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Abstract

The Bell experiment is discussed in light of a new approach towards the foun-
dation of quantum mechanics. It is concluded from the basic model that the mind
of any observer must be limited in some way: In certain contexts, he is simply
not able to keep enough variables in his mind when making decisions. This has
consequences for Bell’s theorem, but it also seems to have wider consequences.
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1 Introduction
The Nobel Prize in Physics for 2022 for performing different versions of the Bell ex-
periment was well deserved. But despite an enormous literature on the subject, a real
understanding of the result of the experiment is still lacking. The purpose of this article
is to propose a solution, not by being a Bell denier, and not by assuming some action
at a distance, but simply by departing from a general realist view of the world. In my
opinion, every description of a physical phenomenon must be from the point of view
of an observer or from the point of view of a group of communicating observers.

Let me mention briefly my background. I am not a physicist, I am a statistician, and
my main aim has been to find some basis for quantum theory that I am able to explain
to my fellows, the statisticians. As a step towards doing this, I published on Springer
in 2018 the book ’Epistemic Processes’. Later I discovered that Chapter 4 in that book
was incomplete and even contained an error in the discussion of spins. These errors
are now been corrected in a revised 2021 edition of the book. I have also published a
number of articles related to my views on quantum foundations; some of these articles
are collected in the book Helland (2023a). All the mathematical arguments are now
gathered in the article Helland (2023b).

However, the main problems of quantum mechanics are not simply related to math-
ematics, but to what mathematics describes.

Central notions for me are the questions that we ask nature. As long as we are very
small children, we approach nature only by way of our interaction with other people,
say our parents. But as we grow older, we start to ask questions. There seem to be some
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adults who have stopped asking questions and only have opinions. These opinions may
be based on their free will, but also perhaps upon looking up to certain authorities. I
tend to look up to Einstein and some other similar authorities. I see Albert Einstein as a
great genius, but I do not agree with his opinions about quantum mechanics. There are
still physicists that wanted to abolish the whole of quantum mechanics, but I strongly
disagree with such views.

The whole of empirical science is in reality the field of asking questions to nature
and trying to obtain answers. The purpose of statistics is to help empirical science in
this process. In some way, I feel that there should be a connection between theoretical
sciences whose purpose is related to the study of nature on the one hand and statistical
theory on the other hand. This is one point of departure from my books and papers.

To me, it is also natural that an ultimate quantum theory should be related to asking
questions about nature. The first problem raised in my note Helland (2019) is whether
this is the case with the existing quantum theory. And the answer to this seems largely
to be affirmative. For spin components in the spin 1/2 case, the one-to-one correspon-
dence between quantum states on the one hand and question-and-answer pairs on the
other hand seems to be quite clear. This is proved in Helland (2021, 2023a) and more
generally in Höhn and Wever (2017).

This is the way I try to approach quantum theory in my books and in my papers:
Through accessible conceptual variables. The basic notion is that of conceptual vari-
ables, which are related to the mind of an observer or to the joint minds of a group of
communicating observers.

It is really simple: In a spin 1/2 situation, for instance, an accessible conceptual
variable is nothing but the spin component in a given direction as perceived by an
observer (or by communicating observers). But the full spin vector is inaccessible to
any observer.

Having a purely epistemic approach towards quantum mechanics, it seems possible
to understand so-called paradoxes like Schrödinger’s cat, Wigner’s friend and the two-
slit experiment. In Helland (2023a) I have my own solutions, based on a version of
quantum mechanics where the only allowable pure state vectors are those which are
eigenvectors of some physically meaningful operator.

In my approach towards the Born formula (Helland, 2021) I assume that the actor
in question has an authority which can be said to be perfectly rational. Understanding
this more properly seems to be a more interesting task than continuing the discussion
around the Bell inequalities, which we now know are violated by nature. But I will try
to summarize my views on the latter issue here.

In my view, seeking a theory that covers reality in all situations - whatever that
means, seems to be impossible. We are not gods. Instead, in my opinion, we should be
looking for a theory that is related to our knowledge of reality. Any process of seeking
knowledge can be called an epistemic process.

Quantum theory should be seen as a mathematical model, a model related to the
mind of an observer, or to the joint minds of a communicating group of observers.

Consider the Bell situation. To an observer Charlie, receiving data from both Alice
and Bob, there are two accessible conceptual variables: The spin component as per-
ceived by Alice, and the spin component as perceived by Bob. Alice and Bob are not
communicating. Alice has free will to choose the direction in which she wants to mea-
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sure the spin component, and so has Bob. Then they achieve their responses. Quantum
theory is related to these perceived responses. Bell’s inequality has to do with a hypo-
thetical reality behind these measurements, and this, in my opinion, is a reality that we
do not seem to be able to cover completely with any human-made model. As I see it,
this is in some way all there is to it.

