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Understanding the internal structure of scienti�c discourse is essential for tracking the evolution of

research topics and their conceptual interdependencies. However, existing approaches such as

dynamic topic modeling and neural topic models often fail to capture �ne-grained semantic shifts

among known concepts, or require substantial computational resources. Co-occurrence networks

offer a more interpretable alternative, but typically rely on correlation-based weights that lack metric

properties, preventing rigorous temporal comparison and topological interpretation.

To address this gap, we introduce a metric-based framework for analyzing the evolving structure of

concept networks in the scienti�c literature. Using 10,370 research articles (2010-2023) on

international security from JSTOR and PORTICO, we compute the normalized variation of information

(NVI) distances to construct annual concept networks with a well-de�ned geometric structure. We

then quantify semantic change using velocity matrices and extract major trends using Minimum

Spanning Tree (MST) analysis.

Our results reveal that conceptual shifts are concentrated in temporally localized hubs and are not

driven by co-occurrence frequency alone, but by contextual information and shared uncertainty

between concept distributions. By introducing a scalable, interpretable, and mathematically grounded

approach to tracking concept dynamics, this study contributes new tools for topic evolution analysis

and offers insight into the structural organization and recon�guration of knowledge over time.
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Introduction

Rapid accumulation of textual data—from scienti�c literature and policy documents to social media and

news—has driven extensive research into the dynamics of topic evolution. Advances in computational

linguistics and machine learning have facilitated the development of models capable of identifying and

tracking emerging trends over time. Among these, dynamic topic modeling (DTM)  [1]  has provided

valuable information on how themes emerge, peak, and decline, with applications in diverse disciplines.

For example,  [2]  applies DTM to analyze traf�c-related discussions, while  [3]  explores its role in

monitoring the exponential growth of academic literature. Roberts et al. [4]  introduced Structural Topic

Modeling (STM), which embeds document-level metadata directly into the generative process and has

been widely used in sociology, political science, and science studies to correlate topics with covariates.

Studies such as  [5][6]  use STM to examine policy discourse or media framing. In contrast to the

probabilistic weighting of the STM, our NVI network approach offers a purely metric-based

representation of the concept distances, facilitating explicit topological analyses without assuming

Dirichlet priors. Beyond topic modeling, hybrid approaches integrating static and dynamic models have

been used to examine the temporal and hierarchical structure of document collections  [7]. In addition,

context-sensitive models such as BERTopic have been used to track the evolution of public discourse, as

demonstrated in  [8], which analyzed the COVID-19 vaccination debates in Brazil. More advanced

technologies such as neural topic models (NTMs) offer even better scalability and �exibility without

requiring model-speci�c parameter derivations [9][10][11]. These developments underscore the increasing

importance of computational techniques in capturing the interplay between external events and evolving

research themes.

Recent work has also highlighted the persistent challenges in evaluating topic models, particularly with

respect to coherence and human interpretability. Tan and D’Souza (2025) propose using large language

models (LLMs) to bridge this gap, demonstrating that LLMs can serve as effective evaluators of topic

quality in diverse corpora [12].

Despite these advancements, the practical implementation of these tefchnologies remains challenging.

One of the primary obstacles is computational complexity – sequential dependencies between time

periods in DTM introduce additional parameters, signi�cantly increasing processing time and memory

requirements, particularly for large-scale corpora  [13]. Additionally, data sparsity in speci�c time slices

can lead to unstable topic distributions, making it dif�cult to track meaningful trends, especially for
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emerging topics with limited historical presence. Another key challenge is topic drift and instability,

where changes in word usage may re�ect shifts in vocabulary rather than true conceptual evolution.

Ensuring consistency in topic trajectories over time often requires post-processing techniques, such as

topic alignment or embedding-based transformations. Furthermore, determining the optimal

granularity for temporal segmentation is non-trivial: narrow time windows introduce excessive noise,

while broad intervals obscure signi�cant conceptual transitions. Overcoming these limitations requires

hybrid methodologies that integrate neural topic models, concept co-occurrence networks, and

embedding-based tracking to improve model robustness and interpretability.

Although DTM and NLM approaches are powerful in discovering new topics, there are many scenarios

where researchers or practitioners are more concerned with examining the internal dynamics of a known

topic. This is particularly relevant in �elds where a core vocabulary has already been established [14][15]. In

such cases, the primary objective is not to identify hidden structures across multiple topics but rather to

analyze how relationships between established concepts evolve over time.

To meet the requirements of smaller corpora, lower computational complexity, and improved

interpretability, co-occurrence networks provide a compelling alternative to topic modeling approaches.

These networks have long been used as a versatile tool for studying conceptual evolution within a well-

de�ned domain. They have been widely applied in �elds such as ecology and microbiome research [16][17],

bibliometrics [18], information science [19], arti�cial intelligence [20], and scienti�c discourse analysis [21].

By representing nodes (e.g., species, concepts, or terms) and edges (the strength of associations between

them), co-occurrence networks enable researchers to examine interactions that may re�ect underlying

conceptual relationships [22][23].

The same principles have been successfully applied to concept co-occurrence in text corpora, where these

networks provide a structured representation of how terms and ideas interrelate within a given domain.

