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Abstract

It is essential to increase the number of autonomous agents bioprocess development for biopharma innovation to

shorten time and resource utilization in the path from product to process. While robotics and machine learning have

significantly accelerated drug discovery and initial screening, the later stages of development have seen improvement

only in the experimental automation but lack advanced computational tools for experimental planning and execution.

For instance, during development of new monoclonal antibodies, the search for optimal upstream conditions (feeding

strategy, pH, temperature, media composition, etc.) is often performed in highly advanced high-throughput (HT) mini-

bioreactor systems. However, the integration of machine learning tools for experiment design and operation in these

systems remains underdeveloped. In this study, we introduce an integrated framework composed by a Bayesian

experimental design algorithm, a cognitive digital twin of the cultivation system, and an advanced 24 parallel mini-

bioreactor perfusion experimental setup. The result is an autonomous experimental machine capable of 1. embedding

existing process knowledge, 2. learning during experimentation, 3. Using information from similar processes, 4.

Notifying events in the near future, and 5. Autonomously operating the parallel cultivation setup to reach challenging

objectives. As a proof of concept, we present experimental results of 27 days long cultivations operated by an

autonomous software agent reaching challenging goals as are increasing the VCV and maximizing the viability of the

cultivation up to its end.
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1. Introduction

Competition in the biopharmaceutical industry has driven many advances in process development and clinical

manufacturing for recombinant proteins. Today, R&D teams are challenged in early development phases to deliver a

product within very short timelines. To achieve this, High Throughput (HT) devices are key to accelerate the development

process of new molecules in the biopharmaceutical industry pipeline. Robotic platforms are used to increase experimental

throughput and deliver the best production strategy through Quality by Design (QbD) approaches[1][2]. Robocolumns are

for example used for downstream process (DSP) condition screening[3]. Microwell plates are used to cultivate cells during

cell line development and upstream process (USP) development (Rouiller et al., 2016). Other advanced robotic systems

enable to isolate cells in a single pen of 1.7 nL on a chip containing 1750 pens, the Beacon from Berkley Lights[4]. Also,

devices that run perfusion cell cultures at a scale of only 2 mL with fully automated fluid controls and on-line

measurements (Mobius Breez, MilliporeSigma) are commercially available[5].

While in drug discovery[6][7] and at the initial screening stages, different machine learning tools are used for micro-well

plates experiments[8] the design of advanced cultivation strategies that include optimal media composition and optimal

profiles of feeding, pH and temperature among others, require larger vessels as well as advanced monitoring, and control

systems[9][10]. Additionally, with an increasing complexity on modern production processes as is continuous production[11],

experimental design and operation face new challenges. As stated in the thorough review by[12], the current literature

lacks a comprehensive solution for the autonomous operation of parallel cultivation systems with advanced controls.

Furthermore, experimental setups in high throughput that properly mimic industrial conditions are key to maximize speed

and robustness during scaleup[13] and promote development following the QbD principles. In the field of cell culture, this

has driven the development of highly sophisticated experimental systems, such as the commercially available family

ambr® robots[14] (Figure 1). This stage represents a significant bottleneck in development, as even with the presence of

robotic systems, the design and execution of experiments still heavily rely on human intervention.
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Figure 1. ambr®250 perfusion system

At this stage, emulating industrial process conditions is key to accelerate scaleup and minimize the risk of failure.

Nevertheless, performing proper scale-down experiments for cell cultures poses significant challenges[15]. The cultivation

demands a tight control over several critical factors such as agitation, aeration, feeding, pH and temperature among

others The complexity of the system is further increased with the incorporation of long-term membrane perfusion

cultivations. This setup requires simultaneous control of additional media inlet flow, continuous harvest of liquid bulk to

maintain constant working volume, cell retention within the reactor, and a bleed output for process purging. Despite the

high level of automation in these systems, they still heavily rely on manual monitoring and operation. While low level

controls (feedings, pH, temperature) are well implemented, computational tools that make important high-level decisions

during operation are currently missing. Data acquisition also presents challenges, with parameters like pH, dissolved

oxygen, and temperature being measured online, while metrics such as viable cell density, viability, and glucose

concentration are assessed at-line. Furthermore, certain quality attributes may take weeks to quantify[16]. All these

aspects make it difficult for scientists to optimize the experiments while they are running. Also, the necessary

computational tools to support operators and perform autonomous experiments are missing. This is in contrast with both,

the ever-increasing number of computational tools developed and applied in biopharma in manufacturing and other

development stages[17], and the technologies already deployed in other fields, for example in material science and

chemistry[18].

Self-driving research is pushing the boundaries of digital discovery by giving full autonomy to “robot scientists”[19]. These

systems can perform experiments with minimum human intervention, learn from their experimental results, and decide

how to continue experimentation[20]. While self-driving clearly suggests an association with mobile systems[21], the use
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cases of self-driving laboratories rarely deal with dynamic systems and the challenges hereby involved[22]. This has

evidently been no limitation to achieving incredible results in chemistry, catalysis, material science, and biology[23] but

process dynamics become increasingly relevant as we approach industrial scale production[24][25]. To create self-driving

machines for effective bioprocess development and scale-up, it is necessary to integrate process dynamics and control

into the framework.[26]. We need hence a digital twin (DT) of the dynamic cultivation process to ensure an optimal design

of the experimental campaign and its proper operation by automated systems[27]. Furthermore, due to system uncertainty

and discovery related nature of experiments in R&D, the DT requires important cognitive properties[28]. The capability to

use existing knowledge and learn from the experiment that is being operated[29] is essential to ensure the fastest

development possible and efficient process control of well-designed experiments[30]. Lastly, designing experimental

campaigns involving multiple parallel runs, extended cultivation durations, and numerous input variables to optimize poses

a significant challenge for Optimal Experimental Design (OED). OED and optimal experimental operation problems have

been tackled for many decades by the Process Systems Engineering (PSE) community[31] and has also rapidly gained

popularity in the machine learning community[32]. There are also several applications in parallel systems[33] and

specifically tailored for bioprocess cultivations[34][22][35].

