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The lineshapes of spectroscopic transitions offer windows into the local environment of a system.

Here, we present a novel approach for connecting the lineshape of a molecular exciton to finite-

temperature lattice vibrations. Our results are based upon an exact, self-consistent treatment of a

continuous model in which thermal effects are introduced as fluctuations about the zero-temperature

localized soliton state. Two parameters enter our model: the exciton band-width   and the exciton

reorganization energy  . Our model bridges the strongly localized limit where the exciton

homogeneous line width is observed to be independent of temperature and the molecular aggregate

limit in which the line width increases linearly in temperature.
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I. Introduction

One of the the fundamental issues in the materials science of disordered semiconductors is in the

unravelling optical and electronic properties from disordered energy landscapes and correlating these to

complex solid-state microstructures. In polymeric semiconductors in particular, the structure-property

interdependence is such that the excitation spectral line shapes are governed by the interplay between

inter- and intra-chain electronic interactions both of which are highly sensitive to the local

microstructures of the system. Within the Kubo-Anderson model, the homogeneous lifetime is related to

the variance or fluctuations in the spectroscopic energy level and the correlation time of the fluctuations

via.

.[1][2][3]

It is desirable to relate both   and   to the properties of the material substrate.
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It was suggested in Ref.[4]  following arguments in Ref.[5] that the lineshape in polycrystaline polymeric

semiconductors could be interpreted in the context of a weakly coupled aggregate model; a simple two-

dimensional free-exciton model of an aggregate composed of polymer chains with a persistence length 

 that are assembled to form a lamellar stack of persistence length  . Excitonic coupling effects, both

along and between the chains, can be described by an intrachain (parallel) hopping integral  , and an

interchain (perpendicular) hopping integral  . Using a two-dimensional free exciton model we showed

the ratio of the homogeneous linewidths ( ) of the isolated (single chain) to the aggregate is related to

delocalization along each direction.

Consequently, by taking the ratio of the homogeneous line-widths for the isolated vs. aggregate system,

one obtains a succinct measure of the localization of the exciton. However, the model is based upon a

simple free-exciton model, essentially a particle-in-a-box, where one expands the approximately

parabolic energy bands about the super-radiant transition giving  . This is expected to be

true in the high-temperature limit where the exciton momentum is no longer a good quantum number

and localization is due to dynamical disorder. At low temperature, however, the lineshape reflects the

static localization due to the static disorder. This trend is observed in studies of cyanine dye J-aggregate

films (Ref. [5]) in which it is reported that the dynamical scattering limit persists even down to 9K with

no transition to the static disorder limit.

In this paper, we revisit this model with the goal of correlating the exciton lineshape with its localization

length taking into account static and dynamic disorder at finite temperature. For this, we present exciton

models in which energy fluctuations are introduced in terms of local site energy fluctuations and include

the effect of self-trapping whereby the initial exciton localization is due to coupling to the lattice

phonons. We then introduce finite-temperature fluctuations around the    self-trapped excition

(STE) state and consider how the STE picture is modified at finite temperature. Our results are based

upon a numerically exact, self-consistent treatment of the Davydov soliton model[6]  in which thermal

effects are introduced as excitations about the zero-temperature soliton state. We find that both the

energy fluctuations and the exciton localization can be described in terms of a parameter-free, reduced

description, by introducing a critical temperature below which exciton self-trapping is expected to be

stable. Above this temperature, the self-consistent ansatz relating the lattice distortion to the exciton

wave function breaks down.
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II. Theoretical models

A. Free exciton limit

The central issue of this paper concerns the connection between dynamic disorder and the homogeneous

line width of molecular excitons. To set the framework for our discussion, we begin with a basic finite 1D

lattice exciton model described by

in which   represents a local excitation on site   with energy   and   is the hopping integral between

nearest neighbors. For this analysis, we take all the sites to be identical. For J-aggregates,   such that

the lowest-energy exciton transition corresponds to a super-radiant state. We can easily diagonalize  :

where   is a quantum number and with states

In principle, the local site energies are not homogeneous due to local static and dynamic disorder effects.

If we treat the local energy fluctuations as a time-dependent perturbation, then the exciton energy levels

acquire a fluctuation given by first-order perturbation theory

where   is the random noise term in our model. If we assume that all the noise terms are uncorrelated

and follow from an Ornstein-Uhlenbeck (Brownian noise) process,

in which the fluctuation-dissipation theorem relates the variance in the noise to the relaxation time 

. Using this, write

H = |n⟩⟨n| + J (|n + 1⟩⟨n| + |n⟩⟨n + 1|),∑
n=0
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Note that the summation is simply the inverse-participation ratio (IPR) for the exciton state, 

. The reciprocal of IPR gives the number of sites participating in the final eigenstate. If

the exciton is fully delocalized over all    sites, then    sites and the site-wise contribution to the

wavefunction is simply  .

