
17 January 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Automatic Construction of Pattern
Classifiers Capable of Continuous
Incremental Learning and Unlearning
Tasks Based on Compact-Sized
Probabilistic Neural Network

Tetsuya Hoya1

1. Department of Computer Engineering, College of Science & Technology, Nihon University, Japan

This paper proposes a novel approach to pattern classification using a probabilistic neural network

model. The strategy is based on a compact-sized probabilistic neural network capable of continuous

incremental learning and unlearning tasks. The network is constructed/reconstructed using a

simple, one-pass network-growing algorithm with no hyperparameter tuning. Then, given the

training dataset, its structure and parameters are automatically determined and can be dynamically

varied in continual incremental and decremental learning situations. The algorithm proposed in this

work involves no iterative or arduous matrix-based parameter approximations but a simple data-

driven updating scheme. Simulation results using nine publicly available databases demonstrate the

effectiveness of this approach, showing that compact-sized probabilistic neural networks

constructed have a much smaller number of hidden units compared to the original probabilistic

neural network model and yet can achieve a similar classification performance to that of multilayer

perceptron neural networks in standard classification tasks, while also exhibiting sufficient

capability in continuous class incremental learning and unlearning tasks.

Corresponding author: Tetsuya Hoya, houya.tetsuya@nihon-u.ac.jp

Qeios

qeios.com doi.org/10.32388/Y5GZF3 1

mailto:houya.tetsuya@nihon-u.ac.jp
https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

1. Introduction

In general, one of the central issues in machine learning is the selection of algorithmic and model

hyperparameters. The selection is nontrivial in the case of deep learning (DL)[1] approaches since the

number of hyperparameters is typically large, i.e., the number of hidden layers and units per hidden

layer, the batch size, the number of epochs, the learning constant, the choice of the loss function, and

other algorithm-dependent parameters. These parameters can also significantly affect the

performance and generally have to be determined through multiple simulation runs on a trial-and-

error basis. Moreover, each run involves iterative parameter tuning of the model and often suffers

from inherent ill-posed problems such as gradient vanishing/exploding and local minima. Hence,

training of DL-oriented models is usually quite resource-demanding and time-consuming.

On the other hand, it is also known that standard deep neural network (DNN)[2], a.k.a. multilayer

perceptron neural network (MLP-NN) with multiple hidden layers[3], approaches incur the so-called

‘catastrophic forgetting’[4] in the case of incremental learning; newly given training data will corrupt

the data space represented by a DNN. One of the representative and practical approaches to avoid the

data space corruption problem is based on the so-called ‘replay’ (or rehearsal) method[5], such as the

iCaRL[6], where the network is retrained using a subset of the previously seen training data and new

ones. However, since replay-based methods still require storing (at least some portion of) the

previously used training data, it is said that this approach does not yield the proper solution to the

incremental learning tasks.

For unlearning, several methods for DNNs have been proposed to date cf.[7][8][9], and they attempt to

remove the learned information from the static network. Hence, this approach contrasts the proposed

scheme, where the network structure dynamically varies according to the situation. Moreover, they

generally require additional complexity to the model approximation (e.g., another weight updating

that involves a series of matrix operations and/or storing several snapshots of the model) and,

therefore, are computationally resource-demanding. To the author’s knowledge, no unified DNN-

based scheme capable of effectively performing continual incremental learning and unlearning tasks

has been proposed.

In contrast to DNNs, it has been shown that incremental learning tasks can be straightforwardly

performed using a probabilistic neural network (PNN) [10][11][12][13]. A PNN is a three-layer network

with radial basis function (RBF) units in the hidden layer and linear output layer units, unlike DNNs.

qeios.com doi.org/10.32388/Y5GZF3 2

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

The PNN’s capability of straightforward incremental learning owes to its inherent characteristics of

transparent architecture and local data representation, while the data learned are distributed

throughout the network parameters in the DNNs.

