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Emergent Quantum Mechanics (Em.QM) is de�ned here as the attempt to bridge the

gap between quantum and classical mechanics, and to restore causality to the

atomic world. An example described in the paper shows how a conspiracy of the

classical laws produces a replica of the quantum harmonic oscillator. This is

achieved using a droplet model of electrons, obeying Newton/Einstein dynamics in

combination with Maxwell’s electromagnetic laws.

A concise sketch of the droplet theory precedes the sections on the harmonic

oscillator. This summary also brie�y mentions other successes of the droplet theory,

such as the derivation of the fundamental quantum laws   and   with a

practically correct numerical value of Planck’s constant h. Although these subjects

were already addressed in earlier publications about Em.QM, recently simpler and

more transparent derivations were found and are reported here.

Finally, the achievements of Em.QM until now are reviewed. Em.QM does not

compete with conventional QM: the latter will always be superior for performing

actual calculations, whereas Em.QM is concerned with possible interpretations of

quantum phenomena. An assessment is given of the present status of Em.QM in this

perspective.
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1. Introduction

The term Emergent Quantum Mechanics (in the following

abbreviated as Em.QM) is here used to indicate the branch

of physics aiming to reconcile Quantum Mechanics

(hereafter abbreviated as QM) with the classical laws of

physics, down to atomic scales. The present-day paradigm

in physics is that at atomic scales, particles obey the laws

and rules of QM, whereas, at these scales, the classical laws

of physics have completely lost their applicability. In

Em.QM, it is investigated whether this is really true. In the

paper, it is discussed how some atomic properties until

recently were thought to be typical quantum phenomena,

but, on closer examination, appeared to be compatible

with the classical laws and even could be replicated by a

“conspiracy” of these laws. If Em.QM further matures in

the future, one may come to a point where the relation

between Em.QM and QM becomes analogous to, for

instance, the relation between kinetic gas theory and

thermodynamics. Thermodynamics is based on the

modelling of �uids as continuous media, which leads to

very ef�cient methods to perform calculations, although

at the cost of having to introduce a few rather esoteric

concepts, remote from intuitive physics. In contrast,

kinetic gas theory considers the motion of separate

molecules, which, although less suitable for technical

calculations, shows how the thermodynamic phenomena

are related to classical mechanics. Likewise, conventional

QM is very ef�cient for performing actual calculations,

whereas Em.QM can show how quantum phenomena may

be explained by classical laws. This could lift some of the

magic from QM, and -more importantly- could bring back

causality to the atomic world.

Until 2005, it was accepted that two separate physics

existed, one applicable to the atomic world, the other one

p = h

λ
E = h.ν
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usable in the macroscopic world. However, doubts about

this arose when Couder et al. (e.g., refs. 5, 6, and 7) from

2005 onwards published experiments on tiny droplets of

oil bouncing on a vibrating oil surface. The macroscopic

droplets, obeying the classical laws of physics,

nevertheless showed quantum-like behaviour such as

discrete levels, tunnelling, and double-slit refraction. This

remarkable behaviour was the �rst indication that the

classical laws can conspire in such a way that quantum-

like phenomena are mimicked.

After these experiments, the obvious and legitimate

question was whether classical analogues of still other -

and perhaps of all the known- quantum phenomena

might be found. After a theoretical explanation by

Anderson and Brady of the oil droplet experiments (ref.8),

the same authors published a paper (ref.9) that made it

plausible that even the non-local behaviour of entangled

quantum systems is amenable to classical analogues.

So far, the above-mentioned investigations have

concerned analogues of quantum phenomena. The present

author took a next step in 2017 (ref.3) by which it was

shown that several quantitatively correct replicas of the

quantum world could be constructed, just using

Newton/Einstein dynamics coupled with Maxwell’s laws.

Examples reported in refs. 3 and 4, also brie�y

summarised in the present paper, are:

The classical laws of nature can conspire to reproduce

“De Broglie dynamics” (i.e.  ) of atomic particles,

including a “classical” interpretation of matter waves

and a quantitative replication of Planck’s Constant   .

Using the classical mechanical laws and Maxwell’s

equations, the quantum behaviour of electrons in

potential wells (in particular, the motion in boxes and

in harmonic oscillators) can be replicated, showing

amongst others energy quantisation, violation of the

classical motion limits, and tunnelling.

Planck’s energy-frequency relation in radiation (

) can be derived from the classical laws.

A possible answer to the long-standing question can be

given how the mass differences of the three charged

leptons (the electron, the muon and the tau-particle)

can be explained, and why there are three kinds (or:

“generations”) of these leptons.

The key to obtaining these results was to model the

electron as a charged droplet, susceptible to deformations.

In contrast to the usual point-like model, the droplet

model is mathematically non-singular, and thereby allows

the determination of so-called self-forces. Self-forces are

the electromagnetic forces exerted by “lumps of charges”

on themselves during accelerations and shape

deformations. Already a century ago, self-forces played an

important role during the studies on non-singular

electron models by Lorentz, Abraham, et al. (refs.12 and 13),

and they are therefore well-known. However, the droplet

model has more degrees of freedom than Lorentz’s rigid

charge distributions, and consequently, more types of self-

forces are found than just Lorentz’s electromagnetic mass

and radiation resistance force. Cross-couplings between

the degrees of freedom cause that shape deformations,

such as vibrations of the droplet, do have an in�uence on

the translational motion of the droplet. It is due to these

dynamic cross-couplings that, at very small scales, the

behaviour of “blobs of charge” becomes quantum-like.

The �rst part of the present paper gives an exposé of the

dynamical theory applicable to the droplet of charge. The

central problem in the theory is the determination of the

electromagnetic self-forces. The analysis of the self-forces

is completely reported in the mathematical appendix of

ref.3. The derivations in ref.3 have been peer reviewed, so

that this reference can serve as a source that can be

consulted for all the details. Unfortunately, the derivations

are too lengthy to copy in full in a journal paper.

Another description of the theory with a somewhat

different character may be found in ref.4. In the latter

reference, the key results of the theory have been stated

together with an attempt to explain them heuristically

instead of by rigorous mathematics. The more modest aim

was to make these results plausible and understandable.

In the present paper, neither of the above descriptions of

the theory has been copied. Rather, a concise sketch will be

given by summing up what are the essential steps needed

to arrive at the equations of motion of the droplet.

Emphasis is thus given to the “general line” in the

derivation of the droplet’s dynamics, without detailing all

the arguments behind the theoretical steps. It is hoped

that the present outline of the theory of Em.QM is the most

“streamlined” and easy-to-read of all three publications,

and may serve as an introduction. More background, in

the form of heuristic arguments or even full mathematical

derivations and proofs, may be obtained from refs. 3 and 4.

After the introduction to Em.QM’s droplet theory in

sections 2 to 10, the second part of the paper shows the

application of the theory to the harmonic oscillator. The

quantum mechanical harmonic oscillator is a popular

educational model as it is a “school example” of how

radically different QM is compared with classical

mechanics. The more surprising is the fact that the same

results are here reproduced using the classical laws,

without any reference to the laws and rules of quantum

mechanics.

The harmonic oscillator consists both macroscopically as

well as in the atomic world of a charge moving back and

forth within a parabolic potential. Macroscopically, the

equation of motion is a simple vibration equation, and the

motion is a harmonic oscillation, whereas in QM the

motion is governed by Schrödinger’s equation, leading to

p = h

λ

h

E = h.ν
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typical quantum phenomena like discrete energy levels

and violations of the classical limits of motion. In sec.11, it

will be shown how the classical laws of nature can

conspire to predict the same quantum behaviour, if the

moving charge has been modelled in the form of a

deformable droplet instead of a rigid “marble”.