In other words, as the exciton is delocalized over an increasingly larger domain size, the local energy

landscape becomes smooth and gives a vanishing contribution to the homogeneous broadening. Hence,

the line-shape is expected to become progressively narrower as the exciton is further delocalized. This is

often referred to as exchange narrowing. Under this model, the exciton hopping integral   plays no role

whatsoever in determining the lineshape.

We can also introduce the effect of thermal fluctuations by expanding    about the lowest-energy

transition (corresponding to quantum number  ) and introducing fluctuations 

where we write   which becomes small as the number of sites   increases. Thus, we can

write the exciton energy fluctuations as

This model assumes that the exciton is in some thermal population driven by contact with a finite

temperature bath, which is. left unspecified. We can use the fluctuation/dissipation theorem,

where the memory kernel    is the Fourier transform of the spectral density associated with the

system/bath interaction. [7][8]

Consequently, the homogeneous lineshape is expected to increase with temperature. Both of these trends

are apparent in Refs. [4][5]

However, this model is also unsatisfactory since it imposes a localization length,  , on the exciton and

does not account for lattice reorganization effects which would contract the exciton and would suggest

that the homogeneous linewidths of the photoemission spectra would be broad compared to the

absorption spectra. This prompts us to consider a unified model under which the coupling between the

lattice and the exciton is treated under a non-perturbative and self-consistent framework at both 

 and at finite temperature.
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B. Self-trapped excitons

We seek a non-perturbative approach whereby the lattice relaxation and the exciton are treated on co-

equal footings. black

A suitable starting point is the Holstein model where by the phonon variables   are taken to

be local to each electronic site:

Writing the exciton wavefunction as

and then minimization of the energy   with respect to the

phonons, and treating them as c-number variables as per the Ehrenfest approximation, one easily finds 

. Substituting this back into energy expectation value, leads to the discrete non-linear

Schrödinger equation

which has been used extensively for modeling problems such as this. [9]

Finally, the discrete lattice model can be taken in the long-wavelength/semiclassical limit and one arrives

at a non-linear Schrödinger equation (NLS) of the form [10]

with non-linearity  .

Eqs. 16 and 15 are formally equivalent in the limit that    and the lattice constant goes to 0. The

NLSE has localized solutions when  ,

in which the exciton is localized over a finite spatial region with eigenvalue   and  .

The   solution acts as a self-trapping potential
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which is the well-known Pöschel-Teller potential. [11]

It is important to note that this system as a single bound state.

We can now directly relate the parameters of our model to observed spectroscopic quantities. The

reorganization energy can be conveniently deduced from the exciton photoluminescence spectrum via

the Huang-Rhys parameter,   and phonon frequency 

Equating the two expressions,

which for typical conjugated polymer systems,    and    giving indicating that we are

comfortably in the extreme low-temperature regime of the model for excitons localized to single chains.

However, for  -aggregate systems in which the electronic coupling is distributed over multiple

chromophores the critical temperature can be considerably than in the isolated chain case; however, even

in the most extreme cases   implying that the model should be valid for a wide range of organic-

semiconducting materials.

Lastly, we can compute the inverse participation ratio (IPR) directly from the STE state,

This expression reveals how exciton delocalization which increases with   and exciton/phonon coupling,

which localizes the state compete to determine the exciton localization length.

C. STE Homogeneous linewidth

We assume that dynamical fluctuations correspond to excitations from the STE state and that these give

rise to the homogeneous line width of the exciton.

which we can evalute analytically by defining the partition function

where   is the

S Ω

= ℏΩS.Ereorg (19)

= 18ℏΩS/T ∗ kB (20)
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elliptic theta function which we approximate as a series

at low temperature (

This gives the low temperature limit for the line width as

At high temperature, the sum can be taken as integral

and

In Fig. 1 we show the homogeneous line width vs. temperature plotted in physical units over a range of

exciton reorganization energies using the exact expression obtained from Eq. 23, These have a general

characteristic of being independent of temperature up to an activation temperature characteristic of the

exciton reorganization energy, after which the line width increases monotonically. At temperatures just

above the activation temperature, the behaviour is nearly linear. This model seamlessly connects the

trends are apparent in Refs. [4][5] for excitons in 1D.

q = ≪ 1)e−βJ

(0, q) = 1 + 2q + 2 + O[q .ϑn q4 ]6 (24)

=σ2
E

(16 + + 9)J 2e3βJ eβJ e4βJ
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E
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Figure 1. Energy variance vs temperature over a range of exciton reorganization energies. This

quantity corresponds to the additional homogeneous width of the transition accounting for the

thermal fluctuations in the exciton energy.