This paper proposes a simple pattern classification scheme using PNNs requiring no hyperparameter

tuning. Given the training dataset, the network size (i.e., corresponding to the number of hidden and

output units) is automatically determined by applying the proposed construction algorithm, and it can

be significantly smaller than that of the original PNN; in the case of the original PNN, all the training

data must be accommodated within the hidden layer, and this manner of accommodation may often

cause the problem of over-training. The present work also reveals that the compact-sized PNN (CS-

PNN) can sufficiently deal with continual incremental learning and unlearning situations by

dynamically varying the network size while keeping reasonable classification performance.

1.1. Incremental Learning and Unlearning Tasks

The scheme proposed in this paper can be applied to both instance- and class-wise tasks for

incremental learning and unlearning situations. These two tasks differ in the available training data

for restructuring the pattern classifier during continual learning/unlearning. In the instance-wise

incremental learning tasks (IIL), the pattern classifier is updated using each batch containing the

training data for all or partial classes. In contrast, only the data for a group of classes are available at a

time for class-wise (or class) incremental learning (CIL). Therefore, the CIL is generally considered

more challenging than IIL, as the pattern classifier needs to reestimate the pattern space for the

unknown classes. On the other hand, instance-/class-wise unlearning (a.k.a. class decremental

learning (CDL), for the latter) considers situations where the undesired or malfunctioning samples of

the same/multi-classes learned by the classifier must be removed.

2. Method

2.1. Probabilistic Neural Network

PNN[10] is a variant of radial basis function neural networks (RBF-NNs)[14]. It requires much less

training effort than typical DL approaches: training of a PNN is completed by simply assigning each

training data to the centroid vector of an RBF in the hidden layer, as given by

(1).

cj (j = {1, 2, … , })Nh

qeios.com doi.org/10.32388/Y5GZF3 3

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

Then, the unique hyperparameter of the radius value for each RBF is manually specified to complete

the training phase. However, the PNN so obtained tends to suffer from slow testing (reference) mode

and over-fitting, as all the training data need to be accommodated within the network. It even

becomes prohibitive in practice where the training dataset is immense. To circumvent these problems

inherent to PNN, a data-clustering approach, such as -means[15], to the training dataset is generally

performed before the PNN training. However, the application of data-clustering methods typically

adds another complexity to the hyperparameter choice, i.e., in the case of PNN, the number of the

training data to be accommodated within the network (i.e., corresponding to the number of the hidden

units) and other algorithmic parameters (i.e., the seed value for the random choice of the initial

clusters and the threshold value to judge reaching a state of convergence for updating the centers, in

the case of the -means; cf.[12]).

Unlike ordinary DNN models, a standard PNN has a shallow, three-layered architecture; between the

input and output layer, there is only a single hidden layer comprised of multiple RBF nodes. Each RBF

node is connected to all the input nodes with weight values equal to the respective element values of

the centroid vector. In contrast, an RBF node of a PNN is connected only to a single output node

corresponding to the same class with the connection weight unity. Therefore, the hidden-to-output

layer part of a PNN is topologically equivalent to a collection of subnets[16], each responsible for a

single class, as shown in the right part in Figure 1.

(x) = exp(−)hj
∥x − cj∥2

2

σ2
(1)

k

k

qeios.com doi.org/10.32388/Y5GZF3 4

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

Figure 1. A PNN (left) and its topologically equivalent structure with subnets (right) [16]. In the figure,

the matrices and where ; all the input units

 are connected to each hidden layer unit with the respective weight

values denoted by the elements in . Each of is connected only to one of the output units

 with the weight values (if it belongs to the same class as) and (otherwise).

Since each subnet is distinct, class-wise network growing and shrinking is straightforward from the

structural viewpoint, in contrast to the DNN models. However, to perform network

growing/shrinking, the unique value of the radius for each RBF needs to be adjusted according to the

pattern space so modified, and this adjustment is generally nontrivial.