An interesting difference between the treatments by QM

and by Em.QM must also be pointed out: to �nd the

solution of Schrödinger’s equation for this simple

con�guration is unexpectedly complicated (see e.g. refs.1

or 2). From the point of view of mathematics, the

harmonic oscillator is not an “easy piece” in QM. An earlier

version of Em. QM’s droplet theory (ref.3) required solving

a Mathieu equation, and was neither very simple. However,

in the present paper, a newer development of the theory

will be presented, which is much more transparent than

either Schrödinger’s or Mathieu’s theory. It shows that the

“conspiracy of the classical laws” is not necessarily a

complex concoction of formulae. Rather, it is

straightforward and elegant.

In contrast to secs. 2 to 10, where just an outline of the

theory was given, in sec.11 the theory of the harmonic

oscillator is developed in all details, starting from the

equations of motion up to the derivation of the discrete

energy levels. The more elaborate explanation was chosen

because the new, simpler derivations cannot be found in

earlier publications like ref.3, where still the Mathieu

equation is used as a basis for the solution.

Finally, the frequency observable in the radiation when the

droplet exchanges one level for another is discussed. The

frequency postulated by Bohr is related to the energy drop

of the electron, whereas according to Maxwell’s laws, one

would expect it to be associated with the vibration of some

part of the oscillator. Em.QM offers a solution to this old

riddle, even though the results of Em.QM do agree with

Planck’s energy-frequency relation   .

In the section “Discussion and conclusions”, an

assessment is included of what, in view of the successes up

to now, is the present state of Em.QM in the perspective of

the –very ambitious- goal to �nd for all the quantum

phenomena an interpretation in terms of the classical

laws.

2. The droplet model

In principle, one is allowed to propose any model, however

unrealistic it may seem at �rst sight, to investigate its

properties and compare them with experimental results.

The droplet model of electrons could therefore be

considered as just an arbitrary working hypothesis, whose

usefulness is only determined by its consequences.

However, there is another view possible on the plausibility

of this model, which will be the subject of the present

section.

Figure 1. Modelling an electron with "zitter"

The droplet model has a connection with the “zitter”

motion of electrons. “Zitter” (a German term introduced

by Schrödinger in 1930, meaning “shudder” or “tremble”)

is the phenomenon in which an electron continually

performs tiny jumps in all directions (�g.1 left). The basic

idea behind the droplet model is that the electron should

be modelled including this intrinsic motion. In order to

obtain a simpli�ed model, one would be tempted to use

time-averaging, resulting in a “cloud” of charge (�g.1,

middle). Such a deformable cloud with distributed charge

is certainly easier to analyse, but unfortunately, it is not a

realistic model because it has a tendency to explode, in

contrast to the original con�guration. The culprit is the

time-averaging modelling step itself. In the case of the real

zittering electron at any instant of time, there is no more

than one charge present, so that there is no tendency for

the “zitter volume” to explode. At most, this volume may

slowly drift away. On the other hand, the time-averaged

model does show an explosion tendency, because the

different elements of the resulting cloud co-exist at the

same time.

Obviously, merely time-averaging is a wrong modelling

tool, or rather, it is too simple. A useful simpli�ed model

requires the addition of “apparent” forces as a means of

containment, “taming” the explosion tendency, which has

purely arti�cially been introduced by the time averaging.

The terminology “apparent force” is here used in the same

sense as, for instance, the term “apparent mass” in �uid

dynamics. A body immersed in a �uid experiences a force

resisting an acceleration, due to a redistribution of

pressure forces accompanying the increasing kinetic

energy in the �ow during an acceleration. When a �uid-

less dynamical model is made, one may replace the

pressure forces with a drag force supplemented by an

“apparent mass”. Likewise, a time-averaged model of the

zittering electron requires, to be consistent, an “apparent”

containment force so that the model re�ects reality. Using

Feynman’s terminology (see ref.10), containment forces of

whatever origin are often called “Poincaré forces”. The

form of the Poincaré forces in our case must be some kind

of surface-tension-like force, since the explosion tendency

is largest in the outer shells of the charged cloud, where

E = h.ν
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the repulsion all comes from within the cloud. The

resulting simpli�ed model of the zittering electron is

schematically pictured in �g.1 right, and from now on, will

be called the “droplet model”. The droplet model satis�es

the requirement that it affords a simpler analysis than real

physics does, whereas it is consistent in the sense that it

re�ects reality in its essentials and allows an unrestricted

application of the electromagnetic laws.

The proposed droplet model may look analogous to the

droplet model of nuclei. However, it is essentially different:

the surface tension in the electron model is an apparent

force existing only in the time-averaged model world. It

certainly is not a physical force, whereas the strong nuclear

force is. Rather, the droplet model might be considered to

be somewhat comparable with the concept of the so-called

“dressed electron”.

The droplet model has been used for a �rst exploration of

the consequences of a non-singular electron model, and to

�nd out whether it could lead to physically realistic

conclusions. In view of this limited purpose, drastic

further simplifying assumptions were introduced in order

to facilitate an easy analysis. The model analysed is shown

in �g.2. The droplet is assumed to move along the Z-axis

inside a one-dimensional potential well, one half of which

is schematically indicated by the barrier at a distance 

 from the well centre at   . What is sketched suggests

a potential box, but the barrier may be soft as well, such as

in a parabolic well. The motion of the droplet, as well as

the motion of all its elements, is likewise taken to be one-

dimensional. Consequently, the charge elements have a

velocity, acceleration and jerk in the Z-direction only. The

charge distribution is not speci�ed, except that it is

assumed to have rotational symmetry around the Z-axis,

and fore-aft symmetry w.r.t. an “equator plane”. We can

thus de�ne a midpoint, which is the centre of mass as well

as the centre of charge.

The model has two degrees of freedom: the variable

position of the midpoint    , and the variable

elongation    , called the “pulsation” hereafter. A quasi-

static deformation mode is assumed, where stretching (i.e.

an increase of the total length   ) takes place as in a spring

without dynamic effects. A �nal assumption is that the

droplet has an elongated shape in the Z-direction (i.e.

varying from a Zeppelin-shape to a needle or even a long

wire or string), so that the analysis of the electromagnetic

�eld and the self-forces can make use of “slender -body”

approximations.

Figure 2. Simpli�ed con�guration and notations

3. Matched asymptotic expansion

procedure to derive the instationary

electromagnetic �eld

The mathematical analysis to determine the instationary

electromagnetic �eld and the self-forces caused by this

�eld is described in detail in the appendix of ref.3. A

suitable tool for this purpose is the mathematical

procedure called “matched asymptotic expansion

approximation of singular perturbation problems” (see

ref.11, and the short explanation in ref.3). The method

(brie�y: “max”-method) was popular in �uid dynamics in

the sixties and seventies of the last century, before

“number crunching” by computers took over. As far as the

author knows, the max-technique was in the past never

used in connection with Maxwell’s equations. Its

applicability was veri�ed by comparing several results of

the “max”-procedure with Lorentz’s results concerning

“lumps of charges” (see sec.4).

The asymptotic expansion parameter used is    , where 

 stands for a typical velocity of the charge elements, and 

  is the speed of light. Asymptotic expansions are

developed of the “near �eld” (where the retardation times

are small and may be approximated) and -separately- of

the “far �eld” (which may be approximated by a

superposition of multipoles). There are ambiguities left in

both series expansions, since the near �eld approximation

lacks boundary conditions at in�nity (so that in principle

�elds are allowed -and indeed prove to be indispensable-

that do not vanish at in�nity), whereas the type and

number of poles of the far �eld are undetermined because

of the lack of any “inner” boundary conditions. The

ambiguities are removed by matching the two �elds,

through the intermediary of the so-called “common part”

of the expansions. Moreover, singularities in either of the

a

2
z = 0

(t)zm
s(t)

s

v
c

v

c
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expansions are also removed by the matching process, so

that the so-called “composite �eld” satis�es all the

physical boundary conditions.