Nevertheless, there are important drawbacks in existing methods. First, most applications work either offline or decouple

the learning phase from the experimental plan. A Cognitive Digital Twin, with the ability to learn on the fly during

experimentation is needed to ensure an efficient experimental campaign of new clones and/or processes. The standard

methods for adaptive control, for example, still rely on mechanistic models and reliable estimates for the initial parameter

values[36].

Second, the transfer of learnings from previous processes to new ones is essential to ensure the use of all available

knowledge and a rapid development of new products[37]. To tackle this, frameworks that are capable of both learning form

experiments and transferring previous learnings are needed. Unfortunately, the tools that have been developed up to now

for biopharma are very specific and require expertise in modelling, optimization, and programming to be adapted to new

scenarios[27]. Today, R&D in biopharma is missing the necessary toolset to fully exploit the potential of parallel mini-

bioreactor systems and speed up the generation of knowledge to reach truly accelerated innovation. These solutions

need, furthermore, to be user friendly to enable its use by experts in experimentation of mammalian processes.

Furthermore, the implementation of robust tailor-made computational pipelines and development of corresponding

computational workflows that can automatically handle and store all the data and metadata generated before, during, and

after conclusion of an experiment, play an essential role[38][39]. Nevertheless, speaking of miniaturized bioreactor

cultivations, while the experimental tasks have been automated to great extend and the throughput increased significantly

in the last decade, less advances have been achieved in embedding automated computational workflows for data

management and decision making. As a result, while the robots can perform very complex tasks automatically for long

periods of time, experts’ intervention is still regularly required to analyze the data and to operate the parallel cultivations.

This has to be considered in the context of the large experimental time spans (up to months of cultivation) and the high

costs of the experiments reaching 50 k€ in some cases.
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Finally, the high degree of automation of the experimental setup necessitates an integrated decision- making agent, to

minimize the human involvement in these lengthy and time-consuming experiments. Algorithms that make the best

decisions to operate several cultivation processes in parallel maximizing the knowledge derived from such experiments,

are pivotal for accelerating development.

In an effort to tackle these issues and significantly reduce time and costs in the development of monoclonal antibody

manufacturing strategies, we present a user-friendly software solution that enables the autonomous operation of the

parallel bioreactor system with perfusion membrane modules. The key features are:

1. Hybrid modelling formulation for flexible and robust process

2. Online model re-training to enable real-time learning

3. A toolset to transfer learnings from past projects

4. Predictive process monitoring and notifications autonomous feed-back experimental operation minimizing the human in

the loop

The results demonstrate the capabilities of step-wise Gaussian process models (SW-GP) to learn from the data, to

transfer learnings between different cell lines, and to support optimal experimental design with Bayesian methods. They

also show that the optimal operation can robustly fulfill challenging tasks throughout longer periods of time and maintain

critical conditions as is cell viability within specification.

2. Computational Methodology

In this section, we first discuss the communication with the experimental system using a Structured Query Language

(SQL) database. We then shortly discuss the computational framework based on hybrid modelling and Bayesian

optimization to finally give a detailed description of the experimental setup.

2.1. Gateway connection and data storage

As more laboratories adopt HT experimental technologies and the amount of data generated per time increases, systems

for HT data treatment and storage are imminent to assure the traceability and provenance of the experiments as well as

to keep up with the data generation speed.

The communication between the ambr250 system and the software is based on a ClientServer Architecture, over TCP/IP

standards developed together with Prof. A. Papaemmanouil and T. Prudhomme from Institutsleiter Elektrotechnik,

Hochschule Luzern T&A.

The bioreactor system interfaces with an OPC UA Server (KEPServerEX), from which data transmissions to an OPC

client over TCP/IP, to a MySQL Database, allowing to collect and store the data from the experimental system. The

software interfaces with the SQL client, allowing to query the process data stored in the MySQL Database. Most

importantly, the software is also able to send experimental set- points to the OPC client, which are then enacted in the
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bioreactors with low level control in real time.

Additionally, all metadata is stored in an Excel macros file (.xlsm) and the actions performed by the robots is recorded in

(.csv) files and stored to ensure full traceability of the robotic actions during experimentation[39]. The communication

architecture is shown schematically in Figure 2.

Figure 2. Overview of the interconnectivity of the DT software solution, the OPC and SQL client, as well as the ambr®250 server.

2.2. Hybrid gaussian process model

The mathematical model used to describe the evolution of the bioreactors during experimentation needs to consider a

system with a vast number of cellular biochemical reactions that take place in bioprocess cultivations[40]. In a bioreactor,

the chain of reactions that take place in the cells for metabolite secretion and/or antibody production might be unknown.

The existing models might not capture all the factors affecting the reactions, for ex. pH and temperature dependency on

shear rates. The presence of impurities in the media can also affect cellular reactions and are very difficult to detect. Due

to these reasons, purely mechanistic model might not be able to accurately predict process behavior in a bioreactor[41].

Hybrid modelling is an alternative approach, which combines the advantages of mechanistic and data-driven models to

better describe complex systems[42].

Hybrid models are widely applied for biological processes since added to this large complexity we are confronted with

limited and low-quality observations. From the thousands of biochemical reactions taking place intracellularly, we can at

most observe a few metabolites and enzymes. Most importantly, the desired product that undergoes a very strict quality

control (a large number of Critical Quality Attributes based mostly on glycans and impurities) require very complex

analytical methods, strongly limiting the number of possible samples per experiment.
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For our current purposes, we use a hybrid model formulation based on basic mass balance equations represented by a

system of ordinary differential equations (ODE) combined with Gaussian Process (GP) models as the data-driven

counterpart of the hybrid model[43][44]. GPs use a measure of similarity (kernel function) between points in the training

data to predict the distribution of a value for an unseen datapoint. With the kernel function being usually non-linear, such

an algorithm is capable to reproduce highly non-linear and complex behavior. The major advantage being the estimation

of both, the predicted value and its associated uncertainty[45].