2.2. The Unique Radius

Typically, though the value of the unique radius of a PNN is heuristically chosen, the radius setting in

the following is suggested in the authors’ previous work[13]:

where is the number of classes, and is the maximal distance found among all the pairs of

training patterns. In (2), the entire -dimensional pattern space () is assumed to comprise the

distinct hypercubes of an equal side for each class and be covered by a hypersphere with the radius

. However, the setting by (2) is considered effective only in ordinary, static pattern

classification situations, where is known a priori and all the training data are available. On the other

Nc

C = [, , … ,]c1 c2 cNh
W = { }wjk = 0/1wjk xi

(i = 1, 2, … ,)Nd hj(j = 1, 2, … ,)Nh

cj hj ok

(k = 1, 2, … ,)Nc = 1wjk ok 0

σ =
Dmax

Nc

(2)

Nc Dmax

d R
d

r

r = /Dmax Nc

Nc

qeios.com doi.org/10.32388/Y5GZF3 5

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

hand, there can be other situations in practice where the data are only available for partial classes at

an earlier stage of a pattern classification task and where the number of classes is dynamically varied

due to some environmental changes. Therefore, in such an online situation, the system has to deal

with the continuously varying pattern space.

2.3. The Compact-Sized PNN (CS-PNN)

Also, the primary focus of the previous work[13] was to construct a pattern classifier capable of

performing class-incremental learning (CIL) tasks based on a PNN with fewer RBFs than the original

model, a.k.a. a CS-PNN. However, the approach has inherent drawbacks: i) the maximal distance

 in (2) has to be computed in advance using all the training pairs and fixed while performing the

CIL. Hence, this setup is not considered fully practical; ii) there is a hyperparameter , i.e., a threshold

value to judge whether a new RBF is added for the construction algorithm, and the hyperparameter

selection still depends upon some heuristics.

2.4. Proposed Method

This work, therefore, proposes a novel method for a CS-PNN to cope with the drawbacks of the

original approach described above. First, unlike the ordinary pattern classification scheme, a varying

value of the unique radius is used for each RBF in both the training (construction) and testing

(reference) modes within the proposed method: the value of within (3) is updated to track the

varying pattern space whenever new data arrives to the classifier. By so doing, the pattern classifier is

expected to handle the incremental learning (i.e., reconstruction) and the unlearning situations

effectively. Second, within the construction/reconstruction algorithm, a new RBF is added if incoming

training data is incorrectly classified, rather than when the activation of any already accommodated

RBFs is below a manually given threshold as in the previous approach[13]; this modification eventually

leads to removing the necessity of the hyperparameter selection. Therefore, once a training dataset is

given, the pattern classifier is automatically constructed without any hyperparameter choice.

The pseudocodes of the proposed method for construction/reconstruction (both for the IIL and CIL

tasks), unlearning (for the instance-wise unlearning and CDL tasks), and testing modes are shown in

Algorithms 1-4, respectively.

As equation (3) in Algorithm 1 indicates, the radius varies with the current number of classes

 accommodated within the CS-PNN. Simultaneously, the numerator is updated to keep track of

Dmax

θ

dmax

k dmax

qeios.com doi.org/10.32388/Y5GZF3 6

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

the modified pattern space.

It is noticeable that, within both the construction/reconstruction and testing algorithms (shown as

Algorithms 1 and 4, respectively), the computation of is conveniently carried out in parallel to the

feed-forwarding of the input data to each existing RBF of a PNN; the arithmetic operation of finding a

maximal value proceeds, while the distance between the input and each centroid vector (i.e.,

represented by the squared -norm in the numerator within the exponential function in (1)) is

computed. Therefore, the additional computational complexity for is negligible. Note also that,

for the unlearning situations (Algorithms 2 and 3), the RBF units or subnets responsible for no

longer-used classes are just unloaded from the PNN without involving a further computation of ;

the value will be automatically updated during the testing mode afterward.

dmax

L2

dmax

dmax

qeios.com doi.org/10.32388/Y5GZF3 7

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

3. Simulation Study

Nine publicly available datasets, eight from the UCI machine learning repository[17] and the MNIST

database[18], were used to conduct the simulation study. The datasets selected for the simulation study

are used for a variety of classification tasks, including isolated alphabetic letter speech (isolet) /

handwritten digit (optdigits and pendigits) / alphabet (letter-recognition) image or radar data

(ionosphere) recognition. Table 1 summarizes the datasets used for the simulation study. As in Table 1,

the condition varies per dataset, i.e., the number of samples, classes, or features. Each sample in the

datasets was normalized within the range [-1.0 1.0], and no other preprocessing was made before

performing the simulations.