The asymptotic expansions have been continued up to and

including the order  . This level of approximation

has been chosen in order to guarantee that the so-called

“radiation resistance” of the droplet is in agreement with

the energy radiated away to in�nity (see sec.7).

Because the analysis rests on Maxwell’s laws, relativity

effects are automatically included. However, the

asymptotic expansions are truncated after the terms of

order  , and so are the relativity effects.

4. Self-forces and the translational

equation of motion

4.1. De�nition of “self-force”

Most of the terms occurring in the equations of motion of

the droplet are so-called “self-forces”. They are the forces

an electron exerts on itself, due to the retardation of

signals between the separate elements of the “smeared

out” charge. Consider, for instance, the electron model

sketched in �g.2, and assume that it is subject to a

translational acceleration   . Let us furthermore assume

that external forces affecting the elongation    are absent

(although the dimensions of the droplet may be in�uenced

by Lorentz-FitzGerald contraction). The interaction

between two different elements of the droplet takes place

through electromagnetic waves propagating with the

speed of light    . This means that any element will “see”

other elements at a slightly earlier time, and, therefore,

with a slightly smaller speed than its own speed. This will

disturb the balance of internal forces that existed when the

charge was at rest, with the effect that so-called self-forces

arise.

The calculation of the self-forces makes use of the

instationary electromagnetic �eld determined by the

matched asymptotic expansion procedure. The associated

electric and magnetic �eld strengths are integrated over

all the elements of the droplet, and then lead to the self-

forces summarised below. The complete calculation has

been described in detail in the mathematical appendix of

ref.3. These calculations are too lengthy to include in a

relatively short article, for which reason, in ref.4, the

detailed mathematics were replaced by heuristic

arguments. The latter publication had the more modest

aim to give the reader some feeling for the physical

meaning of the terms in the equations of motion, and to

make the results plausible.

The present paper does not copy the earlier derivations of

the self-forces as can be found in either ref.3 or ref.4.

Rather, the procedure followed during the derivation is

described. Secs. 4 to 10, therefore, merely summarise the

steps that have been taken to arrive at the equations of

motion, mostly without a justi�cation.

4.2. Electromagnetic and inertial mass

The most well-known of the self-forces on a “lump of

charge” is the electromagnetic inertia force, a force resisting

accelerations. A result obtained by Lorentz (see ref.12) is

that any lump of electrical charge has inertia, where the

so-called electromagnetic mass    is given by (the

symbols are explained in the section “notations” at the

end of the paper):

The same result was found by the “max”-procedure used

by the author. Lorentz studied -as a candidate electron

model- a thin layer of charge deposited on a spherical core

of insulator material. He took as the characteristic

dimension   the radius of the core, and found  . The

value of the form factor   in eq. (1) depends on the shape

and distribution of the electric charge and has, in general,

an order of magnitude   .

One might have had the intuitive feeling that retardation

effects would be negligible on the scale of atomic particles.

However, the reverse is true, as evidenced by eq. (1), which

shows    if    . Basically, this is the cause of

the in�nities (of mass and energy) associated with

singular electron models.

The electromagnetic mass    given by eq. (1) is not the

inertia to be used in dynamical equations, as already

pointed out by Poincaré (ref.14). The matter arose after

Einstein wrote his paper on special relativity, and the

realisation by physicists that the electrostatic energy 

  (explained below) of a “lump of charge” and its

electromagnetic mass    do not satisfy the generally

valid relation   .

The electrostatic energy    (or: “formation energy”)

re�ects the fact that an accumulation of electrical charge is

equivalent to an energy storage. The stored energy equals

the work expended by bringing all the charge elements

together against the mutual repulsion forces between

them. The magnitude of this electrostatic energy    is

derived in most textbooks (see e.g. ref.10), and is in the

case of the con�guration of �g.2:

Comparing eqs. (1) and (2) clearly shows the problem.

Feynman relates in his Lectures (ref.10) that eqs. (1) and (2)

were developed before relativity, and he says, “when

Einstein and others began to realise that it must always be

that   , there was great confusion”.

O( )v
c

3

O( )v
c

3

z̈m
s

c

mem

= α (1)mem
1

c2

q2

4πε0

1

s

s α = 2
3

α

O(1)

→ ∞mem s → 0

mem

Ues

mem

E = mc2

Ues

Ues

(s) = α (2)Ues
1

2

q2

4πε0

1

s

U = mc2
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Poincaré subsequently pointed out (ref.14) that relativity

and the theory of electrically charged objects can be

reconciled by taking into account the binding energy that

keeps the distributed charge contained. Binding energy is

equivalent to a mass de�cit, so that the inertial mass   to

be used in the dynamic equations of motion is smaller

than the electromagnetic mass    . For the droplet

con�guration, the inertial mass    has been found to

be

where      denotes the “static equilibrium elongation”,

occurring when the droplet is at rest and the electrostatic

expansion tendency is balanced by the squeezing due to

the surface-tension-like apparent force. The inertial mass

under equilibrium conditions ( ) is

which does satisfy the relativity relations.

4.3. Radiation resistance

By the “max”-analysis of ref.3, one more of Lorentz’s self-

forces is found: the “radiation resistance” (also called

“radiation reaction”):

It is a small ( in the denominator!) translational force

depending on the jerk   of the droplet’s centre of charge. If 

  is harmonic, one can demonstrate (see e.g. Feynman

in ref.10) that an external force overcoming the radiation

resistance injects -on average- exactly as much energy as

can be found in the radiation energy leaving the system far

from the droplet. Hence the name “radiation resistance”

and the interpretation of this self-force as a recoil force

accompanying electromagnetic radiation. In the case of

harmonic motion of the charge, it acts as a damping force,

dissipating the energy of the droplet in the form of

radiation.

However, for any other type of motion, for instance, the

starting-up transient of a harmonic motion,  as given by

eq. (5) leads to severe problems: the motion then violates

causality. In Lorentz’s time, these problems were called the

“runaway motion” and “pre-acceleration” of electrons (i.e.

start of the motion before the force is being applied), and

they remained unexplained for a long time despite many

attempts to revise the theory (see the overview given by

Feynman in ref.10). It was only towards the end of the 

  century that Yaghjian offered a possible solution

which eliminates the non-causal dynamical behaviour of

“lumps of charges” (ref.13). Yaghjian postulated a

“starting-up delay of the radiation resistance” and proved

that the assumption of even a tiny delay (of the order of the

time span needed by a light ray to pass from one end of an

electron to the other) would solve all the problems with

causality. A physical interpretation of Yaghjian’s

mathematical solution was given by the present author in

ref.3, and will be explained below. Yaghjian’s work,

recovering causality, cleared the way to use and extend the

theory of lumped charges as developed by Lorentz and

contemporaries like Abraham. This proved vital for the

present research on non-singular electron models.

The physical explanation of a delay in the radiation

resistance during transients is the following. The solution

of Maxwell’s equations allows both outgoing as well as

incoming waves. This corresponds with the dissipation of

the droplet’s energy, respectively, energy absorption from

the �eld. A superposition of both types of waves is

mathematically allowable, the particular mix being

determined by the physical boundary conditions. A well-

known example of complete cancelling of radiation

resistance is the oscillating charge inside an enclosure so

that no radiation of energy to in�nity can take place. The

mathematical description entails the sum of outgoing and

incoming waves of equal strength, resulting in a �eld of

standing waves inside the enclosed space. In ref.3 it is

shown that, in such a case, the radiation resistance indeed

vanishes, without affecting the other self-forces.