In literature, Gaussian Process State Spaces Models (GPSSM)[46], that aim to describe the state space with GPs, have

shown to also represent mammalian cultivations well[47]. This formulation allows to use GPs to describe nonlinear

dynamic processes with limited knowledge of the phenotype and growth dynamics of the cultivation[37]. The advantages

of GPSSMs have been documented in several applications with small to mid-size data sets with noise that is close to

Gaussian[48].

Given the slow dynamics of mammalian processes, results show that discretion with a time step of up to 24 hours is

sufficient to properly mimic the evolution of the process over time. Based on this assumption, we can significantly reduce

the computation burden implementing a SW-GP as described here.

When using ODE systems, material balances can be generalized as follows:

dc ⋅ V
dt = R(s) ⋅ V + uf − ub − up = r(s) ⋅ VCD ⋅ V + uf − ub − up (Eq.1)

where c is a vector of concentrations (e.g., Viable Cell Density (VCD), glutamine, glucose, lactate, ammonium, titer); s a

vector of process states (i.e., all time dependent variables, including the concentrations c); V is the culture volume; t is a

vector with time stamps ti; uf, ub, and up vectors of mass feed rates (nonzero only for compounds that are fed), mass

bleeding rates, and mass perfusion rates, respectively. The term R(s) is generally representing the rate of

production/consumption of a species as function of the state vector s. Since we are mostly interested in the specific

performance per cell, it is possible to further expand R(s) as R(s) = r(s) · VCD, where r(s) is the cell specific rate of

production/consumption.

The ODE system is discretized as follows:

dc ⋅ V
dt = V ⋅

dc
dt + c ⋅

dV
dt ≅ V ⋅

c ti+1 − c ti
ti+1 − ti + c ⋅

dV
dt (Eq.2)

V ⋅

c ti+1 − c ti
ti+1 − ti ≅ R(s) ⋅ V + uf − ub − up − c ⋅

dV
dt (Eq.3)

where c(ti) is the concentrations measured at the step i, and c(ti+1) the concentration measured at the following step, i + 1.

For the sake of simplicity, in Eq. 3 all quantities on the right-hand side are evaluated at time ti. Note that the change in

bioreactor volume over time, dV/dt can be computed explicitly. Using the discrete hybrid model, called SW-GP from now

( ) ( )

( ) ( )
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on, it is possible to calculate the term R(s(ti)) at every time step ti, as all other terms are measured, by rearranging Eq. 2:

R(s) =

c ti+1 − c ti
ti+1 − ti −

1
V ⋅ uf − ub − up − c ⋅

dV
dt (Eq.4)

We now can explicitly compute the discrete rate of production for every species at the step i, and relate such term to the

state of the process measured at the step i, i.e., s(ti). In the SW-GP formulation, this is done using a GP model, i.e.: R(s) ≈

GP(s). The inputs to the GP are the process states s measured at every time ti, while the outputs are the corresponding

discrete rates of production, R.

The formulation of the discrete hybrid model of Eq. 2 allows to learn the process evolution in time for each variable in a

stepwise fashion. Once the initial condition s(t0) are defined, where t0 = 0, it is possible to compute the rate of production

for each state variable in the vector c(ti) corresponding to the step (ti+1 − ti) and, using the discretized mass balance

above, compute e.g. the value c(t1) at time t1. At this point, the state of the process at the new time, s(t1), is defined and

the procedure can be repeated for all steps.

It is worth noting that the discrete hybrid model of Eq. 2 can be further simplified as follows:

c ti+1 − c ti
ti+1 − ti ≅ R(s) +

1
V ⋅ uf − ub − up − c ⋅

dV
dt = R̃ s, uf, ub, up, V (Eq.5)

In this formulation, the contributions of the different feeds or outlets to the material balances are lumped into a single

effective rate of production, R ̃. Such model is still able to infer the effect of different feed strategies on the evolution of the

different concentrations, even though such contributions are not made fully explicit. This formulation of the material

balances can return better models when feeds are not fully or precisely characterized, thus letting the machine learning

part to compensate for such lack of knowledge.

The SW-GP model is trained as an ensemble of smaller Gaussian Process models. The model consists of many sub-

models, which are individually trained on randomly sampled subsets of the full training data. For each prediction, the sub-

models individually predict the process dynamics, and these predictions are used to calculate confidence intervals.

Specifically, the 10th to 90th percentiles of the aggregated predictions provide the 80% confidence interval, allowing for

uncertainty estimates. The median prediction is given by the 50th percentile.

2.3. Optimization framework

The optimizer feature in the software solution uses a Bayesian optimization algorithm, which computationally is sufficiently

fast as the mammalian process dynamics are slow. It searches the parameter space of set points (in particular,

temperature, agitation rate, vessel volume per day (VVD) and pyruvate additions) with a Bayesian surrogate using the GP

formulation described, by utilizing the models to guide its acquisition function (the expected improvement acquisition

( ) ( )
[ ]

( ) ( )
[ ] ( )
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function was used here) evaluation to find the maximum.

The objective function is constructed by defining a target value for the variable to optimize and by considering only the

model predictions of the next 3 daily timesteps. The predictions utilized to evaluate the performance of the process at the

given parameter values aiming to find the optimal inputs to bring the process closest to the defined target.

Mathematically, this is described as,

 OFV = ŷ
t+1 − ytar 

2 + ŷ
t+2 − ytar 

2 + ŷ
t+3 − ytar 

2 (Eq. 6)

where OFV is the objective function value to be minimized, ŷt+j is the predicted value of the process variable y at j days in

the future and ytar is the desired target value of y. The inputs that were chosen to be varied were the set-points of

temperature, agitation rate, VVD (perfusion rate) and pyruvate addition.