For the simulation study, three tasks were considered: standard classification, class incremental

learning, and continuous multi-class unlearning and incremental learning, as described next.

qeios.com doi.org/10.32388/Y5GZF3 8

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

Dataset #Training #Testing # Classes #Features per pattern

abalone 3133 1044 3 10

ionosphere 200 151 2 34

isolet 6238 1559 26 617

letter-recognition 16000 4000 26 16

MNIST 60000 10000 10 784

optdigits 3823 1797 10 64

pendigits 7494 3498 10 16

sat 4435 2000 6 36

segmentation 210 2100 7 19

Table 1. Summary of the datasets used for the simulation study

3.1. Standard Classification Tasks

In the simulation study, ordinary pattern classification tasks (i.e., standard classification tasks) were

first considered: each training sample was available for all the classes in a dataset. Therefore,

performing the standard tasks provided a baseline for each pattern classifier, and three pattern

classifiers were considered for the standard tasks: i) original PNN, ii) CS-PNN, and iii) MLP-NN. For

training an MLP-NN, the Adam algorithm[19] was chosen.

Although the CS-PNN does not require any hyperparameter setting in advance, as described above, the

original PNN has a single hyperparameter of unique radius to be given before performing the pattern

classification tasks; the radius setting given by (2)[13] was used in the simulations. In contrast to the

PNN approaches, the number of hidden layers and units per hidden layer has to be set in advance for

MLP-NNs. In the present work, the number of hidden layers was fixed at for an MLP-NN.

Then, the number of units in each hidden layer was given according to the following setting:

= 2NhL

= (+),Nh
2

3
Nd Nc (5)

qeios.com doi.org/10.32388/Y5GZF3 9

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

where and are the number of input units (i.e., equal to the number of features per pattern) and

that of classes (i.e., same as the number of the output layer units), respectively.

There are also many algorithm-dependent hyperparameters for the MLP-NN that need to be

determined a priori. During the preliminary simulation study, although parameters such as the batch

size (), number of epochs (), learning constant (), and two betas (and) for the

Adam were found to affect the performance significantly, the settings and

 and those for the Adam similar to the default ones used in PyTorch library

(https://pytorch.org/) gave a moderately reasonable performance, i.e., or , ,

and .

Table 2 summarizes the simulation results of the standard tasks.

Dataset

Original PNN CS-PNN DNN ()

Acc. (%) (=#Training) Acc. (%) Av. Acc. (%)

abalone 53.35 3133 52.78 1114 54.46 18

ionosphere 85.43 200 90.07 92 75.76 48

isolet 88.84 6238 87.94 1327 95.05 858

letter-recognition 96.22 16000 92.45 2043 72.93 56

MNIST 96.50 60000 94.90 3684 98.02 1058

optdigits 98.39 3823 95.05 188 94.85 98

pendigits 94.25 7494 95.05 263 90.35 34

sat 81.15 4435 80.30 403 84.51 56

segmentation 85.33 210 82.81 49 33.07 34

Table 2. Summary of the simulation results for the standard tasks

In Table 2, note that the classification accuracy averaged over ten runs for each dataset is shown for

the DNN (MLP-NN) since the performance varied with random initialization of the network

Nd Nc

Nbatch Nepochs α β1 β2

= 128Nbatch

= 20Nepochs

α = 0.001 0.01 = 0.9β1

= 0.999β2

= 2NhL

Nh Nh
Nh

× NhL

qeios.com doi.org/10.32388/Y5GZF3 10

https://pytorch.org/
https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

parameters for each run. Also, note that the number of hidden units in the original PNN used equals

that of the training patterns for each dataset, as shown in the second column in Table 1.

As shown in Table 2, the classification performance obtained using the CS-PNN was more or less

comparable to that of the original PNN with fewer hidden units (i.e., from around 4 to 46% of the units

required). In contrast, the number of hidden units generated in the CS-PNN was much larger than that

of the DNN, while the performance of the DNN dropped largely for some datasets. During the

simulations, however, it was noticed that the performance of the DNN varied significantly and was

even unstable in some cases. One of the reasons for this is probably due to the small number of hidden

units used; however, identifying the specific reason was not possible since many other

hyperparameters, as described earlier, were inherently involved in training the DNN, and a particular

coherent manner of the selection is yet to be found.