In ref.3 it is also shown that the transient situation of a

charge which is initially at rest and starts to oscillate

requires a mathematical description which, apart from

outgoing waves, includes a quickly subsiding �eld of

incoming waves. The result is that at the very �rst

moment of the motion, the radiation resistance is zero,

after which it grows to the value given by eq. (5). This is

the kind of “resistance delay” that had been postulated by

Yaghjian and was proven by him to eliminate the old

problems of violated causality in the form of runaway

motion or pre-acceleration.

In the equations of motion stated below, the radiation

resistance will therefore be written for the most general

case as

It is shown in ref.3 that all the other self-forces keep the

same value, no matter whether one deals with outgoing or

incoming waves. The other self-forces, therefore, do not

depend on the value of   .

4.4. Cross-coupling between translation and

pulsation, translational equation of motion

A third translational self-force is found to be:

m

mem

m (s)

m (s) = (s) −   ( ) (3)mem
1

2
mem se

se

s = se

m ( ) = ( ) = (4)se
1

2
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c2

F = (5)
2

3

q2

4πε0
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v(t)

F

20th
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2

3

q2
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It is a force representing a cross-coupling between the two

degrees of freedom of the droplet. The existence of this

cross-coupling term enables one to write the translational

equation of motion in the -deceptively- simple form:

The crux of why this innocuous-looking equation leads to

quantum-like behaviour instead of to “normal” motion is

the fact that in the momentum    , the mass of the

droplet    is variable due to the pulsation of the

droplet.

5. The pulsation equation

5.1. Lagrange’s equation and generalised forces

The variable elongation    must be treated as a

generalised coordinate in the sense of Lagrangian

dynamics. Lagrange’s generalisation of Newton’s

dynamical equation is usually written in the form

where the generalised coordinates    in our case are 

 and   (see �g.2). The system Lagrangian is   ,

where both the kinetic energy   and the potential energy 

  are expressed in terms of the generalised coordinates.

The notation    stands for the generalised force in    -

direction. In the following, an explanation is given of how

the generalised “explosion” force    must be derived

according to Lagrange’s theory.

5.2. Generalised force associated with the internal

repulsion forces of a static droplet

There are several contributions to the generalised force in 

  -direction    . The contribution by the electrostatic

repulsion between the elements of the droplet is here

denoted as   . In the following, it will sometimes be

called the “explosion tendency of the droplet”. We assume

zero velocity of the droplet and apply a small increase of

the length, a so-called virtual displacement   . Because of

the model assumptions about the symmetries and the

elastic type of the deformation (see sec.2), this one

quantity   determines how all the elements of the droplet

are displaced, and how much all the mutual distances

between the elements are increased. Recalling the physical

meaning of formation energy (or electrostatic energy 

  ), all these elemental displacements together cause a

reduction of    (if    is positive). The generalised force 

  is de�ned as the single parameter whose product

with   would give the same change   of the formation

energy. Using eq. (2):

5.3. Relativity correction of the “explosion

tendency”, energy conservation

When the self-forces of the droplet are determined in the

more general situation    , it appears that the

“explosion tendency” is reduced, and the expression in eq.

(10) is multiplied by the relativity factor   .

The extra term    in the pulsation equation

represents a cross-coupling between the two degrees of

freedom, like the earlier force    in the translation

equation. When the work is determined, which is done by

these two cross-coupling effects, it is found that energy

may be transferred from the translation to the pulsation

and back, whereas the total energy of the droplet is

conserved.

5.4. Generalised force associated with the surface

tension

The electrostatic expansion is counteracted by the

surface-tension-like apparent force, which is similarly

expressed in the form of a Lagrangian generalised force 

 :

The �rst part,  , re�ects the property that

surface tension causes a tendency to squeeze the droplet

into a spherical shape, which tendency is larger the more

the actual shape differs from a sphere. This �rst term is in

the second line written as    . The second term

represents a scale effect: the compression due to surface

tension leads to a tendency to minimise the size, which

tendency is relatively stronger the smaller the overall size.

In the case of spherical droplets, the scale effect can be

shown to be inversely proportional to the radius, which

scale effect in the present case (one-dimensional

variations of the elongation) is represented by the factor 

 .

5.5. Squeezing inertia, the pulsation equation of

motion

If the matched asymptotic expansions are truncated after

terms of the    , only one more self-force is found.

This is the so-called “squeezing inertia”, resisting

elongation accelerations    . Including the squeezing

inertia term, the equation of motion for the pulsation 

 reads:

= +   (8)
dp

dt
Fexternal  Frad
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where the symbol   stands for the “generalised mass

in s-direction” or “squeezing inertia”, which has the same

form as electromagnetic mass, and the same dependency

on the elongation   :

The form factor   depends on the precise distribution of

charge inside the droplet. In general, it is an order smaller

than   in   , as derived in app.B.

6. Static equilibria: the three charged

leptons

The static equilibrium condition reads:

Substituting eqs. (10) and (11) into eq. (14) leads to a cubic

algebraic equation in   , with potentially (if all the roots are

real) three different values of the elongation for which

equilibrium is possible. In view of eq. (3), which expresses

that the inertial mass   depends on the elongation    ,

we see that three different values of the equilibrium mass

are possible. Fig.3 illustrates this conclusion graphically. In

the �gure, it is also inscribed how one - tentatively- could

try to identify the three possible equilibria of the droplet

model with the three charged leptons (electron, muon and

tau-particle).

These three “guises” of the electron are identical, except

for their mass. The mass of elementary particles is bound

to be determined in some way by the laws of physics. Were

it not so, it would be inexplicable why all the particles of a

kind everywhere have exactly the same mass. It has,

therefore, been a long-standing question how it is possible

that the three charged leptons (why three?) have different

masses, in spite of the fact that there are no other

discernable differences between them. A more

comprehensive discussion about the “enigma of the

leptons” may be found in the introduction of ref.4.

The assumptions about the nature of the three leptons, as

inscribed in �g.3, would answer both questions, viz. where

the mass differences come from as well as why there are

three of these electron variants.

Under the assumptions inscribed in �g.3, the relative

position of the two curves in the �gure is �xed by the

known value of    and the known ratios 

 and   .

Figure 3. The equilibria between electrostatic expansion

and surface tension

The hitherto unknown coef�cients of    are

then given by:

The equations of motion are hereby fully quanti�ed. As

will be shown in sec.10, the so quanti�ed dynamic

equations are able to reproduce Planck’s Constant    and

De Broglie’s relation    . This makes it plausible that

the three equilibria in �g.3 indeed do coincide with the

lepton masses. It should be emphasised that this

conclusion is strictly valid only within the scope of the

model world of Em.QM, and one could argue about its real

physical meaning (whatever is meant by “real”).

7. Larmor’s law and energy

conservation in the electromagnetic

�eld

Larmor’s law speci�es the rate of energy radiated outward

by an oscillating charge:

The matched asymptotic expansion method (or: “max”

procedure) used in the present study to determine the

instationary electromagnetic �eld leads to the same

expression. However, there is one difference between the

“max”-result and Larmor’s law: Larmor derived eq. (16) for

the case of harmonic motion of the charge, whereas

according to the asymptotic solution eq. (16) is more

generally valid and may be applied to the instantaneous

(s)   =  (1 − ) + (12)m∗ s̈
v2

c2
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acceleration    (with due allowance for the retardation),

irrespective of the time history of the motion.

Obviously, eq. (16) is based on outgoing waves and on an

outward energy �ow. If, as in sec.4.3, incoming waves are

allowed too, as well as a mix of outgoing and incoming

waves with different strengths, we must write the loss of

energy   from the system in the more general form

The radiation resistance   does work on the droplet at a

rate    . In reverse, the corresponding power injected

into the near �eld is   or, according to eq. (6):

The harmonic motion assumed by Larmor, for instance, 

, indeed satis�es the requirement that –

averaged over a cycle- the power input by the droplet into

the �eld balances the power lost by radiation to in�nity.