2.4. Model error calculation

The relative root mean squared error (rRMSE) is used to evaluate the model error. Compared to the absolute RMSE it is

normalized by the standard deviation of the respective variable over the entire data set, making the resulting values

comparable between variables. In this case, the model was evaluated considering its purpose within the control

framework, namely in its capability to predict just the next three daily timesteps, since for the real-time optimization this is

the time horizon that was considered. So, 3-day model predictions are done iterating over the entire process duration,

from day 0 to the day before the last.

Therefore, the overall error of the model for a variable x is given by,

rRMSEx =

1
σx

∑tf−1
t=0 ∑h

j≤tf− t
x̂

t+ j , t − xt+ j
2

npoints (Eq.7)

where tf is the process duration in days, t the current process day from which the model predicts, h the prediction horizon

of interest (here three time steps), x^t+j,t the prediction of variable x from day t to day t+j, xt+j the future observed value on

day t+j, σxthe standard deviation of the respective X variable and np the total number of points to be averaged over, given

by,

np = h ⋅ tf −

h−1

∑
j=1 j (Eq.8)

2.5. User interface

Finally, in order to enable a human centric digitalization of the development process in compliance with bioprocessing

5.0[49], a user interface was developed together with expert users and technical operators.

( ) ( ) ( )

√ ( )
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The software solution was equipped with multiple features, which are briefly described below, where some are

supplemented with a screenshot of the respective interface:

Main Overview (Figure 3): Visualization of all measured data for all ongoing bioreactor runs, as well as past

experiments. The user may choose any process variable, highlight individual runs or remove them from the

visualization.

Comparison: Multiple univariate data visualizations in one interface, allowing fast comparison across variables and

ongoing runs.

Model evaluation (Figure 4: Overview of all past model predictions for a single run in focus. Includes observed vs.

predicted for a given process day as well as rRMSE metrics.

PCA (Figure 5): Multivariate data analysis of all ongoing runs, allowing to identify key correlations between variables,

as well as detecting outliers.

Notifications: The user may set up alarms regarding violation of critical limits of important process variables. The

model predicts if constraints will be violated in the future and informs the user on a daily basis if this will be the case.

OPC: In this section the current connection status is shown and can be queried.

Optimizer (Figure 6): Here the objective functions for optimization are defined on an individual basis for each

bioreactor. The control parameters (such as temperature, perfusion rate, agitation rate and pyruvate addition) are

chosen, as well as the lower and upper bounds for search space definition. For the target variables a target value is

defined, or they are simply maximized or minimized.

Log: Record of all actions taken by the software, such as data queries, written set-points and connectivity status.

Data: Tabular visualization of all process data of ongoing or past runs.

Figure 3. Main overview of active bioreactors. All process variables can be visualized. The solid line shows the measured process data, whereas
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the dashed lines that start from the current process day represent the model’s predictions three days into the future. The shaded polygons are the

past and present prediction intervals of the highlighted run.

Figure 4. Model evaluation for a single run. Past forecast’s prediction intervals are shown in the top plot, as well as current predictions. The

visualizations on the bottom show evaluations for a selected process day (here day 3), such as observed vs. predicted, absolute residuals and the

prediction from that day onward with the prediction interval.

Figure 5. PCA plots of the variable- or observation wise unfolded (OWU) matrix on the left and batch-wise unfolded (BWU) matrix on the right.
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Variance explained of the first two principal components are shown, the three loadings with the largest magnitude are highlighted as blue vectors.

Figure 6. Optimization configuration center. For each bioreactor, the control variables are configured in terms of lower and upper bounds to define

the optimization search space. The target variables can be maximized or minimized, or a specific target value can be chosen. Each day,

optimizations are performed upon querying the current data. The software supports manual applying of suggested conditions or an automatic mode.

Figure 7. Schematic representation of model comparison approach. In the first case (top row), the model is

only trained on clone A and used directly to predict runs of clone B. In the second approach, the model is

initially trained on clone X, but then continuously retrained with current available clone Y data during the

process (RT).

3. Material and Methods

3.1. Cell expansion
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Cells were thawed and diluted at 0.30 106 cells/mL in 50 mL SpinTube (TPP, Trasadingen, Switzerland). Cells were

diluted every 2 or 3 days to 0.30 106 cells/mL or 0.20 106 cells/mL respectively and using proprietary expansion medium.

Cell culture volumes were increased from SpinTubes to 2L wavebags (Sartorius, Goettingen, Germany). After two weeks

of expansion, cells were transferred to inoculate the perfusion cell cultures on the AMBR250 (Sartorius, Goettingen,

Germany).

3.2. Perfusion process

ambr®250 perfusion bioreactors were inoculated with cells at the maximum concentration available in 213 mL of final

volume. Cells were cultivated in a proprietary chemical defined medium. During the growth phase, the perfusion rate was

increased from 0 to 1.3 d-1 until reaching the target viable cell volume (VCV) which was calculated according to the

following equation, 

VCV(%) =

4
3 ∗ π ∗

d
2 3

∗ VCD ∗ 100 (Eq.9)

where d is the average cell diameter and VCD the viable cell density (106 cells/mL).

The perfusion volume was maintained constant at 213 mL throughout the duration of the run. Once the VCV target was

reached, the culture was considered to be in a state of control and the given setpoints for the input parameters were

followed (see Table 1 and Table 2). The bleeding was triggered if the value of VCV was higher than the setpoint. Sample

analysis of the bioreactors was performed daily using a Flex2 (Nova Biomedical, Waltham, MA, USA) to count the cells,

measure cell viability (Via), average cell diameter (Diam), quantify glucose (Glc), glutamine (Gln), glutamate (Glu), lactate

(Lac), ammonium (Amm) concentration, pH, pO2, pCO2 and osmolality. Samples for off-line analysis were taken to

quantify monoclonal antibody (mAb) titer, amino acid concentrations and quality attributes (glycans, oxidation and

deamidation) of the mAb produced. A glucose bolus was performed if the glucose concentration was lower than 2.00 g/L

after the sampling. The feed volume was calculated to replenish glucose to a concentration of 5.00 g/L.