3.2. Class Incremental Learning Tasks

For the CIL tasks, the number of classes for the partial data given at a time to perform incremental

learning varied from one to four. Then, a pattern classification task for the newly added and already

learned classes was performed for each task.

In the simulation study, seven datasets out of nine with more than five classes, as shown in Table 1,

were used: a) isolet, b) letter-recognition, c) MNIST, d) optdigits, e) pendigits, f) sat, and g)

segmentation. The performance obtained using CS-PNN for each dataset was compared with a DNN

with two hidden layers using the iCaRL method[6]. The iCaRL was chosen for comparison since the

replay method has been used widely for DNNs in CIL situations[20]. For training the DNN, the same

settings for the Adam algorithm for the standard classification tasks were used. In contrast, the

memory size for the replay by the iCaRL, i.e., the number of training data stored for the subsequent

CIL tasks, was set as 0.2 times the number of all the training data available in each dataset[13].

Figures 2 and 3 show the transition of the CS-PNN and DNN classification accuracies and the number

of RBFs generated within the CS-PNN for the CIL tasks using the seven datasets, respectively. In

Figures 2 and 3, the number () in the label ’task ’ corresponds to the number of classes

newly added; for task , the initial number of classes was exceptionally to perform a two-class

classification task, and each of the remaining partial data for a single class was continuously

presented to the pattern classifiers. Note that the classification accuracies in these two figures are

i i = 1, 2, 3, 4 i

1 2

qeios.com doi.org/10.32388/Y5GZF3 11

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

those averaged over ten randomly generated permutations of the order of class data presentation to

the pattern classifiers. Also, the number of classes for the final task was given as follows:

where the function rem() returns the remainder of the division .

Figure 2. Transition of the classification accuracy (averaged) for the CIL tasks using the seven datasets: a)

isolet, b) letter-recognition, c) MNIST, d) optdigits, e) pendigits, f) sat, and g) segmentation.

Nft

= rem(, i),Nft Nc (6)

x,y x/y

qeios.com doi.org/10.32388/Y5GZF3 12

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

Dataset Tasks

CS-PNN DNN with iCaRL

Av. Av. Acc. (%) Av. Acc. (%)

isolet task1 624 78.4 81.0

 task2 664 78.8 44.2

 task3 731 79.8 30.8

 task4 759 80.1 25.3

letter-recognition task1 1428 88.0 33.7

 task2 1452 88.3 14.3

 task3 1517 89.0 10.2

 task4 1561 89.2 8.9

MNIST task1 4297 89.1 12.5

 task2 4469 89.3 14.0

 task3 4231 93.0 11.7

 task4 3490 93.5 11.4

optdigits task1 116 91.7 79.4

 task2 125 91.8 49.7

 task3 132 93.1 36.8

 task4 137 93.3 36.3

pendigits task1 200 92.1 77.0

 task2 210 92.5 52.5

 task3 228 92.9 35.0

 task4 226 93.4 35.8

sat task1 207 73.5 59.2

 task2 264 74.6 51.0

 task3 284 75.4 52.4

 task4 287 77.0 37.8

Nh

qeios.com doi.org/10.32388/Y5GZF3 13

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

Dataset Tasks

CS-PNN DNN with iCaRL

Av. Av. Acc. (%) Av. Acc. (%)

segmentation task1 31 78.8 35.5

 task2 32 78.7 26.9

 task3 38 80.2 22.8

 task4 41 82.3 36.8

Table 3. Summary of the simulation results obtained at each final stage of the CIL tasks

Nh

qeios.com doi.org/10.32388/Y5GZF3 14

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

Figure 3. Transition of the number of RBFs (averaged) generated within the CS-PNN for the CIL tasks

using the seven datasets: a) isolet, b) letter-recognition, c) MNIST, d) optdigits, e) pendigits, f) sat, and g)

segmentation.