The fact that this equality only applies to a cycle-average

implies that the electromagnetic �eld must have some

capacity to temporarily store energy.

Feynman, in ref. (10), broadened the conclusion somewhat,

by showing that compatibility of eqs. (17) and (18) requires 

 to be periodic, and not necessarily harmonic.

A class of suitable functions    is, for instance, the

ensemble of solutions of the following linear differential

equation with a variable coef�cient:

According to Floquet–Lyapunov theory, which pertains to

linear differential equations with variable coef�cients, the

solutions    of this equation have the same periodicity

as the function    , so that Feynman’s condition for the

compatibility of eqs. (17) and (18) is met. Furthermore, 

determined by eq. (19) satis�es a second, rather essential

requirement not yet mentioned, viz. that the direction of

the energy �ow injected into or absorbed from the �eld

should at all times correspond with the direction of the

electromagnetic waves themselves. Functions 

  determined by eq. (19) agree with this condition

because of the requirement   .

Later, in sec.11 dealing with the harmonic oscillator, it will

be seen that for small pulsation amplitudes of the droplet,

the velocity    indeed satis�es an equation of the type

described by eq. (19). The linearised equations of motion of

the droplet thus automatically ensure compatibility of the

radiation resistance and the energy loss due to radiation.

However, other types of motion do occur, for instance,

when the pulsation amplitude is so large that linearisation

of the equations of motion is not allowed. The non-linear

equations of motion (further detailed in sec.8) lead to

chaotic pulsation and chaotic velocity �uctuations. Such a

motion is non-periodic, and neither can it at all times

satisfy the above-mentioned criterion of co-directionality

of energy �ow and wave propagation. In order to restore

the conservation of energy in the �eld, we must then take 

  , i.e., zero radiation resistance and zero radiation to

in�nity. For this kind of motion, the radiation

environment then acts like a “closed” system, with

outgoing and incoming waves compensating each other.

This is the same situation as described in sec.4.3, when

during the �rst instant of the start-up of an oscillation

from rest, the radiation resistance is zero and

subsequently delayed.

Ref.3 explains the zero radiation loss during chaotic

motion in physical terms, by considering the auto-

correlation function of a fully developed chaotic signal,

which closely approaches a delta function. The almost

complete lack of correlation from one moment in time to

the next can physically be interpreted as “an almost

continuous sequence of starting-up transients”. It was

seen that any transient in the motion of the charged

droplet causes a starting-up delay of radiation. The lack of

correlation in the chaotic motion will therefore lead to a

state where a regular radiation �eld cannot develop.

8. The non-linear equations of

motion, chaotic motion

It is convenient to introduce the parameter    (as will be

shown later, the physical meaning of   is the “zero-speed

frequency” of the pulsation), where:

which transforms the pulsation equation (12) into:

  The character of the non-linearities in this equation can

be inferred by expanding eq. (21) in terms of the relative

perturbation   , where   denotes a perturbation of the

elongation w.r.t. the equilibrium value   :

The resulting equation in    reads, after subtracting the

equilibrium state and with the approximation 

 :
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For very small perturbations    , when complete

linearisation would be allowed, eq. (23) reduces to a simple

vibration equation. For increasing amplitudes of    the

non-linearities will gradually become more important,

and will lead to a chaotic response. Multiplying by a factor 

  shows that the

type of non-linearity is comparable to a mass-spring

system with one-sided spring softening. Ref.16 discusses

the properties of a system with double-sided spring

softening. In such a case, the chaotic response coexists

with a periodic limit cycle, which occurs for small

amplitudes at the same control parameter values. The same

kind of behaviour may be expected in the case of eq. (23),

since it also reduces to a normal vibration equation for

small amplitudes.

Figure 4. Power Spectral Density of chaotic signal (blue)

and near-harmonic signal (red)

A characteristic of the non-linear behaviour is that slow

alternations between small and large amplitudes of the

chaotic motion randomly occur, thus accompanied by

changes in the character of the signal from near-harmonic

to fully chaotic. This property of the equation can be seen

when all the non-linear terms in (23) are written in the

r.h.s., and are then considered as “pseudo-forces”

(somewhat comparable to d’Alembert’s concept of inertia-

forces), acting on the vibration equation as excitations.

The “pseudo-force”  in the r.h.s. is non-

conservative, so that it may have the effect of either an

energy source or energy sink, thereby affecting the

amplitude of the vibrations. As earlier remarked in sec.5.3,

the total energy in the droplet is nevertheless constant

thanks to energy transfers between the different dynamic

modes (translation, pulsation and the elongation

“spring”).

The slow variations in amplitude of the chaotic pulsation 

  , spanning many short cycles of the pulsation, are

schematically depicted in the upper part of �g.4. The

variations are accompanied by changes in the character of

the signal. As a further illustration of the latter feature, the

lower part of �g.4 shows - again very schematically- the

Power Spectral Density (PSD) of the signal. Small

amplitudes of the pulsation, associated with near-

harmonic behaviour, correspond in the PSD-diagram with

a sharp “spike”, practically a delta-function. Large

amplitudes, on the other hand, leading to chaotic motion,

in the PSD-diagram show up as a broadening of the

“spike” and a more or less wide spread of frequencies.

9. Linearised equations of motion

The frequency of the “spike” in �g.4 will hereafter be

referred to as the “central frequency” of the pulsation. The

characteristics of this central frequency are easily

determined, because they follow from the completely

linearised pulsation equation:

This equation will be combined with the linearised

expression for the momentum    , which is constant

during “free �ight” of the droplet, i.e. when in eq. (8) both 

  and    (the latter due to chaotic

motion and   :

with    , the so-called “average velocity” where the

velocity “ripples” induced by the pulsation are ignored,

de�ned as

Furthermore, the following abbreviation will be used:

Combining eqs. (24) and (25) eliminates the variable 

 so that   is left as the only variable:
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Note the change of sign in the second term, compared with

eq. (24).

The particular solution of eq. (28), associated with the

non-zero r.h.s., does not concern us in the following. From

now on, we concentrate on the general solution associated

with the homogeneous equation. The homogeneous

pulsation equation is a simple vibration equation and has

harmonic functions as solution. The factor   is very small,

so that a good approximation of the pulsation frequency 

 (i.e. the central frequency of the PSD-curve of �g.4) is:

The velocity ripples   , de�ned by   , have

– according to eq. (25) – the same frequency    . The fact

that the frequency increases with speed at �rst sight

would appear to be in con�ict with the predictions of

special relativity (the slowing of clocks at speed). However,

in the asymptotic expansions of the electromagnetic �eld,

time dilation effects will show up as terms of the fourth

asymptotic order, and are therefore neglected. The speed

dependency in eq. (29) is caused solely by the cross-

couplings between translational motion and pulsation of

the droplet.

10. De Broglie’s relation and Planck’s

constant

If we still assume free-�ight conditions (i.e. constant

momentum) with chaotic pulsation so that   (constant

energy), and focussing on the central frequency of the PSD,

eq. (28) has the solution:

with   given by equ. (29). Because of the small factor   in

eq. (28), this solution might be looked upon as a slightly

perturbed form of the solution for    , which is 

  . The interpretation of (30) as a

“perturbed harmonic function” is useful when eq. (28)

(where    ) is considered as a degenerated

case of a more general equation where    is a -slow-

variable. With    variable, the equation is of the type

“linear differential equation with variable coef�cients”,

and belongs to another category than the straightforward

vibration equation. Even with the    variable, the

solution can still be seen as a “perturbed harmonic

function”. What will therefore be done in sec.11 dealing

with the harmonic oscillator is to �nd an approximated

solution of the differential equation in the form of an

asymptotic series:

where the �rst term is the solution for    . If, in the

present section, the same approach is chosen as in sec.11,

we can immediately write down:

The two cosines in (33) with their slightly differing

frequencies lead to a slow beat phenomenon, meaning

that    is a fast oscillating function of time with a

slow variation of its amplitude. What will be called here

the “beat pattern” is the enveloping curve of the fast

oscillation. In the case at hand, the beat pattern is not

sinusoidal, but it is periodic so that we can still de�ne a

beat frequency    with    the repetition period.

