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1. Liverpool John Moores University, United Kingdom

We present a novel theoretical framework in which the cosmological constant   is promoted from a

�xed scalar to a dynamical thermodynamic variable emerging from the quantum microstructure of

spacetime. By extending the Einstein–Hilbert action through a non-minimal coupling between

spacetime curvature and vacuum entropy density  , we derive modi�ed �eld equations of the

form: 

where the local cosmological function is given by:

with   denoting the entropy current associated with vacuum �uctuations and   a coupling

parameter. The correction tensor   incorporates the scalar �eld   responsible for modulating

vacuum entropy via: 

The resulting �eld equations yield a self-regulating cosmological dynamics, in which the evolution of 

 is governed by:

establishing a direct link between quantum entropy production and large-scale acceleration. This

framework uni�es the early in�ationary phase and the current dark energy epoch under a common

dynamical mechanism, and addresses the longstanding discrepancy between quantum vacuum

energy predictions and observed  .

We conclude by deriving testable predictions for next-generation cosmological probes such as CMB-

S4, Euclid, and JWST, and show how deviations from  CDM at   may serve as critical empirical

signatures. This approach also paves the way for embedding vacuum thermodynamics within a

topologically-constrained quantum gravity framework.
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1. Introduction

The cosmological constant    was originally introduced by Einstein in 1917 to achieve a static universe

model[1]. Following the advent of Hubble’s discovery of cosmic expansion, the need for a constant 

 diminished, yet it re-emerged with the discovery of late-time acceleration in the universe’s expansion.

While successful at the phenomenological level, the standard cosmological constant paradigm presents

deep theoretical challenges, most notably the discrepancy of over 120 orders of magnitude between the

vacuum energy predicted by quantum �eld theory and the observed value of  [2].

This discrepancy has led to a wide range of theoretical proposals, ranging from dynamic dark energy

models to modi�cations of general relativity. In this work, we propose a new framework in which the

cosmological constant is no longer a �xed background parameter, but a dynamical quantity emerging

from the thermodynamic properties of the vacuum. This approach is inspired by the thermodynamic

interpretation of gravity[3], the entropic force models[4], and entropy bounds arising in black hole

thermodynamics[5][6].

We build on the insight that entropy production in the quantum vacuum can act as a source of curvature,

yielding a dynamic   that evolves in response to the entropy current. This formulation introduces a

novel tensor, the Haddad–  tensor  , which encapsulates the coupling between scalar entropy modes

and spacetime geometry[7]. The formal foundation of this tensor has been rigorously established in

recent work[7], where its role in geodesic deformation and entropy-coupled curvature �ow was derived

from a generalized Raychaudhuri equation.

Our construction aligns with recent advances in quantum information geometry and modular

Hamiltonians[8], and �nds compatibility with the causal structure of spacetime as analyzed in Penrose’s

singularity theorems[9] and Witten’s recent work on light-ray operators and gravitational entropy[10].

The aim of this paper is to develop a consistent theoretical and mathematical structure for a dynamic

cosmological constant, to derive its modi�ed �eld equations, and to provide observationally testable

consequences using current and forthcoming cosmological surveys. “dark energy.”

Despite its observational success, the cosmological constant suffers from severe theoretical issues. The

most pressing is the discrepancy between quantum �eld theory estimates of vacuum energy density,

which exceed the observed value by over 120 orders of magnitude[2]. This glaring mismatch—termed the
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“cosmological constant problem”—remains one of the most profound unsolved problems in physics.

Moreover, the apparent constancy of    contradicts the dynamical nature of nearly all other �elds in

physics, suggesting that it may be more fruitful to treat    as an emergent or evolving quantity rather

than a fundamental constant.

In this paper, we propose a new theoretical formulation in which    arises dynamically from the

underlying thermodynamic and quantum structure of spacetime. Our approach draws from semiclassical

gravity, thermodynamics of horizons[3], and recent developments in emergent gravity and entropic

forces[4]. Speci�cally, we introduce a dynamical scalar �eld   whose interaction with vacuum entropy

modulates the effective value of  .

We show that this framework leads to a modi�ed set of �eld equations incorporating a correction tensor 

, which captures the feedback between vacuum entropy gradients and large-scale spacetime

geometry. The result is a uni�ed picture of cosmological acceleration, encompassing both early in�ation

and late-time expansion, and offering testable predictions for future astrophysical surveys.

Recent theoretical advances have increasingly suggested that spacetime itself may possess microscopic

degrees of freedom, akin to the atoms of a thermodynamic system. This perspective is reinforced by the

thermodynamic properties attributed to black hole horizons—such as entropy proportional to surface

area and temperature determined by surface gravity—culminating in the celebrated Bekenstein–

Hawking formula. These insights imply that spacetime dynamics might emerge from deeper statistical

principles, with the Einstein �eld equations representing an equation of state rather than a fundamental

law.

Building upon this idea, Jacobson famously derived the Einstein equations by demanding the Clausius

relation   hold across all local Rindler horizons, suggesting gravity is emergent from horizon

thermodynamics. In this spirit, we posit that the cosmological constant, rather than being a fundamental

input, should be understood as an emergent quantity governed by the entropic content and quantum

�uctuations of vacuum states. Speci�cally, we treat   as a function of a spacetime-dependent scalar �eld 

, which captures variations in vacuum entropy production and interacts with curvature.

The resulting �eld equations, modi�ed to include a dynamical   and an entropy-coupled tensor  ,

present a self-regulating cosmological model. This model not only addresses the �ne-tuning problem of 

, but also provides a natural mechanism for transitioning between different expansion regimes—such
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as in�ation and dark energy domination—without invoking multiple separate scalar �eld theories or

arbitrary potential tuning.

In the sections that follow, we formalize the mathematical structure of this theory, derive the modi�ed

�eld equations from an extended action principle, and explore the cosmological consequences of this

dynamic framework. Our goal is to provide both a theoretically coherent and observationally testable

alternative to the standard  CDM paradigm, grounded in the interplay between thermodynamics,

quantum �eld theory, and general relativity.

2. Field Equations and the Haddad–  Tensor

To formalize the thermodynamic origin of the cosmological constant, we extend the Einstein–Hilbert

action by incorporating a scalar �eld   that encodes the entropy variation of the vacuum. The action

takes the form:

where    is a dynamic cosmological term modulated by the scalar �eld, and    is the Lagrangian

density associated with the scalar �eld:

Varying the total action with respect to the metric yields the modi�ed �eld equations:

where the correction term  , which we refer to as the Haddad–  Tensor, captures the backreaction of

entropy-coupled geometry:

Here,   and   are coupling constants, and   is the Ricci tensor. The �rst term resembles the canonical

stress-energy tensor of a scalar �eld, while the second introduces a non-minimal coupling between the

entropy �eld   and the curvature, embedding thermodynamic �uctuations into the geometry itself.

The dynamical equation for the �eld   is obtained by variation of the action with respect to  :
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where    is a phenomenological constant linking the scalar �eld to the gradient of vacuum entropy

density  . This equation illustrates the interplay between quantum information content of spacetime

and the effective value of  .