Although the iCaRL’s classification rates were higher than the CS-PNN at each task’s first partial data

presentations, they dropped quickly during the simulations. This quick drop is outstanding, especially

where multiple classes were added as the CIL tasks proceeded (i.e., for tasks 2-4), as shown in Figure 2

and Table 3. On the other hand, the performance degradation remained relatively small overall for the

CS-PNN compared to the iCaRL for all the cases. For the CS-PNN, the number of RBFs accommodated

qeios.com doi.org/10.32388/Y5GZF3 15

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

constantly increased during the CIL tasks for each case (except for the MNIST), as shown in Figure 3,

but remained smaller than that of the standard classification tasks at all the final stages (cf. Tables 2

and 3). Also, the comparison between Tables 2 and 3 reveals that the performance for the final stages,

i.e., where all the classes were learned, was uniformly inferior to that for the standard tasks. These

observations imply the inherent difficulty of performing the CIL tasks compared with the standard

ones.

Nevertheless, Table 3 shows that the CS-PNN’s performance gradually improved as the number of

classes available for each task increased. It indicates that the more classes become available, the more

the CS-PNN can better estimate the pattern space. In contrast to the CS-PNN, the performance

obtained using the iCaRL degraded with the increasing number of classes per task; the performance

degradation was getting severe at later tasks, as shown in Figure 2. This indicates that the DNN trained

using the iCaRL failed to track the varying pattern space effectively and still was not able to avoid the

catastrophic forgetting.

3.3. Continuous Multi-Class Unlearning and Incremental Learning Tasks

In the simulation study, another scenario was considered, where unlearning and incremental learning

tasks are subsequently and repetitively imposed on the CS-PNN, namely continuous unlearning and

incremental learning (CUIL). Although a variety of CUIL tasks can be devised, we restricted to the

following simulation setup in this work and investigated the impact on the performance under a

dynamically varying condition:

1. Initial setup: construct a CS-PNN using an entire training dataset (i.e., containing all the training

data for all the classes) by applying Algorithm 1. Test it (Algorithm 4).;

2. For to do:

1. Unlearn the classes arbitrarily chosen from the CS-PNN (Algorithm 2) and test it using

an unknown dataset for all the remaining classes (Algorithm 4);

2. Perform a CIL task over the classes unlearned in the previous sub-step (i.e., performing

the reconstruction by applying Algorithm 1) and test the reconstructed CS-PNN using an

unknown dataset for all the remaining plus the classes (Algorithm 4);

In the simulation study, , and the number of classes for each unlearning stage/CIL was

varied according to the setup:

i = 1 Nds

Nul

Nul

Nul

= 4Nds Nul

= floor (/j) ,Nul Nc (7)

qeios.com doi.org/10.32388/Y5GZF3 16

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

where and and the function floor() returns the largest integer given a scalar . The setting

by (7) then determines the amount of structural change imposed on the CS-PNN during the CUIL

tasks; i.e., the setting with can cause a dramatic change in the network structure, and (about)

half of the classes will be unloaded from the network and added again later.

Note that, with the simulation setup above, the resultant network configuration (i.e., in terms of both

the centroid vectors and the number of hidden layer units) obtained at each iteration will differ from

the previous one, even though the number of classes accommodated within the CS-PNN returns to the

one in the initial setup by reusing the original training dataset.

Figures 4 and 5 show the simulation results of the CUIL tasks using the same seven datasets as used

for the CIL tasks described in the previous subsection.

j = 2, 3, 4 x x

j = 2

qeios.com doi.org/10.32388/Y5GZF3 17

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

Figure 4. Transition of the classification accuracy (averaged) for the CUIL tasks using the seven datasets:

a) isolet, b) letter-recognition, c) MNIST, d) optdigits, e) pendigits, f) sat, and g) segmentation.

qeios.com doi.org/10.32388/Y5GZF3 18

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

Figure 5. Transition of the number of RBFs (averaged) generated within the CS-PNN for the CUIL tasks

using the seven datasets: a) isolet, b) letter-recognition, c) MNIST, d) optdigits, e) pendigits, f) sat, and g)

segmentation.