The frequency of the beat equals the frequency difference

of the cosines in eq. (33), which is    , so that

according to eq. (29):

Another interpretation of    follows directly from

eq. (29): it is the frequency-shift due to velocity, which

explains the terminology that    is the so-called “zero-

speed frequency”. Therefore,  can also be interpreted

as the beat frequency observed when the �eld of a moving

and a static droplet interfere.

If we de�ne the wavelength   of the beat pattern as the

distance travelled by the droplet between two consecutive

beats, then:

Using Eqs. (4) and (2) to express    , and substituting

eqs. (20) and (27) for   and    , eq. (35) can be cast in the

form

Eq. (36) looks remarkably similar in form to De Broglie’s

equation    (with    Planck’s Constant and    the

wavelength of the matter wave “accompanying” the

particle). We now compare the numerical value of the

constant   of the droplet theory with the value of Planck’s

Constant    . For this purpose, the

following values are substituted into eq. (37): 
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;      ; 

;  ; 

Apart from these constants of nature, the constant   also

depends on the factor    , so that it depends on how the

charge is distributed within the droplet. The precise value

of the factor    is thus unknown: in theory, as it stands

now, no assumptions were introduced (nor were they

needed) about the variation of the electrical charge density

throughout the droplet. The only thing known is that the

factor is of order unity:    (see the remarks about

the orders of   and   in secs. 4.2, 5.5 and app.B). The best

estimate that presently can be made is therefore   We

then �nd

The difference with Planck’s constant is 1.5 %, which, if it

is interpreted as an error, is quite acceptable in view of the

fact that the present droplet theory is just of an

exploratory nature (one-dimensional, matched asymptotic

expansions truncated after three terms, linearisations,

etc.). This result lends credibility to the supposition that

the three leptons correspond to the three equilibria of a

deformable droplet of charge. The result should be

understood to belong strictly to the model world of

Em.QM. Conventional QM is based on different kinds of

models and laws, so that the above result is meaningless

within the scope of QM. The dichotomy between the two

theories shows up very clearly in the interpretation of the

wavelength in De Broglie’s formula: in QM, this concerns

the wavelength of so-called “matter waves”, in Em.QM it is

associated with a beat phenomenon buried in the

pulsation and the velocity �uctuations of the droplet

model.

11. The harmonic oscillator

11.1. Preliminaries

The case considered in the present section is a droplet of

charge moving inside a parabolic potential well. If the

droplet did not have pulsation freedom, its translational

motion would be the same as that of a macroscopic

“marble” moving inside a parabolically shaped bowl:

where the notations    and    are de�ned in �g.5, and 

 here means the –variable– droplet speed when the

velocity ripples induced by the pulsation are ignored. The

maximum velocity   of the “marble” occurs in the lowest

point of the well, where all the potential energy has been

exchanged for kinetic energy. Therefore, during the

complete cycle of the motion, the marble’s total energy 

  is constant and equals    . Note that the

angular velocity   does not depend on the energy   in the

case of the parabolic well.

Figure 5. Notations classical harmonic oscillator

The mode of pulsation of the deformable droplet is

assumed to be chaotic, so that its total energy (not to be

confused with the energy    of the corresponding

“marble”) is constant because of the lack of dissipation by

radiation. The pulsation at the central frequency of the

PSD-curve of �g.4 is, apart from a constant, described by

the homogeneous differential equation

 If the value of   were exactly zero, the pulsation would be 

  . The so-called “zero-speed

pulsation frequency”   is much larger (as shown in ref.3)

than the perturbation frequency    so that    . Using

this property, the rather meaningless factor    in the

equation of motion eq. (41) can be replaced by an

alternative, physically more transparent factor. In view of

the results from sec.10, eq. (37) and    , the

following approximation may be used:

which, substituted into (41), leads to the following

modi�ed form of the pulsation equation:

11.2. Approximate solution of the pulsation

equation

Eq. (43) can be transformed into a Mathieu equation, so

that exact solutions (the so-called Mathieu functions) are

c = 2.9979 × 108 m
s

q = 1.6021 ×  C10−19

= 8.8544 ×ε0 10−12N−1m−2C2 μ = 206.85 τ = 3477.1

K

β

β

β = O(1)
α α∗

β = 1.

K = 6.52 ×  J. s  for  β = 1 (39)10−34

(t) = V  sin (Ωt) (40)vav

V Ω
(t)vav

V

E E = m( )1
2

se V 2

Ω E

E

+ [1 + 2k (Ωt)] = 0 (41)
sΔ̈

se
ω2

0 V 2 sin2 Δs

se

k

= A cos( t + )Δs
se

ω0 φ0

ω0

Ω  “1Ω
ω0

k

K ≈ h = 2π ℏ

≈ (42)
kω0

m( )se

1

ℏ

+ [1 + 4 (Ωt)] = 0 (43)
sΔ̈

se
ω2

0

E

ℏΩ

Ω

ω0
sin2 Δs

se
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available. In ref.3, this approach has been chosen to �nd

the energy quantisation of the harmonic oscillator.

However, we can avoid the complexities of Mathieu-

functions, by using the property    and linearising by

neglecting terms of the order    . Later, it will be

seen that the factor   is of the order   , in agreement

with the results of the usual QM theory. Therefore, the

second term within the square brackets of eq. (43), which

causes the perturbation w.r.t. the exact harmonic solution,

is of the order   . Following the same procedure as in

sec.10, we again try to determine the solution in the form

of an asymptotic series:

In order to determine the next term of the asymptotic

series, an approximation of    is constructed by

heuristic means, which can afterwards (in App.A) be

proven to be accurate up to and including the order 

 .

The small value of   suggests that the solution of eq. (43)

might be approximated by a near-harmonic function with

a variable frequency, in other words, by an FM (Frequency

Modulated) signal. Eq. (43) suggests that the variable

frequency   of this FM-signal is:

The FM-signal itself may then be written in the form of a

sinusoidal function with a non-uniformly increasing

phase angle   :

where the phase-angle    , i.e. the integral of the

frequency, is given by:

In appendix A, this tentative solution is back-substituted

into the differential equation (43), and an ordering scheme

w.r.t. the relative magnitude of the terms is applied. As

expected, it then appears that  , as given by eqs.

(47) and (48), does not satisfy the differential equation

exactly; in other words, the r.h.s. is not exactly zero after

the substitution. However, the residue in the r.h.s. is of the

order  . It may be concluded that the near

harmonic FM-approximation satis�es eq. (43) with

suf�cient accuracy, and that the solution of eq. (43), to be

inspected further, is thus given by

11.3. Quantisation of energy

A physical requirement is that the pulsation pattern as

given by eq. (49) repeats itself with a period    , i.e.

the same period as the rolling of the “marble” inside the

parabolic bowl (see �g.5). Consequently, substituting eq.