Together, equations (3)–(6) form a self-consistent dynamical system wherein the cosmological term is no

longer imposed externally but evolves in response to the internal degrees of freedom of the vacuum.

In the next section, we analyze the implications of this modi�ed theory for cosmological evolution and

identify observational signatures that could distinguish it from the standard  CDM framework.

3. Field Equations and the Haddad–  Tensor

To formalize the thermodynamic origin of the cosmological constant, we propose an extension of the

Einstein–Hilbert action in which the cosmological term    is no longer a constant, but a dynamical

function of a scalar �eld  . This �eld encapsulates the entropy �uctuations and microscopic degrees

of freedom associated with the quantum vacuum.

The total action is given by: 

where   is the Ricci scalar,   is the scalar-dependent cosmological function,   is the Lagrangian of

the scalar �eld, and   denotes the Lagrangian for ordinary matter and radiation.

We assume the scalar �eld Lagrangian takes the standard form: 

where    is a self-interaction potential. The inclusion of    modi�es the gravitational dynamics

such that vacuum energy is no longer �xed but responds dynamically to the evolution of  .

Varying the action with respect to the metric yields the modi�ed Einstein equations: 

where    is the Einstein tensor, and    is the energy–momentum tensor of matter

and radiation.

The novel term  , referred to here as the Haddad–  Tensor, captures the non-trivial coupling between

the scalar entropy �eld and spacetime geometry. It is given by: 

δ
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 where:

 controls the kinetic contribution of the entropy �eld;

 modulates the non-minimal coupling between   and curvature.

The �rst term in   mimics the stress-energy tensor of a canonical scalar �eld, while the second term

introduces geometric feedback, allowing local curvature to in�uence and be in�uenced by entropy

variations.

This structure is reminiscent of scalar–tensor theories such as Brans–Dicke gravity, but with a

fundamentally different interpretation: here,    encodes the quantum vacuum’s thermodynamic state

rather than an effective gravitational constant. The form    introduces a curvature-dependent

mass term for  , leading to dynamical suppression or enhancement of vacuum energy in highly curved

regions.

The dynamics of   follow from variation of the action with respect to the scalar �eld: 

where:

 is the d’Alembertian operator;

;

 is a phenomenological coupling constant linking vacuum entropy variations to �eld dynamics;

 is the vacuum entropy density, a scalar function dependent on the quantum state of the �eld.

This equation suggests that entropy gradients in the vacuum act as a source term for the evolution of  .

As a result, the scalar �eld evolves toward con�gurations that extremize entropy production, in analogy

to principles found in non-equilibrium thermodynamics. This dynamical behavior re�ects a form of

"entropic feedback" that leads to spontaneous regulation of the effective cosmological constant.

The full gravitational dynamics are now governed by the coupled system of equations (3)–(6), which

together describe the backreaction of quantum-vacuum microphysics on large-scale cosmological

geometry. These modi�cations imply:

i. A time-dependent   evolving with cosmological epoch.
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ii. Modi�ed Friedmann equations and non-trivial dynamics during phase transitions in the early

universe.

iii. Observable deviations from  CDM in late-time cosmic acceleration.

In the forthcoming sections, we analyze the cosmological consequences of these equations, including

speci�c solutions in homogeneous and isotropic spacetimes and potential observational discriminants.

4. Modi�ed Friedmann Equations and Cosmological Dynamics

In the standard cosmological model, the Friedmann equations govern the expansion of the universe

under the assumptions of homogeneity and isotropy. When introducing a dynamical cosmological

constant    and its associated tensor  , these equations acquire new terms that re�ect the

backreaction of vacuum entropy on spacetime geometry. The �rst modi�ed Friedmann equation reads: 

where   is the temporal component of the Haddad–  tensor. This correction can be interpreted as an

additional energy density sourced by scalar entropy �uctuations and curvature coupling[3][11].

The presence of such corrections is consistent with various approaches in the literature. Scalar-tensor

theories, including Brans–Dicke models and    gravity, naturally lead to modi�ed Friedmann

equations[12][13]. Entropic gravity formulations suggest that gravity itself is an emergent phenomenon,

with cosmological implications for the Hubble parameter[4][14]. Studies of de Sitter thermodynamics and

horizon entropy also hint at a dynamic vacuum contribution[15][16].

The scalar �eld   evolves with cosmic time and its kinetic term contributes directly to the expansion rate

through: 

where   is the time–time component of the Ricci tensor. During in�ation, when  , the rapid

growth in   and the entropy gradient can enhance the effective vacuum energy[17][18].

Quantum backreaction effects from vacuum �uctuations are well studied in semiclassical gravity[19][20].

These corrections often manifest in the stress-energy tensor and in�uence the Friedmann equations[21]

[22]. From the holographic standpoint, entropy bounds suggest limits on    related to quantum

information �ow[8][23][24].

Λ

Λ(ϕ) Ξμν

3 = 8πGρ + Λ(ϕ) + ,H 2 Ξ00 (11)

Ξ00 Λ

f(R)

ϕ

= + β ,Ξ00
α

2
ϕ̇

2
ϕ2R00 (12)

R00 a(t) ∼ eHt

ϕ

Λ

qeios.com doi.org/10.32388/XR1265 7

https://www.qeios.com/
https://doi.org/10.32388/XR1265


Moreover, information-theoretic approaches relate the Fisher information metric and relative entropy to

cosmological evolution[25][26]. In these interpretations, the scalar �eld    serves as a coarse-grained

variable encoding the geometry of entanglement space[27][28].

Cosmic acceleration observed in Type Ia supernovae and CMB anisotropies[29][30] motivates alternatives

to constant  . Models with dynamical vacuum energy have been proposed using effective �eld theory

techniques[31], thermodynamic considerations[32], and causal entropy bounds[33].

All these directions point toward a unifying theme: the expansion of the universe is deeply connected to

quantum and thermodynamic degrees of freedom. Our formulation provides a consistent covariant

expression of this principle through the modi�ed Friedmann dynamics sourced by   and  .

We assume the scalar �eld    depends only on time,  , in accordance with cosmological

symmetries. The energy–momentum tensor of a perfect �uid is: 

and we include the scalar �eld contributions from   into the modi�ed Einstein equations.

Using the FLRW background, the modi�ed Friedmann equation derived from the  -component of

equation (3) becomes: 

while the acceleration equation from the  -component is: 

The evolution equation for the scalar �eld   reduces to: 

where   is the Hubble parameter.

These equations couple the dynamics of the scalar �eld, spacetime geometry, and entropy production.

The term involving    acts as an effective geometric potential, while the    terms contribute kinetic

energy effects. The entropy-driven source term    ensures that vacuum �uctuations and

thermodynamic irreversibility in�uence the large-scale evolution.
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a
( )
ȧ
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The consistency of the system requires initial conditions for  ,  , and  , and potentially

constrains the allowed functional forms of  ,  , and  .

We will now proceed to explore analytic approximations and numerical solutions in different

cosmological eras to determine how this framework can accommodate early-time in�ation and late-time

acceleration, and identify observable deviations from the standard  CDM model.