In these figures, the label on the -axis ’Ini.’ corresponds to the result obtained using the CS-PNN

constructed with the whole training dataset (i.e., corresponding to the ‘Initial setup’ in the above),

whereas the labels, such as ’2U’ and ’2C’, denote those obtained after performing unlearning and a CIL

at iteration , respectively. Similar to Figures 2 and 3, the results shown in Figures 4 and 5 are

those averaged over ten different runs, each randomly shuffling the class data, respectively.

x

i = 2

qeios.com doi.org/10.32388/Y5GZF3 19

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

As shown in Figure 4, the classification accuracy was constantly improved after each unlearning stage

for all the cases, and the fluctuation in the classification accuracies between each unlearning and CIL

stage became smaller with increasing the value . These observations may not correspond to the

inherent nature of the CS-PNN acting as a pattern classifier but rather reflect that separating the

entire pattern space was more straightforward with fewer classes.

On the other hand, the difference in the number of RBFs within the CS-PNN became more significant

between these stages as the number of classes accommodated/unlearned increased, as in Figure 5; the

number of RBFs was increased according to the degree of complexity in the pattern space to cover. It is

interesting to note, as shown in Figure 5, that the ratio of the number of RBFs after performing a CIL

to that before it roughly coincides with that of to .

While a large discrepancy was observed in the number of RBFs between class unlearning and CIL

stages, as in Figure 5, the classification accuracy overall varied relatively little between the two stages,

as in Figure 4. In other words, the CS-PNN was able to cope reasonably well with the CUIL situations.

However, the classification accuracies at the last stage (i.e., at iteration) for the a) isolet and f)

sat cases considerably dropped from the beginning of the task, while the other five remained almost

the same. Therefore, it is considered that the pattern space separation for these two cases was more

challenging than the other five.

4. Conclusion

In this paper, a novel approach to pattern classification based on compact-sized PNN capable of both

class incremental learning and unlearning has been proposed. Unlike many existing approaches, the

training of the proposed CS-PNN does not require any hyperparameter tuning in advance or iterative

network parameter approximation but is carried out by applying a simple, data-driven

construction/reconstruction algorithm. The network is dynamically reconfigured during the

unlearning and incremental training stages; both the hidden and output layer units flexibly vary

depending upon the situation. This flexible network structure reconfiguration benefits from the

inherent locality nature of the PNN model.

In the simulation study, the performance of the proposed CS-PNN approach has been evaluated under

three different task scenarios, i.e., i) standard classification, ii) class incremental learning, and iii)

continuous multi-class unlearning and incremental learning tasks.

j

1 1 − 1/j

i = 4

qeios.com doi.org/10.32388/Y5GZF3 20

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

For scenario i), it has been shown that the CS-PNN can yield a reasonable classification performance,

while the number of RBFs accommodated within the network is much less than that of the original

PNN approach. In contrast, the overall performance was more or less comparable to that obtained

using DNNs, though the DNNs could attain it with a smaller number of hidden layer units. Despite this,

the analytical study[12] suggests that implementing it in a parallel computing environment can

alleviate the drawbacks inherent to the PNN models in the reference (i.e., testing) mode, provided that

a sufficient memory resource is available for the RBFs; the computation time in the testing mode in

the parallel setup can be as fast as that of a DNN with a fewer number of the hidden units, which is,

therefore, currently under investigation for the CS-PNN case.

On the other hand, the DNNs did not work sufficiently well for ii); the DNN trained using the iCaRL

significantly degraded with an increasing number of new classes in the CIL situations, probably

showing the catastrophic forgetting phenomenon. In contrast, the CS-PNN using the proposed

reconstruction scheme did not suffer from such a problem, and a reasonable classification

performance at each task was maintained. Moreover, scenario iii) has shown that the CS-PNN can

perform multiple subsequent class unlearning and incremental learning tasks without manipulating

hyperparameters nor fiddling with other algorithm- and/or model-specific issues, unlike many other

existing artificial neural network models. Further, the empirical evidence given in this work supports

the promising vision that the CS-PNN can provide a rapid and flexible pattern recognition engine for

developing higher-level intelligent processing systems.

Future work is directed to investigate cases with more classes as well as larger databases than those

used in this study.

References

1. ^LeCun Y, Bengio Y, Hinton G (2015). "Deep learning". Nature. 521: 436–444.

2. ^Schmidhuber J (2015). "Deep learning in neural networks: an overview". Neural Networks. 61: 85–117.