(49) into the requirement    gives a

constraint to guarantee the correct repetition of the

physical phenomena:

From eq. (50) it follows that    is quantised. Though 

 may be very large, its value is �xed so that raising the

integer    by one unit also requires that    increases by

one unit. In other words, the spacing between the levels is

11.4. Energy levels of the harmonic oscillator

The lowest possible value   is not determined by the

relation (50). For the purpose of determining the complete

stack of allowed values, we again “distill” the slow

dynamics out of the pulsation, in the same way as in the

previous sec.10. We return to the asymptotic expansion

(44) where the term of order    , in which the slow

dynamics are buried, reads:

The phase angles of both the cosines in eq. (52) are drawn

in the schematic �g. 6, with 

  . Needless to say,

the �gure is entirely out of proportion, since in actual fact 

. The sum of cosines in eq. (52) with their slightly

differing phase-histories leads to a beat, i.e., a high

frequency oscillation with a slow variation of its

amplitude.

”1Ω
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Ω
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ℏΩ
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ℏΩ
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Figure 6. Phase angle  (red) of the approximated

pulsation eq.(49), compared with phase angle  (blue) of

the unperturbed oscillation, 

In �g.6, at time    , the phase difference    between

the two cosines equals    , and the two cosines

cancel each other. As time progresses, the two phases

diverge further in value, and eventually will show a phase

difference of   , at which point in time the cosines

add up and the beat has a maximum. The distance

between the two extremes of the beat is determined by a

growth of   by an amount   . The time interval between

the maxima and minima of the beat thus depends on the

growth rate   where

The growth rate   thus depends on the value of   .

We can conclude that there must be a non-zero minimum

value of    . Since the repetition time of the physical

system is the period    (see �g.5), for very small

values of    , one would �nd a minimum of the beat

pattern in one physical cycle, and the next maximum in a

later cycle. This would violate the physical requirement of

periodicity. The situation of the smallest allowed value of 

  is the one depicted in �g.6. Counting from    , the

phase difference    has increased by an

amount   at the time   :

Substituting eq. (53) this means that the lowest energy

level is given by

Repeatability with the period    is assured if, using

the requirement (50),  has a half-integer value.

Combining eq. (55) with the earlier result about the

spacing between the allowed levels   yields for

the complete sequence of allowed energy levels:

This result is in agreement with the results found in

conventional QM by solving Schrödinger’s equation. An

analysis of the stability of the droplet’s motion at the so-

called “allowed” energy levels    has been given in ref.3,

and will not be copied here.

It must again be stressed that the quantisation of   is not

the same as a quantisation of the total energy of the

droplet. This total energy comprises contributions not

only by the average velocity, but also by the potential

energy in the elongation “spring”, as well as by the

pulsations and the velocity �uctuations. The total energy

of the droplet need not even be quantised at all.

11.5. Planck’s Energy- frequency relation

The present paper does not deal with the equations of

motion applicable to energy loss or energy capture due to

radiation. The latter situation will be the subject of another

paper. Even so, eq. (49) can give some information about

the transition from one of the allowed energy levels to

another, for instance, from   to the adjacent lower level 

  , where according to the above    . Let

us hypothesize that there is a gradual transition between

these levels, meaning that the mode of motion at level 

  in some -in the present paper not further speci�ed-

way “extinguishes” whilst at the same time the mode 

  grows. Both levels are accompanied by different

modes of oscillation  , in accordance with eq. (49), so

that during the short transition time there will be a

superposition of these oscillations. The superposition of

oscillations leads to a beat, as is evidenced by inspecting

the phase difference between the two modes:

The accompanying beat pattern will be near-harmonic,

with periodicity    . Although the beat pattern will

contain more harmonics, the dominant frequency in it is

φ2

φ1

cos( t + − π)ω0 φ0
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ℏ
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ℏ
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In the case of an energy jump    (so that 

), the dominant beat frequency observable in

the �eld is   . In general, we �nd

for all the possible energy jumps:

Eq. (59) is the same relation as was postulated in 1913 by

Bohr to determine the colour of the light emitted by heated

gases or, in reverse, the spectral line absorbed from a ray

of light passing through a gas. The derivation by Em.QM

clears up one of the mysteries, already noted by Einstein,

concerning light emission: the frequency of the emitted

light is not related to the vibration of a charge in the

emitter, despite the anticipation from Maxwell’s equations.

According to the droplet theory of Em.QM, the observed

light has the frequency of a beat, which is associated with

two vibration modes of a charge. The “roots” of the

emission can thus be found in the vibrations of a charge,

fully in accordance with Maxwell’s laws.

If the energy    lost by the charge is equated to the

energy transmitted by the �eld, the above-written

equations immediately lead to:

where    is the beat frequency in Hz. Eq. (60) is in

agreement with Planck’s formula for the radiation by

emitters. Note that the above does not cover Einstein’s

extended interpretation of the formula, implying that eq.

(60) is a characteristic of the �eld instead of the

transmitter. How the concept of the “photon” is

interpreted in Em.QM will be the subject of a future

publication, where an update of the theory of ref.3 will be

given.

11.6. Energy width

The above-shown derivations concern the so-called

central frequency of the Power Spectral Diagram of the

chaotic signal  . The so-determined energy levels will

be called the “nominal” levels. Due to the actual spread of

frequencies around the central frequency, the allowed

levels are not sharply de�ned discrete lines but instead are

a little diffuse. In QM, this uncertainty of the allowed levels

is sometimes called the “energy width” (see e.g. ref. 15) and

is attributed to Heisenberg’s uncertainty principle. In

Em.QM, it is a consequence of the chaotic motion.

11.7. Violation of classical boundaries and

tunnelling

The energy width of the allowed levels also explains why,

in a potential well, the classical boundaries of the motion

can be trespassed. The process is sketched in �g.7. The

classical boundary of the droplet’s motion coincides with

the nominal energy level. The energy width of the nominal

level then leads to the possibility of “violating” the

classical boundary.

Figure 7. Violation of classical boundaries of the potential

well

An alternative view is possible on the violation of the

classical limits of motion, which also clari�es the blurring

of the energy levels. In sec.5.3, it was mentioned that the

total energy of the droplet remains constant throughout

the changes of the droplet’s motion pictured in �g.4. This

is possible because the droplet has two degrees of

freedom, viz. the translation    and the length

variations   . The two degrees of freedom represent two

-communicating- energy reservoirs. The kinetic energy in

the pulsating and the velocity ripples may be variable, but

this is compensated by changes in the elongation, the

latter serving as a spring storing potential energy. In ref.3,

a proof is given that the conservation of the total energy in

the droplet is a general characteristic of the non-linear

equations of motion, and does not depend on the

particular type of motion considered.

There is a randomly occurring, mutual exchange of energy

between the two dynamic modes of the droplet. If one

focuses the attention solely on the translation, one will

only see a �uctuation of energy in this mode of motion.

Sometimes, the energy in the translation is larger than its

average value, and at other times, the energy is smaller.

This Em.QM characteristic of particle behaviour

corresponds with the time-energy uncertainty in usual

QM, because the second energy reservoir consisting of the

length variations is “invisible” in the conventional QM-

theory. Sometimes, the energy �uctuations in QM are

formulated as “borrowing energy from the uncertainty”.

In Em.QM, the loan process is a physical reality, viz. energy

  →Ek Ek−2

ΔE = 2ℏΩ

= 2Ω =ωtransition
−Ek Ek−2

ℏ

= (59)ωtransition
ΔE

ℏ

ΔE
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is borrowed by one of the degrees of freedom from the

other. This explains why the translational energy of the

droplet is sometimes larger than nominal, enabling the

droplet to exceed the classical limits. If the potential well is

capped, the same process leads to the possibility of

“tunnelling”, i.e. escaping from the well entirely.

12. Discussion and conclusions

The droplet theory of Em.QM as it has been developed

until now is no more than a �rst exploration of the

consequences of assuming a non-singular electron model.