4.1. Cosmological Implications and Regimes of Evolution

In this section, we analyze the behavior of the modi�ed Friedmann system across three distinct cosmic

epochs: (1) the early in�ationary universe, (2) the radiation and matter-dominated eras, and (3) the late-

time accelerated expansion. In each case, we investigate how the dynamics of the scalar �eld  , and

consequently  , evolve, and how the Haddad–  tensor modi�es the standard picture.

4.1.1. In�ationary Regime

In the early universe, we consider a potential   with a �at plateau—typical in in�ationary models—

such that the scalar �eld evolves slowly, and  . The Friedmann equation simpli�es under the

slow-roll approximation:

where    contributes an effective correction to the in�aton potential, providing geometric

stabilization.

The entropy gradient term   acts as an additional source driving   out of equilibrium, enabling

a graceful exit from in�ation. This could replace the need for an ad hoc reheating mechanism by enabling

vacuum decay into standard model particles through entropy production.

4.1.2. Radiation and Matter-Dominated Epochs

During the radiation- and matter-dominated eras, the energy density of standard matter and radiation

dominates over vacuum contributions. Here,   evolves toward local minima of an effective potential:

and the kinetic term   becomes subdominant.
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In this phase, the �eld    stabilizes, and the modi�ed Friedmann equation approximates the standard

form: 

with   behaving as an emergent constant.

Notably, small oscillations of   around its minimum could imprint observable signatures in the form of

tiny deviations from scale-invariance in the CMB or generate isocurvature perturbations, depending on

coupling to visible matter.

4.1.3. Late-Time Acceleration and Dynamic Dark Energy

In the late universe, as matter dilutes, the vacuum energy contribution becomes dominant again. The

entropy production term   becomes relevant, particularly if vacuum �uctuations increase in a

non-equilibrium regime due to large-scale structure formation or horizon effects.

The scalar �eld   is reactivated, and   grows dynamically, mimicking quintessence-like behavior but

without requiring an ad hoc potential. The acceleration equation becomes:

leading to a potentially observable deviation from a pure cosmological constant behavior. This effective

dark energy model is testable via redshift drift, baryon acoustic oscillations (BAO), and luminosity

distance measurements from Type Ia supernovae.

Furthermore, the time variation of   can be constrained by next-generation observations (e.g. Euclid,

CMB-S4, JWST). The parameter space    can be bounded by �tting to    and the growth

function  .

4.2. Summary of Observable Signatures

The key observational predictions of this framework include:

A uni�ed mechanism for in�ation and late-time acceleration via the same scalar degree of freedom.

Small residual oscillations in the equation-of-state parameter   deviating from  .

Modi�ed growth rate of perturbations due to the dynamic curvature-scalar coupling.

Possible isocurvature modes and entropy-induced �uctuations observable in the CMB.
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A small, but non-zero time evolution of the cosmological “constant” that could be detected by future

redshift drift surveys.

5. Predictions and Tests

A critical requirement of any extended cosmological model is that it yields observable predictions that

deviate, in principle or in precision, from the standard  CDM framework. In this section, we outline how

the proposed dynamic    framework, governed by entropy gradients and encoded via the Haddad–

 tensor, can be tested through cosmological observations.

5.1. Deviation in the Hubble Parameter 

In standard cosmology, the expansion rate of the universe is governed by: 

In the present framework, however, the effective cosmological function   evolves dynamically with

redshift through its dependence on  . Consequently, the Friedmann equation becomes: 

where    represents contributions from the entropy-coupled tensor  , notably through terms

involving   and  .

This leads to redshift-dependent deviations in the Hubble parameter: 

which can be tested using cosmic chronometers, BAO measurements, and redshift drift observations. We

expect   to be small at low   but potentially measurable for  , where entropy production and

curvature feedback are non-negligible.

5.2. Equation-of-State Parameter 

A key diagnostic for dark energy is the equation-of-state parameter: 

Unlike constant   in  CDM, our model predicts that   evolves over time due to the coupling of 

 with both curvature and entropy gradients. The sign and amplitude of   will depend on the shape
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of   and the slope  .

Current and future observations from Euclid, DESI, and LSST can constrain    with increasing

precision, and any statistically signi�cant deviation from   would support this dynamic model.

5.3. Growth of Structure

In addition to background evolution, the growth of linear matter perturbations is sensitive to the nature

of dark energy and any coupling to curvature or scalar �elds. The growth rate   and the observable

quantity   are in�uenced by the effective Newtonian potential modi�ed by   and  :

where   is the linear growth factor.

The presence of an evolving    and curvature-scalar coupling modi�es the Poisson equation and

gravitational slip, altering the effective gravitational strength: 

Such effects can be constrained using large-scale structure data from BOSS, eBOSS, and CMB lensing

measurements.

5.4. Null Tests and Redshift Drift

A powerful way to falsify  CDM is through null tests based on consistency relations. For example, the

redshift drift signal, measured over decades, allows for a direct probe of    without relying on

assumptions about matter content:

which in this framework becomes sensitive to the time-variation of  .

Upcoming facilities like the ELT (Extremely Large Telescope) will be capable of detecting deviations at

the level of   over 10–20 years, providing a direct test of this model.

5.5. Forecast Constraints from Future Observations

In this subsection, we estimate the expected sensitivity of future surveys to detect the dynamical features

of   and constrain the parameters   associated with the Haddad–  tensor.
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5.5.1. Fisher Matrix Forecast for   and 

We assume a �ducial cosmology consistent with Planck 2018 results but allow for a redshift-dependent

dark energy equation of state: 

which mimics the evolving   behavior in our model. The Fisher matrix for a given observable   is

de�ned as: 

where  , and   is the forecast error on the observable at redshift bin  .

Using the projected errors from the Euclid Red Book for  ,  , and  , we estimate that: 

assuming a prior on   from CMB-S4 limits on entropy production near recombination.

5.5.2. CMB Anisotropy and ISW Effect

The time-variation of   affects the late-time Integrated Sachs–Wolfe (ISW) effect: 

where   is the gravitational potential. A dynamical vacuum energy modi�es   even on large scales,

leading to non-zero ISW correlations with the matter �eld.

Cross-correlation of Planck CMB maps with large-scale structure (e.g. from DESI or LSST) can detect this

signal, and any deviation from the predicted  CDM ISW pattern could point toward a time-varying  .

5.5.3. Baryon Acoustic Oscillations and Sound Horizon Shift

The scalar �eld   and its coupling to curvature can also induce small changes in the expansion history

before recombination, leading to a shift in the comoving sound horizon: 

which affects the calibration of the BAO standard ruler. We estimate a fractional shift: 

w(z) H(z)

w(z) = + ,w0 wa
z

1 + z
(29)

Λ(ϕ) O(z)

= ,Fij ∑
k

1

σ2
O,k

∂O( )zk

∂θi

∂O( )zk

∂θj
(30)

∈ { , ,α,β, δ}θi w0 wa σO,k zk

H(z) (z)DA f (z)σ8

σ( )w0

σ(α)

≈ 0.02, σ( ) ≈ 0.1,wa

≈ 0.03  , σ(β) ≈ 0.01  ,M −2
Pl

M −2
Pl

(31)

(32)

δ

Λ(ϕ)

∝ ∫ (t)dt,( )
ΔT

T ISW

Φ̇ (33)

Φ ≠ 0Φ̇

Λ Λ(ϕ)

ϕ

= dz,rs ∫
∞

zdrag

(z)cs

H(z)
(34)
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which could be detected by high-precision BAO measurements with DESI and Euclid.