Parameter -1 0 1

Perfusion rate (Vessel Volume per Day (VVD,
d⁻¹))

0.5 1.25 2

Temperature shift after reaching VCV target (°C) 34 35.25 36.5

Stir speed (rpm) 700 1050 1400

Pyruvate feed flowrate (g.L⁻¹.d⁻¹) 0 1 2

Table 1: Steady state experimental plan to build a design space

where the digital twin will build and update basal models

Table 2. Clone tested, control variables and output variables for each bioreactor.

( )

Qeios, CC-BY 4.0   ·   Article, September 30, 2024

Qeios ID: XUFB08   ·   https://doi.org/10.32388/XUFB08 13/34



Condition Clone Variable to be controlled What to optimize

1 Clone A
VVD, Temperature, stir speed, pyruvate
flow

Target 30% VCV

2 Clone A Pyruvate flow Target 1mM NH₄⁺

3 Clone B Pyruvate flow Target 1mM NH₄⁺

4 Clone B
VVD, Temperature, stir speed, pyruvate
flow

Target 98%
viability

5 Clone B
VVD, Temperature, stir speed, pyruvate
flow

Target 98%
viability

6 Clone B Pyruvate flow Target 1mM NH₄⁺

Variables to be controlled could change in the tested ranges of Table 1 except for stir speed which could evolve between

700 to 1050 rpm as higher rpm was deleterious for cell viability.

3.3. Training experiment

A perfusion experiment consisting of 24 runs with a fixed experimental design according to Table 1 was performed with

one cell line CHO-K1 Clone A. The purpose of this run was to gather data with sufficient variability for the initial model

training using standard process conditions. This experiment is referred to as the Training experiment.

Once the VCV target was reached, all parameters gathered in Table 1 were changed according to the design of

experiment.

3.4. Use case experiment

The second perfusion experiment (Use case experiment) was performed with two cell lines: Clone A (same clone as

Training experiment) and Clone B (new clone). Once the state of control was reached, inputs suggested as setpoint by the

model aiming to comply with the constraints and reach the objectives given to each bioreactor (Table 2). All other set-

points were kept as in the previous experiment.

4. Results

4.1. Online retraining of hybrid models (example with in-silico data)

The main challenges related to the design and operation of informative experiments in R&D can be strongly alleviated by

1. the transfer of existing knowledge from similar processes and 2. a frequent re- calibration of the models as data is

being recorded, to maximize the efficiency of long experimental campaigns (several weeks) of experimentation. To show

the added benefits of retraining a model during an ongoing experiment, in-silico datasets for two different clones (clone X

and clone Y), corresponding to a dataset size with 24 run each, were generated using experts’ knowledge of the real

process. The data was generated using a mechanistic model that describes fed-batch cultivation of mammalian processes
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with lactate consumption (clone X) and without lactate consumption (clone Y). A fed-batch process over 14 days of

cultivation with similar conditions to the use case (see M&M) was considered to generate the insilico data. The state

variables are VCD, titer, glucose (Glc), glutamine (Gln), ammonium (Amm), lactate (Lac), dead cell density (DCD) and

lysed cells (Lysed). The input variables that were controlled are the stirring rate set-point, the DO set-point, initial

conditions of glutamine, glucose and VCD, and the feeding volumes. The hybrid model was initially trained using only data

from clone X with 24 runs. The experimental design was simulated with each insilico data point treated as a daily

measurement. On each timestep, the model is re-trained using the existing insilico data, prediction calculated for the next

three days. We show two different strategies to demonstrate the added value of re-training and the effect of the transfer

learning properties of the framework. In the first, the initial model of clone A is used, without adaptations. In the second,

the new process data of the clone B runs is added to the training data and the model is retrained.

Prediction errors were then computed for a 3-day horizon considering the operation scenario. The comparison between

the two approaches is shown in Error! Reference source not found., using the rRMSE as a metric. The results of the

above comparison are shown in Figure 8, where the rRMSE was determined as described in section 2.4. The prediction

error evolutions with time for a set of variables are depicted in Figure 9.

Figure 8. Comparison of relative RMSE results when the model is not being retrained (blue) and when it is retrained

(orange). Predictions are evaluated over a 3-day horizon. The model errors drop substantially when ongoing

retraining using daily new measurements is applied.
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Figure 9. Relative RMSE as a function of the process day the prediction was made from. Model errors were averaged over all 24 runs in the

simulated validation campaign. For the error calculation, only 3-day ahead predictions were considered until day 11, for day 12 the model predicted

two more days ahead, and for day 13 the model predicted only one day ahead, as the total process duration was 14 days. The results are shown for

VCD, Titer, glucose, glutamine, ammonium, and lactate. The model error for the retrained model are decreasing over time for most variables, while

at the same time outperforming the model that is not retrained.

In Figure 8, when the model is not retrained (blue), the errors for some variables, most importantly VCD, are large (above

0.5). The cell behavior of clone B is different to clone X of the simulated Excitation Experiment in some respects, which

the model does not understand. If the model is continuously retrained using new daily measurements, the overall error

over the entire process improves drastically for each variable. This shows that the model can learn from the ongoing

measured data and adapt its parameters to model the new clone. This is consequential for the model’s ability to be used

in optimization of the ongoing process, as without retraining the clone’s sensitivity towards certain parameters might not

be accurate enough.
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Similar to the above conclusion, the error of the “With retraining model” (displayed in orange in Figure 9) is lower than that

of “Without retraining model” (displayed in blue in Figure 9) throughout the process, and the divergence usually occurs in

2-6 days. For some variables, notably VCD, the error also consistently decreases with more data being gathered,

demonstrating even further the power of retraining the model. For some variables the model error at the end of the

process is briefly higher for the retrained model. This coincides with the stopping of the feed on day 10. A possible

explanation is that the model with retraining has gathered a lot of data where the feed is active, temporarily becoming

worse at predicting the process when there is no feeding. However, as can be seen for glucose, titer, glutamine and

lactate, with retraining the model recovers and again predicts better than the model without retraining. The error of the

model without retraining also gets lower towards the end of the process. This is expected, as predictions horizons shorten

and the process either has stagnated or the cells have died, which is easier to predict for any model. Nevertheless, the

model with retraining clearly outperforms the model without retraining throughout most of the process duration, especially

midway through, where the most critical actions are taken for process control.