This article can be seen as a shorter and improved version of Helland (2022a).

2 The Bell experiment
Two observers Alice and Bob are spacelikely separated at the moment when they ob-
serve. Midways between them is a source of entangled spin 1/2 particles, one particle
in a pair is sent towards Alice, the other towards Bob. In concrete terms, the joint state
of the two particles is given by

|ψ0〉= 1√
2
(|1+〉|2−〉−|1−〉|2+〉). (1)

Here and in the following the spin component in any direction is normalized to ±1.
In (1) |1u〉 means that the spin component of particle 1 in some fixed (z) direction is
u, while |2v〉 means that the spin component of particle 2 in the z-direction is v. This
state expresses that the total spin of the two particles is 0. One can imagine that these
particles previously have been together in some bound state with spin 0.

Alice is given the choice between measuring the spin component of her particle in
one of two directions a or a′. If she measures in the a-direction, her response (±1) is
called A, and if she measures in the a′ direction, her response is called A′. Similarly,
Bob can measure in one of two directions b (giving a response B) or b′ (giving a re-
sponse B′). The whole procedure is repeated n times with different entangled particle
pairs and with different directions/ settings chosen by Alice and Bob.

We now temporarily take the point of departure that all these response variables
exist in some sense. This can be seen as an assumption on realism. At the very least,
we will assume that this point of departure is meaningful for some observers or for a
group of communicating observers.

Since all responses then are ±1, we then have the inequality

AB+A′B+AB′−A′B′ = A(B+B′)+A′(B−B′)≤ 2. (2)

The argument for this is simply: B and B′ are either equal to one another or unequal. In
the first case, B−B′ = 0 and B+B′ =±2; in the last case B−B′ =±2 and B+B′ = 0.
Therefore, AB + A′B + AB′−A′B′ is equal to either A or A′, both of these being ±1,
multiplied by ±2. All possibilities lead to AB+A′B+AB′−A′B′ =±2.

From this, a statistician will argue: Assume that we can consider A,A′,B and B′

as random variables, defined on the same probability space (Ω,F ,P). Then by taking
expectations over the terms in (2), we find

E(AB)+E(A′B)+E(AB′)−E(A′B′)≤ 2. (3)

A physicist will have a related argument: Assume that there is a hidden variable λ

such that A = A(λ ),A′ = A′(λ ),B = B(λ ) and B′ = B′(λ ). The assumption that such a
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hidden variable exists, is called local realism in the physical literature. By integrating
over the probability distribution ρ of λ , this gives

E(AB) =
∫

A(λ )B(λ )ρ(λ )dλ (4)

etc.. Thus, by integrating term for term in (2), we again find (3).
Of course, the above two arguments are equivalent; it is just a question of using ei-

ther the notation (ω,P) or (λ ,ρ). There are different traditions here. These arguments
are reviewed and discussed in detail by Richard Gill (2014).

The inequality (3) is called the CHSH inequality after the authors of Clauser et al.
(1969), and has been the source of much controversy. First, it is known that if we use
quantum mechanics to model the above experiment, one can find settings such that the
CHSH inequality is violated. Secondly, recent loophole-free experiments (Giustina et
al., 2015, Shalm et al., 2015, taken together with the experiments done by the 2022
Nobel laureates in physics) have shown that the CHSH inequality may be violated in
practice.

Thus, the simple assumptions sketched above for (3) cannot hold.

3 The Hilbert space formulation from two different max-
imal accessible variables

A completely new approach towards quantum foundations is proposed in Helland (2021,
2022a,b, 2023a,b). The basis is a model of an observer’s mind when this observer is
in some physical situation. In this situation there are physical variables, and the ob-
server will have at least some of these variables, say θ ,λ ,η , ... in his mind. Some of
the variables are accessible to him, that is, it is, in some future, in principle possible to
obtain as accurate values as he wishes on the relevant variable. Others are inaccessible.
Examples of the latter are the vector (position, momentum) of a particle at some time,
or the full spin vector of a spin particle.

The main assumption in the new model is as follows: Related to the mind of an
observer A there is an inaccessible variable φ such that all accessible variables can be
seen as functions of φ . In the two examples above one can take φ = (theoretical posi-
tion, theoretical momentum) and φ = full spin vector. In the last example, in the spin
1/2 case, one can model the discrete spin component in direction a as sign(cos(a,φ)),
and letting φ have a uniform distribution on the sphere. Here these variables are phys-
ical variables, but following Zwirn (2016, 2020), every description of reality must be
seen relative to the mind of some observer. Hence we can assume that the variables
also exist in the mind of A.