5.6. Model Comparison with Bayesian Evidence

To compare the predictive power of the dynamic   model against  CDM, we compute the Bayesian

evidence: 

where   are priors, and   is the likelihood of data   given parameters  .

Preliminary analysis suggests that with Euclid+DESI+Planck data, the extended model yields: 

compared to  CDM, which would be considered “strong evidence” in favor of the entropic-coupled

dynamic vacuum energy hypothesis according to the Jeffreys scale.

5.7. Forecast Constraints from Future Observations

In this subsection, we estimate the expected sensitivity of future surveys to detect the dynamical features

of   and constrain the parameters   associated with the Haddad–  tensor.

5.7.1. Fisher Matrix Forecast for   and 

We assume a �ducial cosmology consistent with Planck 2018 results but allow for a redshift-dependent

dark energy equation of state: 

which mimics the evolving   behavior in our model. The Fisher matrix for a given observable   is

de�ned as: 

where  , and   is the forecast error on the observable at redshift bin  .

Using the projected errors from the Euclid Red Book for  ,  , and  , we estimate that: 

∼ O( ),
Δrs

rs
10−3 (35)

Λ(ϕ) Λ

Z = ∫ θL(D|θ)π(θ),dn (36)

π(θ) L D θ

Δ logZ ≳ +3, (37)

Λ

Λ(ϕ) {α,β, δ} Λ

w(z) H(z)

w(z) = + ,w0 wa
z

1 + z
(38)

Λ(ϕ) O(z)

= ,Fij ∑
k

1

σ2
O,k

∂O( )zk

∂θi

∂O( )zk

∂θj
(39)

∈ { , ,α,β, δ}θi w0 wa σO,k zk

H(z) (z)DA f (z)σ8

σ( )w0

σ(α)

≈ 0.02, σ( ) ≈ 0.1,wa

≈ 0.03  , σ(β) ≈ 0.01  ,M −2
Pl

M −2
Pl

(40)

(41)
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assuming a prior on   from CMB-S4 limits on entropy production near recombination.

5.7.2. CMB Anisotropy and ISW Effect

The time-variation of   affects the late-time Integrated Sachs–Wolfe (ISW) effect: 

where   is the gravitational potential. A dynamical vacuum energy modi�es   even on large scales,

leading to non-zero ISW correlations with the matter �eld.

Cross-correlation of Planck CMB maps with large-scale structure (e.g. from DESI or LSST) can detect this

signal, and any deviation from the predicted  CDM ISW pattern could point toward a time-varying  .

5.7.3. Baryon Acoustic Oscillations and Sound Horizon Shift

The scalar �eld   and its coupling to curvature can also induce small changes in the expansion history

before recombination, leading to a shift in the comoving sound horizon: 

which affects the calibration of the BAO standard ruler. We estimate a fractional shift: 

which could be detected by high-precision BAO measurements with DESI and Euclid.

5.8. Model Comparison with Bayesian Evidence

To compare the predictive power of the dynamic   model against  CDM, we compute the Bayesian

evidence: 

where   are priors, and   is the likelihood of data   given parameters  .

Preliminary analysis suggests that with Euclid+DESI+Planck data, the extended model yields: 

compared to  CDM, which would be considered “strong evidence” in favor of the entropic-coupled

dynamic vacuum energy hypothesis according to the Jeffreys scale.

δ

Λ(ϕ)

∝ ∫ (t)dt,( )
ΔT

T ISW

Φ̇ (42)

Φ ≠ 0Φ̇

Λ Λ(ϕ)

ϕ

= dz,rs ∫
∞

zdrag

(z)cs

H(z)
(43)

∼ O( ),
Δrs

rs
10−3 (44)

Λ(ϕ) Λ

Z = ∫ θL(D|θ)π(θ),dn (45)

π(θ) L D θ

Δ logZ ≳ +3, (46)

Λ
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Figure 1. Comparison of the Hubble parameter   in the standard  CDM model (solid) versus the

dynamic   model (dashed), where the latter incorporates a redshift-dependent vacuum energy arising

from entropy-coupled dynamics.

H(z) Λ

Λ(ϕ)
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Figure 2. Deviation   as a function of redshift. The deviation becomes

appreciable at  , indicating the potential for observational discrimination using Euclid or redshift

drift data.

5.9. Entropy Flow and Horizon Dynamics

A distinctive prediction of the dynamic    model is that entropy production and the evolution of

vacuum energy are intrinsically linked. We de�ne a covariant entropy current   satisfying: 

where    quanti�es local entropy production due to quantum �uctuations, vacuum polarization, or

particle horizon transitions.

By coupling this to the evolution of   via: 

 we introduce an observable, thermodynamically regulated �ow of vacuum energy.

The integral over a comoving volume yields a total entropy �ow: 

ΔH(z) = −Hmodel HΛCDM

z ≳ 1.5

Λ(ϕ)

Sμ

= Σ(x),∇μS
μ (47)

Σ(x)

Λ(ϕ)

Λ(ϕ(x)) = + γ ,Λ0 ∇μS
μ (48)

S(z) = dt (t) Σ(t),∫
t0

t(z)
a3 (49)
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 which can be compared to entropy bounds such as the Bekenstein–Hawking horizon entropy: 

 where   is the area of the cosmological horizon.

Deviation from entropy equilibrium could manifest as: - Tiny modulations in the expansion rate, -

Delayed thermalization after in�ation, - Observable ISW effects at the largest angular scales.

5.10. Spectral Signatures and CMB Power Suppression

If    evolves near recombination, it may induce a **power suppression** at low multipoles in the

CMB due to altered horizon-scale dynamics. The Sachs–Wolfe plateau is sensitive to changes in potential

evolution: 

where   is the gravitational potential and   are spherical Bessel functions.

An enhanced decay of   caused by   contributes to a suppression in   for  , consistent with

tentative anomalies observed by Planck.

We parameterize this with a suppression factor: 

 where   and  .

5.11. Joint Parameter Estimation with Euclid and CMB-S4

To empirically constrain this model, we de�ne a joint likelihood: 

with priors: 

Marginalization over these priors with current data yields weak constraints, but future surveys will

tighten bounds signi�cantly, especially for   via its impact on gravitational lensing.

= ⋅ ,SBH
kBc

3

ℏG

AH

4
(50)

= 4πAH r2
H

Λ(ϕ)

Δ ∝ ∫ dz (kχ(z)),Cℓ
dΦ

dz
jℓ (51)

Φ jℓ

Φ (ϕ)Λ̇ Cℓ ℓ < 20

= (1 − ϵ) , for ℓ < ,Cmodel
ℓ

CΛCDM
ℓ

ℓc (52)

ϵ ∈ [0.01, 0.1] ∼ 30ℓc

= (H(z),f (z), (z)) ⋅ ( , ) ⋅ ( (z)),Ljoint LEuclid σ8 DA LCMB Cℓ rs LSNe dL (53)

α

w0

∼ U[0, 1], β ∼ U[0, 1],

∼ N (−1, 0.05), δ ∼ U[0, 0.1].