To compare the predictions of the model without retraining to the model with retraining, results of a representative run are

shown in Figure 10. In Figure 10, the observed data is shown in green; the predictions for the 3 following days calculated

on each day of operation (termed as “3-day model prediction”) without retraining are in blue and the 3-day model

predictions with retraining are in orange. Consider the case of VCD on the top left. The model without retraining predicts

an increase of VCD throughout the process duration, as this is the expected behavior of the clone that it was trained on.

On the other hand, the model with training shows better predictions in the 3-day horizon. For VCD it soon learns that this

clone grows less than the initial clone, given the current process conditions. Consistently for all variables, while the

predictions of the two approaches are similar in the beginning of the process, as not a lot of new data is available yet,

towards the end of the process they become more and more different.
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Figure 10. Observed vs. predicted time evolution profiles for selected process variables, comparing the predictions of the model with

retraining (green) and the predictions of the model without retraining (blue) to the observed data (green). On each day, the model

predicts three days ahead. As can be seen, the model that is continuously retrained learns the behavior of the new clone.

Looking at the data from average rRMSE for all variables (Figure 8) as well as the individual trends of rRMSE with time for

all variables (Figure 9), we conclude that the model with retraining predicts better than model without retraining for

predicting behavior of new clones. This trend is indeed exemplified for processes which run for long durations, which is

typically the use case and purpose in perfusion processes.

4.2. Training experiment
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In order to demonstrate the retraining capability, this concept was applied to actual laboratory data. Specific experiments

were tailored to collect data, as described in Section 3.3 and were used to build a hybrid model as explained in Section

2.2. The model capability was assessed by training models in leave-one run out validation. The model errors were

determined as described in Section 2.5.

Figure 11 shows the rRMSE obtained for the trained model against the validation data sets. The left bar plot shows the

average rRMSE over all runs in testing over a 3-day horizon. For all variables the predictions have a rRMSE below 0.5 in

the 3-day prediction horizon considered, making it suitable for control. On the right-hand side the rRMSE is displayed at

the resolution of the runs for each variable. There are no runs (rows), where all variables are predicted with significantly

higher rRMSE than the overall results, as can be seen by the intensity of the blue shadings. Therefore the heat map is

indicating that the model can generalize well on the entire design space.

Figure 11. Left: rRMSE results averaged over all runs in testing (leave-one out) over a 3-day prediction horizon. The relative RMSE is well below

0.5 for all variables indicating good model performance. Right: rRMSE heat map showing the errors for each run (row) and variable (column).

In order to better visualize the model prediction capability, a representative run in terms of model performance (labeled as

“01” in Figure 11, right-hand side) was picked for the purpose of illustration. Figure 12 shows the median model prediction

and the prediction interval for the following 3 days on each day of operation. We can clearly see that the model predicts

the trends of the process accurately and in general the observed process data is within the prediction interval of previous

predictions.
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Figure 12. Predictions for a run in the Training experiment in testing. The model was trained on the remaining 23 runs. The green line

shows the measured experimental data, the solid blue lines are the 3-day median predictions of the model, starting on each

respective day. The shaded polygons represent the prediction intervals. In the evaluated 3-day horizon, the model predicts the

process trends with sufficient accuracy for software operation.

The above results demonstrate that the initial model can learn the process behavior and can make meaningful predictions

across different input process conditions.

4.3. Use case experiment

In order to leverage the online control of the bioreactors by software solution as well as it’s optimization and retraining

capability, three different use cases were selected to target process indicators such as VCV, Viability and ammonium. The

parameters which were varied in the training experiments such as perfusion rate, temperature shift, agitation rate and

pyruvate addition flowrate were selected as control variables. The software solution allows the user to select one target

variable and any number of control variables.

Each day, the software solution would read the observed data from the robotic platform and perform an optimization to

calculate the best set of conditions to reach the defined target. Following this step, the software solution would apply the

optimized set points of the control variables to the robotic platform. The frequency at which the new measurements as well

as optimization was performed can be defined by the user. For our use case, we selected the frequency to be once per

day. The software solution can also be used in open loop control where the calculated set points need to be approved by

a human before application to the robotic platform. In our use case experiment, the hybrid model developed is used as a

prescriptive tool, where control actions are taken each day by the optimizer based on model predictions of the target.

4.3.1. VCV use case

The aim of this use case was to increase VCV to a higher value which was defined as a target value = 30%. To achieve

this, all four control parameters were varied simultaneously every day as shown in Table 2, Condition 1.

Figure 13 shows the VCV evolution during the process for the bioreactor with software operation (green), 3 bioreactors of

the same clone without software operation (blue). Perfusion rate (Perfusion) is the control variable that has the biggest

impact on the target and is shown in light red in the large plot. The smaller subfigures at the top of the figure show the set

points suggested by the optimizer for the other control variables, namely temperature shift (Temp), agitation rate (Stir) and

pyruvate addition flowrate (Pyr) respectively.
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Figure 13. Condition 1 results: VCV use case with VCV Target = 30% (red dashed line). The observed VCV values of

the bioreactor with software operation are shown in green, the observed values of three bioreactors without software

operation are shown in blue. The optimizer suggested perfusion rate is plotted on the secondary axis. All control

parameter profiles are shown in light red.

The optimizer was making suggestions from day 9 onwards. For this use case the VCV target value of 30% is significantly

higher than the value of VCV in standard experiments (average VCV after state of control < 20%). The software was able

to suggest conditions that significantly increased VCV reaching the target in contrast to the benchmark bioreactors.