3. ^Rumelhart DE, Hinton GE, Williams RJ (1986). "Learning internal representations by error propagatio

n." In: Rumelhart DE, McClelland JL, editors. Parallel Distributed Processing, vol. 1, pp. 318–362. MIT Pr

ess.

4. ^McCloskey M, Cohen NJ (1989). "Catastrophic interference in connectionist networks: The sequential le

arning problem". Psychology of Learning and Motivation. 24: 109–165.

qeios.com doi.org/10.32388/Y5GZF3 21

https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

5. ^Hetherington P (1989). "Is there 'catastrophic interference' in connectionist networks?" Annual Conf. C

ognitive Science Society. 26–33.

6. a, bSylvestre-Alivise R, Alexander K, Georg S, Christoph HL (2017). "iCaRL: Incremental classifier and re

presentation learning". Proc IEEE Conf Computer Vision and Pattern Recognition. 2001–2010.

7. ^Bourtoule L, Chandrasekaran V, Choquette-Choo AC, Jia H, Travers A, Zhang B, Lie D, Papernot N (202

1). "Machine unlearning". Proc. 2021 IEEE Symp. Security and Privacy (SP). 141: 141–159.

8. ^Kodge S, Saha G, Roy K (2023). "Deep unlearning: fast and efficient training - free approach to control

led forgetting". arXiv:2312.00761v2 [cs.LG].

9. ^Tarun AK, Chundawat VS, Mandal M, Kankanhalli M (2023). "Fast yet effective machine unlearning".

to appear in the IEEE Trans. Neural Networks and Learning Systems.

10. a, bSpecht DF (1990). "Probabilistic neural networks". Neural Networks. 3: 109–118.

11. ^Hoya T (2003). "On the capability of accommodating new classes within probabilistic neural network

s". IEEE Transactions on Neural Networks. 14 (2): 450–453.

12. a, b, cTakahashi K, Morita S, Hoya T (2022). "Analytical comparison between the pattern classifiers base

d upon a multilayered perceptron and probabilistic neural network in parallel implementation". Proc. I

nt. Conf. Artificial Neural Networks (ICANN-2022): Lecture Notes in Computer Science. 13531: 544–555.

13. a, b, c, d, e, fMorita S, Iguchi H, Hoya T (2023). "A class incremental learning algorithm for a compact-si

zed probabilistic neural network and its empirical comparison with multilayered perceptron neural net

works". Proc. Asian Conf. Pattern Recognition (ACPR-2023): Lecture Notes in Computer Science. Spring

er-Verlag. 14406: 288–301.

14. ^Broomhead DS, Lowe D (1988). "Multivariable functional interpolation and adaptive networks". Comp

lex Systems. 2: 321–355.

15. ^MacQueen JB (1967). "Some methods for classification and analysis of multivariate observations." In:

5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297.

16. a, bHoya T, Constantinides AG (1998). "A heuristic pattern correction scheme for GRNNs and its applicati

on to speech recognition". Proc. IEEE Workshop - NNSP'98. 351–359.

17. ^Dua D, Graff C (2023). "UCI machine learning repository". Univ. California Irvine, Irvine, CA. http://arc

hive.ics.uci.edu/ml last accessed 2023/05/29.

18. ^LeCun Y, Cortes C, Burges CJC. "The MNIST database." http://yann.lecun.com/exdb/mnist/ last accesse

d 2021/08/19.

qeios.com doi.org/10.32388/Y5GZF3 22

https://arxiv.org/abs/2312.00761v2
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://yann.lecun.com/exdb/mnist/
https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

19. ^Kingma D, Lei Ba J (2015). "Adam: a method for stochastic optimization". Proc. 3rd Int. Conf. Learning

Representations, San Diego. arXiv 1412.6980.

20. ^Masana M, Liu X, Twardowski B, Menta M, Bagdanov AD, van de Weijer J (2023). "Class-incremental l

earning: survey and performance evaluation on image classification". IEEE Trans Pattern Analysis and

Machine Intelligence. 45: 5513–5533.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/Y5GZF3 23

https://arxiv.org/abs/1412.6980
https://www.qeios.com/
https://doi.org/10.32388/Y5GZF3