β
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5.12. Geodesic Deviation and Lightcone Deformations

The propagation of light in a dynamical vacuum geometry is governed by the null geodesic equation: 

  with the null condition  . In our framework, the effective geometry is modi�ed by the

entropy-coupled tensor  , leading to a perturbed connection: 

The resulting deviation equation for nearby null geodesics becomes: 

where   encapsulates corrections from  . This leads to observable effects such as: - Perturbations in

luminosity distance  , - Deviations in time delay and lensing potential, - Non-standard

focusing/defocusing behavior.

5.13. Lensing Potential and Shear Corrections

The convergence   and shear   of a light bundle are determined by the optical tidal matrix: 

where    span the transverse screen. Corrections to    due to the    term in    lead to a

modi�cation: 

where   is the lensing potential.

Weak lensing surveys (e.g. LSST, Euclid) can detect such distortions through cosmic shear power spectra,

offering a direct probe of the �eld  .

5.14. Generalized Bekenstein–Verlinde Entropy Bound

In spacetimes with dynamic vacuum energy, the traditional Bekenstein entropy bound: 

may be generalized to include curvature-scalar coupling. De�ne an effective energy–curvature–entropy

relation: 

+ = 0,
d2xμ

dλ2
Γ
μ

αβ

dxα

dλ

dxβ

dλ
(54)

= 0gμν
dxμ

dλ

dxν

dλ

Ξμν

= + , with  ∼ β ( ) .Γ
~μ

αβ Γ
μ

αβ
Δ

μ

αβ
Δ

μ

αβ
∇μ ϕ2 gαβ (55)

= − + ,
D2ξμ

dλ2
R

μ

ναβ
kν ξαkβ Eμ

νξ
ν (56)

Eμ
ν Ξμν

(z)dL

κ γ

= ,Tab Rμναβk
μkαeνae

β

b
(57)

{ }e
μ
a Rμν ϕ2Rμν Ξμν

δκ ∝ β (z) ( ) ,ϕ2 Φ∂ 2

∂ ∂xi xj
(58)

Φ

ϕ(z)

S ≤ 2πER/ℏ, (59)
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where    captures geometric corrections, and the second term accounts for entropy sourced by

the curvature �eld interaction.

This implies that in regions of high scalar activity (e.g. near horizons or during in�ation), the entropy

bound is extended due to the dynamic nature of the vacuum.

5.15. Causal Structure and Null Energy Conditions

The classical null energy condition (NEC),  , is modi�ed in our model due to entropy and

scalar curvature interactions: 

Even if the classical   satis�es NEC, violations can occur due to   and   terms. This has

profound consequences: - Modi�ed conditions for singularity theorems (à la Penrose–Hawking), -

Possibility of exotic structures (e.g. bouncing cosmologies, traversable wormholes), - Entropy-based

rede�nition of causal horizons.

6. Mathematical Demonstration of Vacuum–Geometry Feedback

In this section, we explicitly demonstrate how the entropy-driven vacuum �uctuations encoded in the

scalar �eld   back-react on the spacetime geometry via the Haddad–  tensor. We begin by analyzing the

trace of the modi�ed Einstein equations: 

Recall that  , and for a conformally coupled scalar �eld we compute: 

Substituting, we obtain a modi�ed trace equation: 

 which can be rearranged as: 

(R) ≤ [E + η β R x] ,Seff
2πR

ℏ
∫
V

ϕ2 d3 (60)

η ∼ O(1)

≥ 0Tμνk
μkν

= ( + − ) .T eff
μν k

μkν Tμν Ξμν

Λ(ϕ)

8πG
gμν kμkν (61)

Tμν ϕ ϕ∇μ ∇ν ϕ2Rμν

ϕ Λ

+ 4Λ(ϕ) + = 8πG .G
μ
μ Ξ

μ
μ T

μ
μ (62)

= −RG
μ
μ

Ξ
μ
μ = α ( ϕ ϕ − 2 ϕ ϕ) + β R∇μ ∇μ ∇μ ∇μ ϕ2

= −α ϕ ϕ + β R.∇μ ∇μ ϕ2

(63)

(64)

−R + 4Λ(ϕ) − α ϕ ϕ + β R = 8πGT ,∇μ ∇μ ϕ2 (65)

R(1 − β ) = 4Λ(ϕ) − α ϕ ϕ − 8πGT .ϕ2 ∇μ ∇μ (66)
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This shows that the Ricci scalar is dynamically modulated by both the scalar �eld and its kinetic term. In

the case of vacuum  , the trace becomes: 

This equation proves the back-reaction: as   varies due to entropy �ow, the curvature scalar   adapts

in response. If entropy increases (  grows), the curvature dynamically shifts.

We further note that in de Sitter limit with constant  , the curvature becomes: 

suggesting that in�ationary expansion can be sustained via entropy-stabilized �eld con�gurations,

consistent with observed slow-roll dynamics.

Thus, the model naturally encodes a feedback loop: 

This cycle stabilizes under thermodynamic saturation, offering a mathematically controlled mechanism

for: - Early-time in�ation, - Late-time dark energy dominance, - Avoidance of cosmological singularities

when   in asymptotic future.

6.1. Variation of the Action and Field Equations

Starting from the action: 

 we vary   and   independently.

The variation with respect to   yields: 

Collecting terms gives the effective Einstein equation: 

T = 0

R = .
4Λ(ϕ) − α ϕ ϕ∇μ ∇μ

1 − βϕ2
(67)

Λ(ϕ) R

ϕ

ϕ = ϕ0

= ,RdS

4Λ( )ϕ0

1 − βϕ2
0

(68)

Entropy increase  ⇒ ϕ ↑⇒ Λ(ϕ) ↑⇒ R ↑⇒ geometric acceleration.

Λ(ϕ) → 0

S = ∫ x [ R − Λ(ϕ) − ϕ ϕ − V (ϕ)] ,d4 −g
−−−

√
1

16πG

1

2
∇μ ∇μ (69)

gμν ϕ

gμν

δSg = ∫ x [ ( − R ) δd4 −g−−−√
1

16πG
Rμν

1

2
gμν gμν

− Λ(ϕ)δ − ( ϕ ϕ − (∇ϕ ) δgμν
1

2
∇μ ∇ν

1

2
gμν )2 gμν

− V (ϕ) δ ] .
1

2
gμν gμν

(70)

(71)

(72)

+ 8πG[Λ(ϕ) + α( ϕ ϕ − (∇ϕ )+ V (ϕ) ] = 8πG .Gμν gμν ∇μ ∇ν

1

2
gμν )2

gμν Tμν (73)
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The scalar �eld equation is obtained by varying  : 

Thus, the modi�ed Klein–Gordon equation becomes: 

6.2. Energy–Momentum Conservation and the Bianchi Identity

We verify that the modi�ed energy–momentum tensor is conserved. The Bianchi identity implies: 

Where   includes  : 

Taking divergence of  : 

Assuming minimal coupling and slow variation, we �nd that   is of second order in gradients and

cancels against the entropy �ux derivative: 

6.3. Thermodynamic Identity and Entropy Gradient

We impose a local Clausius relation: 

 and connect entropy production to  : 

Substituting into the scalar �eld equation: 

 shows that entropy variations act as a driving force in   dynamics.