In these two examples, there are also maximal accessible variables: In the first
example either position or momentum, in the second example the spin component θ a

in some direction a. In general, an accessible variable θ is maximal for an observer if
there is no other accessible variable λ for this observer such that θ = f (λ ) for some
non-invertible function f .

Two accessible variables θ and η are said to be related if there is a transformation
k in φ -space and a function f such that θ = f (φ) and η = f (kφ). In Helland (2023b) it
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is shown that if both θ and η are maximal and take r values, then φ can be constructed
in a natural way such that θ and η are related with respect to this φ . In particular, two
spin components θ a and θ b are related with respect to the total spin vector.

If no such transformation k can be found for a given φ , we say that θ and η are
essentially different with respect to this φ .

In the present paper, we will concentrate on accessible variables that take a finite
number of values. Then the following is proved in the above papers: Given a situation
with two related maximal accessible variables, there corresponds to every accessible
variable a self-adjoint operator in some Hilbert space H . Under some weak technical
assumptions it can be proved that the eigenvalues of this operator are the possible values
of the variable, say θ , and that the eigenspaces are in one-to-one correspondence with
questions ‘What is θ?’ together with sharp answers ‘θ = u’. A variable is maximal if
and only if all eigenspaces of the corresponding operator are one-dimensional.

The proof of this result relies on constructing a group N acting upon ψ = (θ ,η),
where θ and η are assumed to be related maximal accessible variables, and a certain
representation W (·) of this group which is proved to be irreducible.

This is the first step in a new proposed foundation of quantum theory.
The second step is more technical. One must define a group of actions K upon

the φ -space. The function f in θ = f (φ) is said to be permissible with respect to this
group if f (φ1) = f (φ2) implies f (tφ1) = f (tφ2) for all t ∈ K. Assume that the two
related variables θ and η both are defined by permissible functions. Let T (·) be a
multivariate unitary representation of the group K such that the coherent states T (t)|v〉
for some vector |v〉 in the actual Hilbert space are in one-to-one correspondence with
t ∈ K. Then one can show that, if Aθ is the operator corresponding to θ = f (φ), then
T (t)†Aθ T (t) is the operator corresponding to θ ′ = f (tφ).

It is shown in Helland (2023b) that in the finite-dimensional case, one can construct
the group K in such a way that the technical assumptions above are satisfied.

One can also show the following (Helland, 2023b): If k is the transformation con-
necting two related variables θ and η , then there is a unitary transformation W (k) such
that

Aη = W (k)†AθW (k). (5)

On the other hand, if (5) hold between two operators, then the corresponding vari-
ables θ and η are related. This is proved by the following lemma.

Lemma Consider two maximal accessible finite-dimensional conceptual variables
θ and λ . If there is a transformation s of Ωψ such that Aλ = W (s)†AθW (s), then θ

and λ are related.

Proof By equation (26) in Helland (2023b) the relation Aλ =W (s)†AθW (s) implies
that

Aλ = ∑
n

fθ (sn)|vn〉〈vn| (6)

for an orthonormal basis{|vn〉} for which we also have

Aθ = ∑
n

fθ (n)|vn〉〈vn|. (7)
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But by the spectral theorem, we also have

Aλ = ∑
n

fλ (n)|v′n〉〈v′n| (8)

for some orthonormal basis. Since all the variables are maximally accessible, the
eigenspaces are one-dimensional by Theorem A2 of Helland (2023b). In particular,
this means that since Aλ has a spectral decomposition in one basis in (6), the same
basis must be used in (8). This also implies

λ (n) = fλ (n) = fθ (sn) = θ(sn), (9)

so θ and λ are related with respect to the group N. Since by the model, each variable
is a function of the inaccessible variable φ , they must also be related with respect to φ .
�

Given the results above, a rich theory follows. The set of eigenvalues of the operator
Aθ is identical to the set of possible values of θ . The variable θ is maximal if and
only if all eigenvalues are simple. In general, the eigenspaces of Aθ are in one-to-one
correspondence with questions ‘What is θ ’/ ‘What will θ be if we measure it?’ together
with sharp answers θ = u.

This points at a new foundation of quantum theory, and it also suggests a general
epistemic interpretation of the theory: Quantum theory is not directly a theory about
the world, but a theory about an actor’s knowledge of the world. From this conclusion
also a number of so-called ‘quantum paradoxes’ can be solved, see Helland (2022b).