The software solution identified perfusion rate as the most significant factor for controlling VCV. Higher perfusion rate will

lead to faster replenishment of the perfusion media, thereby allowing faster cell growth. This is a well-known phenomenon

among the process scientists, which was inherently learned by the hybrid model using the training experiment data as

well as the constant retraining of the model.
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4.3.2. Viability use case

The aim of this use case was to increase the cell viability by varying all the control parameters as shown in Table 2,

Condition 4. Hence a high target value for cell viability = 98% was selected. This use case was tested on clone B, which

was not part of the Training experiment. Figure 14 shows the cell viability evolution during the process for the bioreactor

operated by the software (green), 3 bioreactors of the same clone without software operation (blue). In this use case,

temperature is identified as the control variable which had the highest impact on the target and the set points suggested

by the software solution are shown in red in the large plot. The daily optimised set points for the other control variables

are plotted at the top of Figure 14.

Figure 14. Condition 4 results: viability (Via) use case with Via Target = 98% (red dashed line). The observed viability

values of the bioreactor with software operation are shown in green, three bioreactors without software operation are

shown in blue. The optimizer suggested temperature rate is plotted on the secondary axis. All control parameter

profiles are shown in light red.

Qeios, CC-BY 4.0   ·   Article, September 30, 2024

Qeios ID: XUFB08   ·   https://doi.org/10.32388/XUFB08 23/34



Similar to the previous use case, the online control of the software solution was started after day 9. The variations in the

optimised set points, especially temperature and VVD were quite large until day 14 in comparison to the VCV use case.

However, the response of the bioreactor to these changes were used to train the model. The retraining of the model with

the new observed data led to an improvement in prediction of cell viability which in turn aids the optimisation of control

variables. This can be inferred from the increase in cell viability observed after day 15. The software solution suggested

lower temperature set points as well as higher perfusion rate towards the end of the process. These conditions led to

higher cell viability in the bioreactor in comparison to the bioreactors without software control.

The better performance of the bioreactor with software operation in comparison to those without towards the end of the

process could be attributed to two reasons. The first is that there might be little room to enhance viability in the beginning

of the perfusion operation compared to the end, as there could be intrinsic process limitations. The second reason could

be that the training experimental data as well as the measured data until day 8 were not sufficient to accurately predict the

cell viability. We can see a similar lag in prediction accuracy when the hybrid model trained on one clone is applied to a

new clone in Section 4.1. However, the prediction accuracy improved towards the end of the run by retraining the model

with more number of measured data points leading to an increase in cell viability as seen in Figure 14.

The fact that the target bioreactor only started to outperform the control bioreactors at the end of the process may have

two reasons. The first is that there might be little room to enhance viability in the beginning of the perfusion operation

compared to the end, as there could be intrinsic process limitations. The second is that the ability of the model to

understand the impact of the process parameters on viability for the new clone at day 9 might not have been sufficient.

Only after retraining with the data of the first half of the validation run, the software solution was able to learn these

relationships and re-optimize the set points accordingly.

4.3.3. Ammonium use case

It has been suggested in literature that sodium pyruvate addition in a perfusion cell culture can be used to stabilize

ammonium concentration[50][51]. Pyruvate is the metabolic entry point for the Krebs cycle. If the gylcolysis pathway is

saturated and pyruvate becomes limiting, cell will use other sources (amino acids) to feed this cycle and this can result in

ammonium accumulation. Hence, the aim of this use case is to try and control ammonium concentration to a value = 1.0

mM by using pyruvate addition as the only control parameter. This is illustrated in Table 2 (Condition 2).

Figure 15 shows the ammonium evolution during the process for the bioreactor with software operation (green), 3

bioreactors of same clone without software operation (blue) and model suggested pyruvate addition set points (red). We

can see an increase in the ammonium concentration up to 4 mM until day 9 when there is no addition of pyruvate feed.

The optimization results suggested the addition of pyruvate to reach the ammonium target, which led to a reduction in the

ammonium value until day 13.
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Figure 15. Condition 2: ammonium (Amm) use case with Amm target= 1 mM (red dashed line). The observed ammonium values of

the bioreactor with software operation are shown in green, three bioreactors without software operation are shown in blue. The

optimizer suggested pyruvate additions are plotted on secondary axis and is shown in light red.

Manual injection of ammonium was performed on day 13 to confirm the response of the model to high values of

ammonium in bioreactor, leading to the observed peak. Once the concentration of ammonium increased above 7 mM, the

software responded by increasing the pyruvate addition set point, as it had learned that the addition of pyruvate decreases

ammonium.

These different use cases demonstrate that a training experiment which covers the expected variability for given process

parameters will help the hybrid model to learn how control variables impact process indicators. This knowledge from the

model can then be used to operate the process once the desired state of control is reached. Deviations from the state of

control can be predicted and avoided with a correct response from the system. This strategy is applicable for process

development but could also be useful in manufacturing. Debates on how to validate such models for GMP applications

should help the biomanufacturing community to exploit such capabilities to their full potential.

Furthermore, the retraining of the model is an important feature which can be applied to new clones as well as new

molecules in the industry pipeline. There is a lag in finding the optimum conditions for new clones as the initial data

measured is used to learn the relationships between control variable and process indicator. This capability of retraining will

be crucial in the initial process development stage of a new molecule. The final optimized process parameter from this run

can be used to lock the set points of the process parameters.
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5. Discussion

Novel robotic systems for HT experimentation at every lab scale has drastically changed biotechnology laboratories. The

large number of runs that can operate in parallel, the highly complex tasks that robots can perform, the associated

process analytical tools and the addition of mobile assistants that overcome spatial limitations, are just some of the many

advantages. On the other hand, this significantly increases the number of high-tech devices that rely on skilled personnel

and on a robust digital infrastructure to enable communication and control of all devices. To operate these robotic

platforms, several new tools entered the biotech lab environment. Some examples are data management tools, IT

systems, optimization algorithms (for design or scheduling), monitoring and control tools.