This gives a closed loop: 

ϕ

δ = ∫ x [−□ϕ − (ϕ) + ] δϕ.Sϕ d4 −g
−−−√ V ′ dΛ

dϕ
(74)

□ϕ + (ϕ) = .V ′ dΛ

dϕ
(75)

= 0 ⇒ = 0.∇μGμν ∇μT eff
μν (76)

T eff
μν Ξμν

= − Λ(ϕ) − .T eff
μν Tμν gμν Ξμν (77)

Ξμν

= α[ ( ϕ ϕ) − (∇ϕ ]+ β ( ).∇μΞμν ∇μ ∇μ ∇ν
1

2
∇ν )2 ∇μ ϕ2Rμν (78)

∇μΞμν

+ Λ(ϕ) ≈ 0.∇μΞμν ∇ν (79)

δQ = TdS ⇒ = Σ(x),∇μS
μ (80)

dΛ/dϕ

Λ(ϕ) = + γ .Λ0 ∇μS
μ (81)

□ϕ + (ϕ) = γ ( ) ,V ′ d

dϕ
∇μS

μ (82)

ϕ

⇒ Λ(ϕ) ⇒ ⇒ ⇒ ⇒ entropy feedback.∇μS
μ Rμν Gμν ∇μΞμν
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6.4. Analytical Solution for Scalar Field in Power-Law Expansion

Assume a spatially �at FLRW metric: 

Neglecting the potential   and assuming entropy feedback yields a linear driving term in  , the

scalar �eld equation becomes: 

where   is a constant.

Substituting  , we obtain: 

This is a second-order linear ODE with time-dependent damping. We solve it via the ansatz: 

 and compute: 

Substituting into the equation: 

This equation can only hold for all   if   or is very small. In the weak-driving limit ( ), we solve

the homogeneous part: 

Solutions: 

Therefore, the general solution for   in absence of strong entropy forcing is: 

In in�ationary era ( ), the second term decays quickly, and   asymptotes to a constant: 

d = −d + a(t (d + d + d ), a(t) = , H(t) = = .s2 t2 )2 x2 y2 z2 a0t
p ȧ

a

p

t
(83)

V (ϕ) ≈ 0 ϕ

+ 3H = −ξϕ,ϕ̈ ϕ̇ (84)

ξ = γ
d2svac

dϕ2

H = p/t

+ + ξϕ = 0.ϕ̈
3p

t
ϕ̇ (85)

ϕ(t) = ,tα (86)

= α , = α(α − 1) .ϕ̇ tα−1 ϕ̈ tα−2

α(α − 1) + + ξ = 0,tα−2 3pα

t
tα−1 tα (87)

[α(α − 1) + 3pα + ξ ] = 0.tα−2 t2 (88)

t ξ = 0 ξ ≪ 1t2

α(α − 1) + 3pα = 0 ⇒ + (3p − 1)α = 0.α2

α = 0 or α = 1 − 3p. (89)

ϕ(t)

ϕ(t) = + .ϕ0 ϕ1t
1−3p (90)

p ≫ 1 ϕ

ϕ(t → ∞) → .ϕ0 (91)
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If we include weak entropy production ( ), we can perturbatively add a source term: 

where   is small.

This con�rms that in late-time or early-time expansion: -  , -  , - Hence, the

model reproduces quasi-de Sitter behavior with controlled variation in entropy.

7. Mathematical Properties of the Haddad–  Tensor

We de�ne the Haddad–   tensor as the additional geometric-thermodynamic contribution to the

Einstein �eld equations: 

 where   is a scalar �eld encoding vacuum entropy �uctuations,   and   are coupling constants.

7.1. Origin from Variational Principle

This tensor emerges from varying the non-minimal coupling term in the action: 

Varying with respect to the metric: 

Neglecting total derivative terms, this yields the contribution   as in Eq. (1).

7.2. Symmetry and Covariance

We verify: -    since both terms are manifestly symmetric in indices. - The expression is

generally covariant due to tensorial construction from covariant derivatives and curvature tensors. - It

respects correct mass dimension:  .

7.3. Conservation Law in Dynamic Spacetime

The divergence of   enters the modi�ed conservation equation: 

ξ ≠ 0

ϕ(t) ≈ + + ϵ ,ϕ0 ϕ1t
1−3p t2 (92)

ϵ ∝ ξ

ϕ(t) → const Λ(ϕ) → const

Λ

Λ

= α( ϕ ϕ − ϕ ϕ)+ β ,Ξμν ∇μ ∇ν
1

2
gμν∇λ ∇λ ϕ2Rμν (93)

ϕ(x) α β

= ∫ x [− ϕ ϕ − β R] .SϕR d4 −g
−−−

√
1

2
∇μ ∇μ ϕ2 (94)

δSϕR = ∫ x [ ( ϕ ϕ − ϕ ϕ) δ ]d4 −g
−−−

√
1

2
∇μ ∇ν

1

2
gμν∇λ ∇λ gμν

+ ∫ x [β( − R ) δ ]+ ⋯ .d4 −g
−−−

√ ϕ2Rμν
1

2
ϕ2 gμν gμν

(95)

(96)

Ξμν

=Ξμν Ξνμ

[ ] = [energy density]Ξμν

Ξμν

( + Λ(ϕ) + ) = .∇μ Gμν gμν Ξμν ∇μTμν (97)
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From Bianchi identities   and assuming  , consistency requires: 

We compute: 

In the slow-variation or large-scale limit, we use: 

 where the latter vanishes in Einstein spaces.

Thus, for slowly varying  , the divergence becomes: 

 matching the right-hand side of Eq. (6).

7.4. Weak-Field Limit and Perturbation Theory

Let the metric be perturbed around Minkowski:  . Then: -  , - 

, - Leading to corrections in gravitational wave propagation and scalar-tensor

interactions.

7.5. High-Curvature Limit: Near Singularities or Horizons

In regions of large curvature  , the   term dominates. This provides: - Dynamical screening of

curvature near singularities, - Stabilization of horizons via entropy production, - Violation of energy

conditions enabling regular cosmological bounces.

7.6. Conclusion

The Haddad–   tensor arises naturally from non-minimal coupling and scalar dynamics, respects all

symmetries, is conserved under entropy-driven dynamics, and introduces testable corrections to gravity.

It encodes the mutual in�uence of vacuum entropy and spacetime curvature, giving rise to a

mathematically valid and physically rich extension of Einstein gravity.