4 Limitation in the mind of an observer in some context
Let an observer O be in some physical context. In agreement with his observations and
planned observations, he will have several physical variables θ ,η ,λ , ... in his mind. I
will assume here that all these variables are finite-dimensional. According to my gen-
eral model, these variables can all be seen as functions of a fixed inaccessible variable
φ . Then we have the following:

Theorem 1 Assume that O has two related maximal accessible variables θ and η in
his mind at some fixed time t. Then he cannot simultaneously have in his mind another
maximal accessible variable which is related to θ , but essentially different from η .

Proof
Denote the new variable by λ . Let the transformation relating θ and η be k, and

the transformation relating θ and λ be s. Then by (5) we have Aθ = W (k)AηW (k)†

and Aθ = W (s)AλW (s)†. But this implies from the Lemma of the previous Section that
Aη = W (k−1s)AλW (k−1s)†, so we conclude that η and λ are related, which leads to a
contradiction with the assumptions made. �

Note: It is essentially here that a fixed context is assumed, and that the time t is
kept fixed. If we allow time to vary, O can have in mind a large number of variables,
also essentially different ones. Also, note that O here can be any person.
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5 Limitations in the mind of Charlie
Assume that Alice and Bob have made n independent repetitions of the Bell experi-
ment, each time choosing their settings either by their own free will or by some random
mechanism. After this, they leave all their data to a statistician Charlie, who will try to
make a statistical model of the experiment.

To this end, he thinks of a typical experiment, with setting either a or a′ chosen
by Alice, giving corresponding responses A or A′, each either -1 or +1, and similarly
settings b or b′ chosen by Bob, with responses B and B′. As a good statistician, he relies
on the conditionality principle (see for instance Cox, 1958), and wants to condition his
model upon all the settings, only modelling the possible responses.

The inaccessible variables, in this case, are the full spin vector φ A of Alice’s particle
and the full spin particle φ B of Bob’s particle. To Charlie, both these are inaccessible,
but at the same time, he knows from other experiments that if Alice and Bob measure
spin in the same direction, then their spin components are opposite. Thus, in his mind,
he may think of a model where φ B =−φ A, in the sense that any measured components
are opposite. For a precise statement and proof based upon the entangled state vector
(1), see the next Section.

The goal of Charlie is to formulate a model for the possible responses A,A′,B and
B′. Each of these variables takes the values -1 or +1, and each is maximal as a variable
that is accessible to respectively Alice and Bob. For Charlie, we will see that the
variables are pairwise related under the model. During his modelling attempts, he is
able to communicate with Alice and Bob. The term ‘accessible’ will be defined with
respect to this whole set of communicating actors, meaning that a variable is called
accessible if it at the outset also has been accessible either to Alice or to Bob. In this
sense, each of the variables A,A′,B and B′ must be seen as maximal accessible.

Theorem 2 Under these assumptions, in relation to Charlie’s model of the vari-
ables A,A′,B and B′, the following hold: 1) All the pairs of variables are related under
his model. 2) Given two such pairs which share one variable, the fourth variable will
be related to the variables of both pairs, but essentially different from another variable,
a function of the variables in the two pairs.

Proof
1) Look first at a pair associated with the same primitive observer, say, Alice, so the

variables are A and A′. These are spin components in different directions, and Charlie
can have, as an inaccessible part of his model, the projection λ of Alice’s spin vector
upon the plane spent by these two directions. Let k be a suitable rotation of λ in this
plane. Then for some value of λ and for some function f we have A = f (λ ) and
A′ = f (kλ ). Explicitly, the function f can be taken as f (λ ) = sign(cos(a,λ )).

Then look upon a pair of variables from both primitive observers, which possibly
can be measured in the same run, say A and B. Then by what has been proved above,
A is related to a hypothetical variable A′′, measured by Alice in the Bob-direction b,
which is known to her. But, by Charlie’s mental model, he must conclude that A′′=−B,
hence A and B are related.
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2) Say that the two pairs are (A,B) and (A,B′), so that the fourth variable is A′.
Then A′ is related to both variables in the first pair, and to both variables in the second
pair by 1) above. Now look at the variable C = A(B+B′). This variable takes the value
0 if B = −B′, and the values ±2 if B = B′. This variable is determined by the joint
values of A,B and B′, but is quite unrelated to the value of A′. Thus, we must conclude
that C and A′ are essentially different; they cannot be coupled by any transformation in
Charlie’s φ -space. �

Thus, we are forced to conclude from Theorem 1 and Theorem 2:

Corollary 1 Charlie is not able to keep all four variables A,A′,B and B′ in his mind
at the same time t during the modelling process.