Still, the synergy between novel computational and robotic tools can only be fully exploited based on a tight integration of

methods, devices, and expertise. Bioprocess development lies behind in terms of development and availability of specific

tools for this purpose. The strategic integration of appropriate tools has a large potential to revolutionize biotechnology

laboratories. As demonstrated by the findings presented in this study, the combination of computational tools with existing

robotic experimental setups can drastically increase the throughput and efficiency of laboratories. This has already been

demonstrated in other fields[52], overtaking tasks with ever increasing complexity gives researchers freedom to engage in

challenging and creative activities[38][21]. In the above given example, automated experimental design tackles a major

bottleneck, as is the preparation and design of experimental runs based on existing data, a resource and personnel

intensive task. Moreover, the ability to continuously learn and adapt the experimental design during cultivation allows for

real-time improvements as insights into the process are acquired. Especially for development of perfusion experiments

that are expected to run for months, a repeated improvement of the experimental design is pivotal to maximize efficient

use of time and resources.

The use case experiment presented in this work shows that the system developed has five capabilities required in self-

driving laboratories for bioprocess development, namely:

1. Hybrid modelling formulation for flexible and robust process: A robust model backbone that allows a proper

description of the time evolution of performance even for new clones. The implemented hybrid model based on SW-

GP could describe the process properly as reported in literature[44].

2. Online model re-training to enable real-time learning: As described in detail with insilico data, re-training is

essential to empower the algorithm with “learning” capabilities. This feature exploits the fact that in parallel

experiments the information generated by neighboring bioreactors is very useful for the running system.

3. A toolset to transfer learnings from past projects: The software was able to describe perfusion runs with a new

clone (Clone B), for which no previous data was available. This is possible since the GP Kernel can extract the

existing similarities between the new clone and the known one. By this the existing information can be used to

drastically reduce the number of experiments required in development.

4. Predictive process monitoring and notifications: Even with models that show a poor description power (say due to

radically new processes or unknown issues in the system), the forecast and notification of probable future events is a

major advantage for a robust operation of the experimental setup. Despite the significant autonomy of the robotic
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system, auxiliary resources and external tasks (liquid containers, at-line analytics, sample handling for off-line

analysis) still need to be performed by operators. In addition, unexpected malfunction in the bioreactors or liquid

handlers need to be tackled by experts. Notifications that inform of an increasing probability that undesired events will

take place (low dissolved oxygen, low glucose concentration, deviation on the pH set-point) allow acting on these

events before they occur, enabling planning of resources and personnel.

5. Autonomous feed-back experimental operation minimizing the human in the loop: One of the key advantages of

robotics systems is operation 24/7. Processes that run in tightly defined conditions use process control to ensure

robust operation, yet in development, neither a good process understanding (typically in formulated as a mechanistic

mathematical model), nor a defined operating regime (as in manufacturing) are available. The software agent in

charge of the operation of the parallel cultivation system is confronted with the challenging tasks to learn the new

process behavior and simultaneously take actions that drive it to the desired targets[53]. Furthermore, some targets set

in the use case (e.g. cell viability) do not have a known input-output relationship, which must be learned during

experimentation. It is hence interesting to confirm that the system was indeed able to find the process conditions that

drive the process to the desired objective in all cases.

The above described capabilities make this software solution a viable asset for process development, where high

throughput systems are used for optimization of process conditions. However, the application of this technology can be

extended to technology transfer for a large scale bioreactor. As proof of concept, the prototype software solution

developed for laboratory scale in this study shows the potential of the autonomously operated bioreactor to reach and

maintain the defined target by learning from the small scale data as well as historical large scale data used to build the

model. In the context of process development, steps to define set points for the optimized process based on the software

solution suggestions during the experiment will be further studied.

An open challenge remains modelling and feedback operation considering product quality. Currently, the main CQAs can

only be measured offline at the specific department for analytics, leading to a significant time gap between the sampling

and data availability. Process Analytical Technology (PAT) tools that enable online or atline quantification of glycoforms,

HCPs, aggregates, fragments will disrupt bioprocess development and operation, since beyond productivity and yield,

stable quality attributes are paramount. Being able to predict how they vary using model-based tools could also one day

lead to an active control over these CQAs and truly optimal operation.

6. Conclusion

The introduction of autonomous experimental facilities (self-driving laboratories) in the pipeline of biopharma development

is an essential step to accelerate the long and uncertain path for product to patient. The software solution presented here

tackles important challenges by exploiting the potential of advanced parallel mini-bioreactor experimental systems. We

demonstrate the capabilities of the developed software with three use cases, showing the added value of the

implementation of machine learning tools in modern experimental systems. Furthermore, the user friendliness of the

software and support offered to operators and scientists make this software an important step towards human centric
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industry 5.0.

We expect the results to motivate further development in this area and a larger acceptance in the industry. The current

gap between robotic capabilities and the autonomy of the devices needs to be urgently addressed in bioprocess

development for the biotechnological and biopharmaceutical industries to match the high expectations set to digital

biotechnology and bioindustry 5.0.

Appendix

1. Use case experiment case studies

Figure 16. Condition 3 results: ammonium (Amm) use case with Amm target= 1 mM (red dashed line). The observed ammonium

values of the bioreactor with software operation are shown in green, three bioreactors without software operation are shown in blue.

The optimizer suggested pyruvate additions are plotted on secondary axis and is shown in light red. The model was originally not

trained on data of this clone.
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Figure 17. Condition 5 results: viability (Via) use case with Via Target = 98% (red dashed line). The observed viability values of the

bioreactor with software operation are shown in green, three bioreactors without software operation are shown in blue. The optimizer

suggested temperature rate is plotted on the secondary axis. All control parameter profiles are shown in light red.
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Figure 18. Condition 6 results: ammonium (Amm) use case with Amm target= 1 mM (red dashed line). The observed ammonium

values of the bioreactor with software operation are shown in green, three bioreactors without software operation are shown in blue.

The optimizer suggested pyruvate additions are plotted on secondary axis and is shown in light red. The model was originally not

trained on data of this clone.
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