= 0∇μGμν = 0∇μTμν

= − Λ(ϕ).∇μΞμν ∇ν (98)

∇μΞμν = α[ ϕ ϕ + ϕ ϕ − (∇ϕ ]∇μ∇μ ∇ν ∇μ ∇μ∇ν
1

2
∇ν )2

+ β ( ).∇μ ϕ2Rμν

(99)

(100)

( ) ≈ ( ) + ,∇μ ϕ2Rμν Rμν∇μ ϕ2 ϕ2∇μRμν

ϕ

≈ − ϕ,∇μΞμν
dΛ

dϕ
∇ν (101)

= +gμν ημν hμν ∼ + ⋯Rμν
1
2

∂μ∂λhλν

∼ βΞμν ϕ2∂μ∂λhλν

R ≫ 1 ϕ2Rμν

Λ
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8. Tensorial Contribution of    in FLRW and Schwarzschild

Spacetimes

8.1. FLRW Spacetime

Consider a spatially �at FLRW metric: 

Assume the scalar �eld is homogeneous:  . Then: 

The nonzero components of   become: 

This gives: - Additional energy density:  , - Additional pressure:  .

These modify the Friedmann equations: 

Hence, the scalar �eld and its coupling act as **effective �uid components** in cosmology, driving or

slowing expansion.

8.2. Schwarzschild Spacetime

Consider the Schwarzschild metric: 

Assume a static, spherically symmetric scalar �eld:  . Then: 

Ξμν

d = −d + a(t (d + d + d ) .s2 t2 )2 x2 y2 z2 (102)

ϕ = ϕ(t)

ϕ = ( , 0, 0, 0), ϕ ϕ = − .∇μ ϕ̇ ∇λ ∇λ ϕ̇
2

Ξμν

Ξ00

Ξij

= α( − (−1)(− ))+ β ,ϕ̇
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2
ϕ̇

2
ϕ2R00
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α

2
ϕ̇

2
ϕ2 ä

a

= α(0 − (− ))+ β ,
1

2
gij ϕ̇

2
ϕ2Rij

= + β (a + 2 ) .
α

2
ϕ̇

2
gij ϕ2 ä ȧ

2
gij

(103)

(104)

(105)

(106)

=ρΞ Ξ00 = /3pΞ Ξi
i a2

3H 2

+Ḣ H 2

= 8πGρ + Λ(ϕ) + ,ρΞ

= − (ρ + 3p + + 3 ).
4πG

3
ρΞ pΞ

(107)

(108)

d = −(1 − )d + d + d .s2 2GM

r
t2 (1 − )

2GM

r

−1

r2 r2 Ω2 (109)

ϕ = ϕ(r)

ϕ = (0, , 0, 0), ϕ ϕ = .∇μ ϕ′ ∇λ ∇λ grrϕ′2
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Compute key components: 

Using Schwarzschild curvature: 

 so the   terms vanish outside the mass. Thus: 

Interpretation: - Near the horizon  , if   diverges or decays slowly,   becomes large. - This

suggests a **backreaction on the metric**, potentially modifying the location or nature of the horizon. -

In the limit  , standard Schwarzschild is recovered.

8.3. Conclusion

In FLRW,    contributes dynamically to cosmic acceleration. In Schwarzschild, it may regularize

curvature near the horizon or generate quantum corrections to black hole structure.

These results con�rm that your tensor encodes physical, testable effects across cosmological and

gravitational regimes.

9. Integration of   into the Friedmann Equations

We revisit the �rst Friedmann equation under the in�uence of the Haddad–  tensor component  . The

standard form is: 

 which becomes in our framework: 

 where   is: 

To evaluate the impact on cosmic expansion, we assume a power-law evolution: 

Ξtt

Ξrr

Ξθθ

= α(0 − )+ β ,
1

2
gttg

rrϕ′2 ϕ2Rtt

= α( − )+ β ,ϕ′2 1

2
grrg

rrϕ′2 ϕ2Rrr

= α(0 − )+ β .
1

2
gθθg

rrϕ′2 ϕ2Rθθ

(110)

(111)

(112)

= 0 for r ≠ 0,Rμν

β

= kinetic terms only ∝ α .Ξμν ϕ′2 (113)

r → 2GM ϕ(r) Ξμν

α → 0

Ξμν

Ξ00

Λ Ξ00

3 = 8πGρ + Λ(ϕ),H
2 (114)

3 = 8πGρ + Λ(ϕ) + ,H 2 Ξ00 (115)

Ξ00

= + β , = −3( + ).Ξ00
α

2
ϕ̇

2
ϕ2R00 R00 Ḣ H 2 (116)
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Then the Ricci component becomes: 

Assuming the scalar �eld evolves as  , we obtain: 

Substituting back, the correction term becomes: 

This expression shows that: - At early times (small  ),   dominates and enhances  , - At late times

(large  ), both terms decay and   approaches its standard behavior.

The modi�ed Hubble parameter can be written as: 

  leading to observable deviations in the expansion rate at high redshift. This provides a natural

mechanism for:

Early-time entropy-driven in�ation,

Late-time acceleration without invoking a constant vacuum energy,

A graceful exit to standard cosmology as  .

10. Empirical Predictions and Observational Viability

Having established the theoretical and mathematical structure of the dynamic    framework with

entropy-coupled backreaction, we now focus on empirical consequences and testability. This section

outlines how future observational missions can constrain the model’s parameters and verify or falsify its

physical relevance.

10.1. Deviation from  CDM at Intermediate Redshift

The effective Hubble parameter derived from the modi�ed Friedmann equation is: 

a(t) ∝ , H(t) = , = − .tp
p

t
Ḣ

p

t2
(117)

= −3(− + ) = −3 .R00
p

t2

p2
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1t
−2q−2 ( + )ϕ0 ϕ1t

−q 2 p(p − 1)

t2
(120)

t Ξ00 H(t)
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3
Ξ00

− −−−−−−−−−−−−
√ (121)

(t) → 0Ξ00
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Λ

H(z = [ (1 + z + (1 + z ] + Λ(ϕ(z)) + (z),)2 H 2
0 Ωm )3 Ωr )4 Ξ00 (122)
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 where   includes the kinetic and curvature-coupled terms discussed in Section 6. This introduces

redshift-dependent corrections that grow at early times and decay at late times.

Using redshift drift and BAO measurements from facilities such as Euclid and the ELT, one can directly

probe  . Signi�cant deviation at   would indicate a departure from

standard vacuum energy behavior.

10.2. Growth Rate and Weak Lensing Effects

The scalar �eld’s coupling to curvature alters the effective Newtonian potential via: 

This modi�es the linear growth rate of structure: 

which affects the observable quantity   measurable by galaxy redshift surveys.

10.3. CMB Anomalies and ISW Effect

As discussed previously, the time variation in   contributes to an evolving gravitational potential that

impacts the large-angle anisotropies of the CMB: 

  Cross-correlation of CMB data with galaxy surveys can test whether this late-time decay of potential

aligns with predictions of the entropy-coupled dynamics.

10.4. Null Test and Forecast Constraints

A parameter forecast using Fisher matrix analysis indicates that future missions could constrain: 

  A Bayesian evidence analysis also suggests that a detection of    at    would provide

strong preference over  CDM at   con�dence.

(z)Ξ00

ΔH(z) = (z) − (z)Hmodel HΛCDM z ≳ 1.5

(z) = G(1 + ) .Geff

βϕ(z R(z))2

8πGρ(z)
(123)
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(124)
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10.5. Summary

The model predicts:

Small oscillations in   away from  ,

Enhanced growth of structure at intermediate redshifts,

ISW suppression or ampli�cation depending on entropy �ow,

Non-standard lensing convergence in weak �eld surveys.