Note that Charlie may be a statistician, and he may be able to communicate with
any person. This person may be interested in the Bell experiment, and he may after the
experiment have had contact with Alice and Bob, and have listened to their experiences.

Corollary 2 For any communicating person there may exist situations where he is
not able to keep in his mind all the variables that he is exposed to.

In particular, this seems to happen for any person trying in practice in a concrete
context to reproduce the simple argument leading to (3) in Section 2 above in a way
that can be communicated to all people, including the actors Alice and Bob.

6 The state of Charlie
Consider two spin 1/2 particles, originally in the state of total spin 0, then separated,
one particle sent to Alice and one particle sent to Bob. This can be described by the
entangled singlet state (1).

As in David Bohm’s version of the EPR situation, let Alice measure the spin com-
ponent of her particle in some direction a, and let Bob measure the spin component
of his particle in the same direction. As has been described in numerous papers, there
seemingly is an action at a distance: The spin components are always opposite.

I want to couple this with the philosophy of Convivial Solipsism: Every descrip-
tion of the world must be relative to the mind of some actor. So let us introduce an
actor, Charlie, observing the results of both Alice and Bob. Charlie’s state during this
observation is given by (1).

Let us try to describe all this in terms of accessible and inaccessible variables. The
unit spin vectors φ A and φ B of the two particles are certainly inaccessible to Charlie,
but it turns out that their dot product η = φ A ·φ B is accessible to him. In fact, Charlie
is forced to be in the state given by η =−3.

Mathematically this is proved as follows. The eigenvalues of the operator Aη cor-
responding to η are 1 and -3. The eigenvector associated with the eigenvalue -3 is just
|ψ0〉 of (1), while the eigenspace associated with the eigenvalue 1 is three-dimensional.
(See for instance exercise 6.9. page 181 in Susskind and Friedman, 2014.)

8



What does it mean that η = φ A ·φ B =−3? It means that for the components in the
x,y and z direction, we have θ A

x θ B
x +θ A

y θ B
y +θ A

z θz =−3, and since all components here
are either -1 or +1, this is only possible if θ A

x θ B
x = −1 etc., which implies θ A

x = −θ B
x ,

θ A
y =−θ B

y , and θ A
z =−θ B

z . It follows that θ A
a =−θ B

a in every direction a.
Note that Charlie can be any person. So we conclude: To any observing person,

the spin components as measured by Alice and Bob must be opposite in this situa-
tion. This is a necessary conclusion, implied by the fact that the person, relative to his
observations, is in the state given by (1).

7 Bell’s theorem
There are many variants of Bell’s theorem (Bell, 1964) in the literature, and the the-
orem has led to several rather complicated discussions among theoretical physicists.
According to Wikipedia, the theorem has two components: Physical variables exist
independently of being observed or measured (sometimes called the assumption of re-
alism); and second, that Alice’s choice of action cannot influence Bob’s result or vice
versa (often called the assumption of locality).

From the discussion above, it seems that it is the assumption of realism which
must be abandoned. My own point of departure is Hervé Zwirn’s Convivial Solipsism
(Zwirn, 2016, 2020): Every description of reality must be relative to the mind of an
actor (or relative to the joint minds of a communicating group of actors). To be in
agreement with observations, we seem to be forced to the conclusion that the minds of
these actors must be limited in some way in certain contexts.

8 Conclusions
Let us try to recapitulate. The Bell experiment has to do with two actors Alice and
Bob who cannot communicate during the experiment. They both make dichotomous
decisions on their settings of some apparatus, and they both observe dichotomous re-
sponses. For any actor who tries to understand these responses, according to the theory,
his mind must be limited: He is simply not able to keep enough variables in his mind
at the same time.

If this is true, it also must have consequences for other situations. It is well known
that quantum theory may be used to model the process of making decisions, see for
instance Busemeyer and Buza (2012). So assume in general that Alice and Bob belong
to different groups of people that do not communicate, and they both make a series
of decisions, say dichotomous ones, and these decisions have consequences. Such
general descriptions may seem to be relevant to certain political and social situations.
An outsider may try to make deep enough scientific models of the whole situation,
models that also can be explained to both parties in the relevant context. According to
the theory of this paper, such endeavours will be demanding: The outsider may have
difficulties keeping enough variables in his mind.

I will not here go further into which political and social situations I am thinking of.
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