The model itself has been restricted to the bare minimum

of one extra degree of freedom (the elongation of an

ellipsoid) next to the back-and-forth motion within a one-

dimensional potential well. The core of the mathematical

analysis of the self-forces is an asymptotic expansion

procedure (the so-called “max” approach) truncated after

the terms of order    , and the equations of motion

were linearised in the parameter   .

Even so, the consequences of this non-singular model are

intriguing. A list of achievements has already been given

in the introduction and will not be repeated here. The list

comprises the basic quantum mechanics expressions 

  and    , derived by the droplet theory with a

practically correct numerical value of Planck’s Constant  .

Another remarkable result is the possible explanation of

why there are three charged leptons (electron, muon and

tau-particle) and where the differences in their masses

may come from.

The analysis of the quantum harmonic oscillator, as given

in the present paper, is simpler and more transparent than

in earlier publications (at least in the author’s subjective

opinion), and yields the correct stack of discrete energy

levels. It also can explain why, apart from the short

moments of transitioning between energy levels, there is

no loss of energy due to radiation. What exactly happens

during such a transition has not been worked out yet in

full, although in ref.3, formulae for the shedding of energy

have been derived, and a theory is proposed on how to

view the phenomenon of “photons” within the scope of

Em.QM. These subjects, including several recent updates

of this theory, will be described in a future paper.

Finally, Em.QM is also able to explain how the excursions

of the droplet within the parabolic well can violate the

classical limits, and how tunnelling out of a capped

potential well can be explained without violating the

principle of conservation of energy, nor the need to invoke

an uncertainty principle (which would be incompatible

with the classical laws anyway).

In Feynman’s opinion, any theory that cannot explain the

double-slit experiment is immature, or it might even turn

out to be outright wrong. The results obtained so far by the

droplet theory were strictly limited to one-dimensional

motion, so that the double-slit diffraction cannot yet be

covered by this theory. In ref.3, a chapter is included that

speculates about future extensions of the droplet theory,

and the results that may reasonably be expected. It is

therefore made plausible that a good chance exists that the

droplet theory can correctly describe the double-slit

experiment. Another reason to expect this is the fact that

the oil droplet experiments by Couder et al., a two-

dimensional analogue of quantum mechanics, show the

expected diffraction of the path of oil droplets “walking”

through a doubly slitted barrier.

If the droplet theory is in the future extended by adding

more degrees of freedom, due consideration should also be

given to the phenomenon of “spin”. In the theory by

Anderson and Brady (refs.8 and 9) concerning the

experimental oil-droplet analogues of QM, spin has

already been covered. Due to the fact that the theory of a

droplet of charge until now was restricted to one-

dimensional motion, spin could not and did not need to be

included. It did not hamper the study of one-dimensional

potential wells, but during further investigations of

Em.QM spin will soon be essential to include.

There is one –seemingly compelling - objection to the

expectation that Em.QM might eventually cover the whole

of QM phenomena. This is the subject of entanglement

and non-local behaviour or, in Einstein’s words, “spooky

action at a distance”. It is often thought that the classical

laws will never be able to show this kind of behaviour. This

opinion was contradicted by Anderson and Brady in ref.9,

who gave an example of a conspiracy of the classical laws

where a so-called Bell-test showed the non-local

behaviour of a macroscopic system. A summary of their

paper is also discussed in ref.3, where it is concluded that

the droplet theory, in principle, permits non-local

phenomena to occur, and how this could be explained

physically. In fact, in ref.3, not only a heuristic explanation

is given, but also the mathematical foundations are

described (although not fully worked out) of the

phenomenon of non-local effects in droplet theory. A

future paper is being planned where all this is elaborated,

including recent updates of the material found in ref.3.

Overseeing the not-inconsiderable achievements but also

the many remaining white areas on the Em.QM-map, one

must conclude that future extensions of the theory might

either lead to a complete abandonment of this �eld or, on

the contrary, lead to something bordering on a paradigm

change. Em.QM, anyway deserves much more attention

than it has been given until now.
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Appendix

Appendix A: Ordering scheme of terms in the

equation of motion

The differential equation which has to be satis�ed by a

proper choice of the function   is eq. (43):

where

A tentative approximation of the solution is the following

FM-modulated near-harmonic function, eqs. (47) and (48):

By back-substitution of (A.3) into (A.1), one �nds that 

  , in reality, satis�es the following differential

equation:

Because of the high frequency of  , the two terms on

the left-hand side of eq. (A.4)

have the same order of magnitude. This can be made

explicit by non-dimensionalising:

The conclusion is that on the l.h.s. the perturbation term

with    is of the order    w.r.t. the other terms on

the l.h.s., whereas the r.h.s. of the equation is of the order 

 .

Appendix B: The relative order of magnitude of the

squeezing inertia

In refs.3 and 4, the following relations are derived:

where    denotes the charge density, and    the

electrostatic potential. The squeezing inertia is likewise

related to an electrostatic energy:

where    denotes the electrostatic energy of a charge

distribution with charge density  :

Both    and    are anti-symmetric functions

w.r.t. the “equator plane”  of the droplet. The

integrand contains the product    , so that the

charge distribution near the plane    hardly

contributes to the integral    . A crude estimate of the

integral may be made by using an “effective” distribution

consisting of two “outboard” lumps of charge, one positive

and one negatively charged. In order to get a feeling for the

order of magnitude of    in comparison with    , one

could for instance assume that the total charge in each

lump, equal to    , has been collected in rectangular

blocks between    and the tip at    . The

energy of formation of the two lumps together would then

amount to   , but is somewhat less than this value due

to the mutual attraction between the lumps.

Needless to say, if an assumption is made concerning the

actual charge distribution within the droplet, a better

estimate might be made. However, until now, no

assumptions about the charge distribution have been

made in the droplet theory, nor were they needed.

Notations

Symbols recurring throughout the text are here listed.

Non-recurring symbols are explained immediately

underneath the expressions in which they are used.

 width of potential well (see �g.2)

 constants in apparent surface tension

 velocity of light

  energy associated with “marble-like” translational

motion

  radiation resistance corresponding to outgoing

waves

 force due to external electric �eld

  radiation resistance due to combinations of

incoming and outgoing waves

 cross-coupling force
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 Planck’s constant

 constant de�ned in Equation (27)

k integer counter in eq.56

 constant in “De Broglie-like” relation, de�ned in eq.

(37), 

 Lagrangian, 

 inertial mass (“translational inertia”)

  generalised mass in s-direction (“squeezing

inertia”)

 electromagnetic mass

 generalised electromagnetic mass in s-direction

 integer counter

 momentum

 average momentum without pulsation effects

 total charge of droplet

 generalised coördinate

 generalised force

Lagrangian generalised expansion force in s-

direction due to internal repulsion

Lagrangian generalised squeezing force in

s-direction due to surface tension

 length of droplet, see �g.2

 perturbation of equilibrium length (“pulsation”)

 virtual displacement

 static equilibrium length

 time

 kinetic energy

 potential energy

  electrostatic energy (“formation energy”) of

droplet

  “generalised” electrostatic energy de�ned in eq.

(B.4)

 velocity of midpoint, as de�ned in �g.2

  average (“marble”) velocity ignoring fast velocity

ripples

 velocity perturbation induced by pulsations

 maximum velocity of classical harmonic oscillator

 total radiated energy

 form factor in 

 form factor in 

 constant de�ned in eq. (38)

  factor indicating the amount and sign of dissipation

by radiation resistance

 vacuum permittivity

 wavelength of beats

 mass ratio muon/common electron

 mass ratio tau particle/common electron

 Phase angles, de�ned in �g.6

 frequency of   and 

 “zero-speed frequency”

 frequency of classical harmonic oscillator
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