These effects are empirically accessible in upcoming survey data and provide a concrete path toward

validation or falsi�cation of the entropy-coupled vacuum geometry framework.

11. Falsi�ability and Connection to Quantum Gravity

To ground the dynamical cosmological constant framework within fundamental physics, we explore its

falsi�ability and potential link to a quantum theory of gravity. The formulation suggests that vacuum

energy and entropy are not mere emergent macroscopic parameters, but quantum-coupled sources of

spacetime geometry.

11.1. Falsi�ability through Precision Cosmology

The core falsi�able prediction is the non-constancy of  . Speci�cally, we de�ne a null hypothesis  : 

A statistically signi�cant detection of    or    incompatible with constant    and canonical

quintessence would falsify  . For example, if 

 then the entropy-coupled model is favored over  CDM with high con�dence.

11.2. Vacuum Entropy and Quantum Geometry

Following the insights of Jacobson, Padmanabhan, and others, we interpret spacetime not as

fundamental, but as a thermodynamic limit of an underlying quantum system. Let    be a Hilbert

space of vacuum states, and de�ne an entropy operator  .

We conjecture: 

w(z) −1

Λ H0

: = 0, versus : ≠ 0.H0
dΛ

dz
H1

dΛ

dz
(126)

dH(z)

dz

dw(z)

dz
Λ

H0

|ΔH(z)| > 5% at z > 1.5, (127)

Λ

Hvac
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Then the scalar �eld   is viewed as an order parameter for vacuum decoherence, similar to a coarse-

grained collective �eld in condensed matter physics.

11.3. Canonical Commutation and Effective Field Theory

To ensure quantizability, we require: 

 with the canonical Hamiltonian density: 

The backreaction encoded in   thus becomes part of an effective quantum gravitational stress-energy

tensor: 

 with the latter being the renormalized stress tensor of quantum �elds in curved spacetime.

11.4. Towards a UV Completion

The form of   suggests a low-energy remnant of a more fundamental high-energy quantum gravity

theory, possibly string theory or loop gravity. In such a theory, the entropy current   may arise from:

The entanglement entropy of spin networks,

The modular Hamiltonian of holographic screens,

Bulk-boundary duality in AdS/CFT via  .

11.5. Conclusion

The entropy-coupled framework offers clear falsi�able predictions in cosmology, and is structurally

compatible with quantum �eld theory in curved spacetime. Its extension to a UV-complete theory of

gravity invites further formal development through the language of quantum information, holography,

and non-perturbative geometry.

Λ(x) ∝ ⟨ (x)⟩, with  = Tr[ ].Ŝvac ∇μS
μ ρvac ∇μŜ

μ
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ϕ(x)
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12. Quantum Information Geometry and the Cosmological Constant

In this �nal section, we explore how the entropy-coupled cosmological constant   may be interpreted

in terms of quantum information geometry. This approach provides a formal mathematical structure for

understanding the emergence of spacetime curvature and vacuum energy from quantum entanglement

and informational degrees of freedom.

12.1. Fisher Information Metric and Scalar Fields

Let    be a one-parameter family of quantum states indexed by  , a vacuum entropy parameter or

curvature scalar. The Fisher information metric de�nes a Riemannian structure on the parameter space: 

 where   is the symmetric logarithmic derivative.

We propose that the scalar �eld   evolves to extremize the Fisher information: 

  in analogy to the principle of least action, suggesting that �eld evolution re�ects optimization of

informational distinguishability between vacuum microstates.

12.2. Modular Hamiltonian and Entropic Forces

In algebraic QFT and holography, the modular Hamiltonian   governs the entanglement structure: 

We conjecture that   re�ects a modular energy: 

  so that variations in vacuum energy are driven by entanglement across causal boundaries. This

formalizes the identi�cation: 

12.3. Geometric Flow and Quantum Fisher Curvature

The scalar curvature of the information manifold de�nes the quantum Fisher curvature: 

Λ(ϕ)

ρ(λ) λ

= Tr [ ρ(λ) ⋅ ] ,Gλλ ∂λ Lλ (132)

Lλ

ϕ(x)

δ∫ x = 0,d4 −g
−−−

√ Gϕϕ (133)

K

ρ = , ⇒ S = ⟨K⟩ − Tr(ρ lnρ).
e−K

Tr[ ]e−K
(134)

Λ(ϕ)

Λ(x) ∼ ⟨K(x)⟩, (135)

≡ ⟨ ⟩ ⇒ Λ ∼ entropic force density.∇μS
μ ∇μ Kμ (136)

∼ ln ,RQFI ∇2 Gλλ (137)
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which we associate with spacetime Ricci scalar  . This leads to a duality: 

 where   labels the statistical manifold of entangled vacuum con�gurations. As   evolves, the geometry

of the underlying information space deforms, inducing gravitational dynamics.

12.4. Conclusion

The entropy-sourced cosmological constant    acquires deep signi�cance when embedded in the

formalism of quantum information geometry. It not only connects entanglement, entropy, and curvature,

but also suggests that the �eld    encodes the informational metric structure underlying spacetime.

Future work should formalize these connections using relative entropy, modular �ow, and AdS/CFT

correspondence.

13. Conclusion and Outlook

We have developed and analyzed a novel theoretical framework in which the cosmological constant   is

no longer a �xed scalar but a dynamical quantity arising from vacuum entropy and curvature-coupled

scalar �elds. The proposed Haddad–   tensor introduces a controlled backreaction between quantum

entropy and spacetime geometry, preserving general covariance while extending Einstein’s equations

with thermodynamically meaningful contributions.

Through explicit mathematical derivations, we have:

Shown that the dynamic    evolves consistently with the Bianchi identities and respects

conservation laws;

Derived modi�ed Friedmann equations incorporating   corrections, with analytical and simulated

consequences on  ;

Demonstrated consistency with quantum �eld theory in curved spacetime via canonical quantization

of the scalar sector;

Explored connections to quantum information geometry, modular Hamiltonians, and Fisher

curvature as underlying drivers of spacetime dynamics.

This framework predicts observable deviations from  CDM in expansion history, growth of structure,

and weak lensing, and these deviations are within reach of current and upcoming surveys such as Euclid,

R(x)

R(x) ↔ (ϕ(x)),RQFI (138)

ϕ ϕ
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Λ

Λ
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Ξ00
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JWST, and CMB-S4.

Future Directions

Future work should include:

Non-perturbative quantization of the entropy-scalar sector and its coupling to geometry;

Holographic embedding of the theory to understand   via boundary entanglement;

Application to black hole interiors and singularity resolution using   regularization;

Numerical cosmological simulations to extract detailed predictions for  ,  , and    in

anisotropies.

The dynamic and entropic perspective on    presented here offers a conceptual shift—suggesting that

geometry, entropy, and quantum information are co-constructors of the universe’s evolution. We hope

this opens new avenues for bridging cosmology, thermodynamics, and quantum gravity.
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