III. Discussion

Elementary quantum mechanics guarantees that every purely attractive potential in one-dimension has

at least a single bound state. In conjugated polymer and molecular aggregates this corresponds to a

localized excitonic state dressed by the self-consistent reorganization of the molecular lattice about the

state. Self-consistent excitations from this state arising from thermal excitations destabilize the state and

lead to a contribution to the exciton's optical lineshape.

Our calculations and analysis reveal that for systems with strong exciton/phonon coupling, such as

polymer aggregates, the exciton homogeneous line width is for the most part independent of the

temperature for  ; however, for molecular J-aggregates which exhibit much weaker

exciton/phonon coupling one expects a monotonic and nearly linear increase in the line width that can be

well-approximated within the exchange narrowing model.

It would be of interest to apply the analysis to other polaron models, such as the Su-Schrieffer-Heeger

model  [12]  which has direct bearing on topological soliton states  [13], topological insulators, and one-

T ≪ ℏμ/k
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dimensional optomechanical arrays. [14]

Acknowledgments

The work at the University of Houston was funded in part by the National Science Foundation (CHE-

2102506) and the Robert A. Welch Foundation (E-1337). The work at Georgia Tech was funded by the

National Science Foundation (DMR-1904293).

Data Availability

The data that supports the findings of this study are available within the article.

References

1. ^P W. Anderson. A mathematical model for the narrowing of spectral lines by exchange or motion. J. Phys. S

oc. Jpn., 9(3):316– 339, 1954.

2. ^Ryogo Kubo. Note on the stochastic theory of resonance absorption. J. Phys. Soc. Jpn., 9(6):935–944, 1954.

3. ^Ryogo Kubo. A stochastic theory of line shape, volume 15, pages 101–127. John Wiley & Sons, 1969.

4. a, b, cPascal Grégoire, Eleonora Vella, Matthew Dyson, Claudia M. Bazán, Richard Leonelli, Natalie Stingelin,

Paul N. Stavrinou, Eric R. Bittner, and Carlos Silva. Excitonic coupling dominates the homogeneous photolu

minescence excitation linewidth in semicrystalline polymeric semiconductors. Phys. Rev. B, 95:180201, May

2017.

5. a, b, c, dDylan H. Arias, Katherine W. Stone, Sebastiaan M. Vlaming, Brian J. Walker, Moungi G. Bawendi, Rob

ert J. Silbey, Vladimir Bulovíc, and Keith A. Nelson. Thermally-limited exciton delocalization in superradian

t molecular aggregates. The Journal of Physical Chemistry B, 117(16):4553–4559, 2013. PMID: 23199223.

6. ^A.S. Davydov. The theory of contraction of proteins under their excitation. Journal of Theoretical Biology, 3

8(3):559–569, 1973.

7. ^R Kubo. The fluctuation-dissipation theorem. Reports on Progress in Physics, 29(1):255–284, jan 1966.

8. ^Abraham Nitzan. Chemical Dynamics in Condensed Phases. Oxford University Press, Oxford, UK, 2006.

9. ^V.M. Kenkre. Interplay of Quantum Mechanics and Nonlinearity: Understanding Small-System Dynamics

of the Discrete Nonlinear Schrödinger Equation. Lecture Notes in Physics. Springer International Publishin

g, 2022.

qeios.com doi.org/10.32388/Y3HZ8D 9

https://www.qeios.com/
https://doi.org/10.32388/Y3HZ8D


10. ^V. E. Zakharov and S. V. Manakov. On the complete integrability of a nonlinear schrödinger equation. Theo

retical and Mathematical Physics, 19(3):551–559, 1974.

11. ^Lev Davidovich Landau and EM Lifshitz. Quantum mechanics (volume 3 of a course of theoretical physic

s), 1965.

12. ^W. P. Su, J. R. Schrieffer, and A. J. Heeger. Solitons in polyacetylene. Phys. Rev. Lett., 42:1698–1701, Jun 1979.

13. ^Eric J. Meier, Fangzhao Alex An, and Bryce Gadway. Observation of the topological soliton state in the su–s

chrieffer–heeger model. Nature Communications, 7(1):13986, 2016.

14. ^Xun-Wei Xu, Yan-Jun Zhao, Hui Wang, Ai-Xi Chen, and Yu-Xi Liu. Generalized su-schrieffer-heeger model i

n one dimensional optomechanical arrays. Frontiers in Physics, 9, 2022.

Declarations

Funding: National Science Foundation Robert Welch Foundation

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/Y3HZ8D 10

https://www.qeios.com/
https://doi.org/10.32388/Y3HZ8D

