p. 376–394.

73. ^Chen R, Sun G (2018). "A survey of kernel-bypass techniques in network stack." In: Proceedings of the

2018 2nd International Conference on Computer Science and Arti�cial Intelligence. pp. 474–477.

74. ^Leon M. "The Dark Side of Unikernels for Machine Learning." 2020. Available from: https://arxiv.org/a

bs/2004.13081.

75. ^Pemberton N, Schleier-Smith J, Gonzalez JE. "The restless cloud." In: Proceedings of the Workshop on

Hot Topics in Operating Systems. 2021. p. 49–57.

76. ^Zhang I, Raybuck A, Patel P, Olynyk K, Nelson J, Leija OSN, Martinez A, Liu J, Simpson AK, Jayakar S, et

al. "The demikernel datapath os architecture for microsecond-scale datacenter systems." In: Proceeding

s of the ACM SIGOPS 28th Symposium on Operating Systems Principles; 2021. p. 195-211.

77. ^Raza A, Unger T, Boyd M, Munson EB, Sohal P, Drepper U, Jones R, De Oliveira DB, Woodman L, Mancu

so R, et al. "Unikernel linux (ukl)." In: Proceedings of the Eighteenth European Conference on Computer

Systems; 2023. p. 590-605.

78. ^Cadden J, Unger T, Awad Y, Dong H, Krieger O, Appavoo J. "SEUSS: skip redundant paths to make serve

rless fast." In: Proceedings of the Fifteenth European Conference on Computer Systems; 2020. p. 1-15.

79. ^Skiadopoulos A, Li Q, Kraft P, Ka�es K, Hong D, Mathew S, Bestor D, Cafarella M, Gadepally V, Graefe

G, et al. DBOS: a DBMS-oriented Operating System. VLDB Endowment. 2021.

80. ^Ge Y, Ren Y, Hua W, Xu S, Tan J, Zhang Y (2023). "LLM as OS, Agents as Apps: Envisioning AIOS, Agents

and the AIOS-Agent Ecosystem". arXiv. Available from: https://arxiv.org/abs/2312.03815.

81. ^Mei K, Li Z, Xu S, Ye R, Ge Y, Zhang Y (2024). "AIOS: LLM Agent Operating System." arXiv. Available fr

om: https://arxiv.org/abs/2403.16971.

82. ^Packer C, Wooders S, Lin K, Fang V, Patil SG, Stoica I, Gonzalez JE (2024). "MemGPT: Towards LLMs as

Operating Systems." arXiv. Available from: https://arxiv.org/abs/2310.08560.

83. ^Wu Z, Han C, Ding Z, Weng Z, Liu Z, Yao S, Yu T, Kong L (2024). "OS-Copilot: Towards Generalist Com

puter Agents with Self-Improvement." arXiv. Available from: https://arxiv.org/abs/2402.07456.

84. ^Xing Z, Huang Q, Cheng Y, Zhu L, Lu Q, Xu X (2023). "Prompt Sapper: LLM-Empowered Software Engi

neering Infrastructure for AI-Native Services". arXiv. Available from: https://arxiv.org/abs/2306.02230.

qeios.com doi.org/10.32388/XPJYHO 76

https://arxiv.org/abs/2403.00806
https://arxiv.org/abs/2004.13081
https://arxiv.org/abs/2004.13081
https://arxiv.org/abs/2312.03815
https://arxiv.org/abs/2403.16971
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2402.07456
https://arxiv.org/abs/2306.02230
https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

85. ^Hè H. "PerOS: Personalized Self-Adapting Operating Systems in the Cloud." 2024. arXiv [Online]. Avail

able: https://arxiv.org/abs/2404.00057.

86. ^Hong S, Zhuge M, Chen J, Zheng X, Cheng Y, Zhang C, Wang J, Wang Z, Yau SKS, Lin Z, Zhou L, Ran C, X

iao L, Wu C, Schmidhuber J (2023). "MetaGPT: Meta Programming for A Multi-Agent Collaborative Fra

mework." arXiv. Available from: https://arxiv.org/abs/2308.00352.

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/XPJYHO 77

https://arxiv.org/abs/2404.00057
https://arxiv.org/abs/2308.00352
https://www.qeios.com/
https://doi.org/10.32388/XPJYHO