Unlike topic modeling, which often produces high-level topic distributions, co-occurrence networks

capture direct contextual relationships between concepts, making them a valuable framework for

tracking the evolution of conceptual structures in the scienti�c literature [21][24]. Their ability to highlight

key associations within a prede�ned conceptual space makes them especially useful for researchers

interested in tracing the evolution of knowledge, detecting semantic shifts, and analyzing �eld-speci�c

discourse trends without the overhead of complex probabilistic models.
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The construction of co-occurrence networks requires appropriate weighting methods for edges, as these

directly in�uence the interpretation of network topology. Correlation-based metrics, such as Spearman’s

or Pearson’s correlation, are commonly used to generate co-occurrence matrices from text or abundance

data, forming the foundation of network edges [25][26]. However, these traditional methods often struggle

to capture higher-order dependencies in complex networks. To address this, more advanced techniques

such as Weighted Correlation Network Analysis (WCNA) help identify hub concepts by leveraging

topological overlap measures, which evaluate shared connections between nodes  [27][28]. Additionally,

SparCC (Sparse Correlations for Compositional Data) has been developed to handle the unique challenges

posed by compositional datasets, ensuring a more robust estimation of associations in cases where

standard correlation measures may be unreliable [29].

Despite their utility, commonly used co-occurrence network weighting methods often lack metric

properties, such as the triangle inequality, which is fundamental in many mathematical and geometric

analyses [30]. The absence of a proper metric structure limits the applicability of quantitative techniques

that rely on well-de�ned distance measures and restricts the rigorous mathematical interpretation of

node relationships.

Incorporating a metric that satis�es the triangle inequality for data that reside in the information space

provides a more structured and interpretable representation of distances within the network. Speci�cally,

if two nodes are close to a central node, they cannot be very far from each other, ensuring a coherent and

logically consistent representation of conceptual proximity in information networks. This property

improves network topology analysis by improving the detection of clusters, hierarchical structures, and

interaction patterns. In contrast, alternative similarity measures often lack this geometric intuition,

leading to less interpretable and potentially misleading network structures.

Although generalizations of geometric and topological data analysis (TDA) methods have been developed

to extend Euclidean approaches to Bregman geometries, these methods require specialized

adaptations  [31]. Their integration into existing network analysis frameworks remains challenging, as

they often demand customized computational tools to align with Euclidean-based methodologies. By

incorporating metric-based approaches into co-occurrence network analysis, researchers can achieve

greater robustness and precision, enabling more accurate insights into community structures and the

evolution of conceptual relationships.
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To address the limitations of traditional co-occurrence-based similarity measures, we propose an

approach that uses the normalized Variation of Information (NVI) metric to compute pairwise distances

between concepts within a single known topic and track how these distances evolve over time. NVI is a

well-de�ned metric that satis�es the triangle inequality, ensuring a mathematically rigorous and

consistent measure of conceptual similarity and divergence [32]. Unlike simpler similarity measures that

rely purely on co-occurrence frequencies, NVI quanti�es the shared and unique information between

concept distributions, making it particularly suited for detecting subtle semantic shifts.

Originally developed for clustering validation and hierarchical clustering analysis, NVI has been widely

applied in information-theoretic comparisons of partitions and dynamic network analysis, providing a

robust framework for monitoring evolving relationships in dynamic datasets  [33][34][35]. Using these

properties, our approach offers a principled method for capturing conceptual drift, allowing for a

structured and interpretable analysis of the evolution of the topic over time.

For each consecutive time period, we construct a distance matrix that captures contextual differences

between concepts based on their distributional properties. By analyzing timely changes in these

matrices, we derive ”velocity matrices”, which quantify how quickly conceptual relationships evolve – a

perspective that complements existing topic modeling strategies. Unlike traditional methods that rely

solely on co-occurrence frequencies, VI-based distances account for the uncertainty and information loss

between concept distributions, offering a more nuanced representation of conceptual shifts.

This methodology allows for the identi�cation of ”fast-moving” concepts whose relationships with

others undergo the most dramatic structural shifts, thereby providing a �ne-grained view of topic

evolution beyond the aggregated signals that conventional modeling might overlook. Using VI’s metric

properties, we ensure logical consistency in measuring conceptual drift, leading to more interpretable

and robust insights into the dynamics of the knowledge network.

Although our approach intersects with topic modeling and co-occurrence-based methods, it is not

intended to replace or outperform them in identifying latent topic structures across large corpora.

Instead, we propose a complementary method that aims at analyzing the internal dynamics of a known

topic, where a core conceptual vocabulary is already de�ned. Our goal is not topic detection, but tracking

how relationships between selected concepts evolve over time, a question that traditional topic modeling

frameworks often leave unaddressed. We believe that our metric-based approach can be used in

conjunction with models like LDA or MDS: topic models can identify broad thematic areas, while our
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method can further analyze within-topic structure, conceptual convergence/divergence, and the

in�uence of knowledge producers on semantic dynamics across time.

We apply our metric-based approach to a dataset of 10,370 research articles (2010–2023) related to

”International Relations” from JSTOR and PORTICO, constructing evolving metric-based co-occurrence

networks to quantify how conceptual relationships evolve over time. Our analysis reveals that:

By computing velocity matrices and applying Minimum Spanning Tree (MST) analysis, we visualize

the drift of concepts over time and identify localized hubs where conceptual shifts tend to concentrate,

highlighting areas of emerging research focus.

These networks provide insights into how key concepts interact, how certain ideas become central

within the knowledge structure, and how conceptual relationships are recon�gured as academic

discourse evolves.

Our results support the idea that dynamic knowledge structures are anchored in stable conceptual hubs,

with major shifts occurring at speci�c points of high interaction, where conceptual relationships are

actively reshaped over time.

The remainder of this paper is structured as follows. Section Materials and Methods provides a

description of the dataset, detailing the data sources, pre-processing steps, and transformations applied

for analysis. The model description outlines the methodology behind our Variation of Information (VI)-

based distance matrices and velocity matrix computations. The Results section presents the application

of our metric-based co-occurrence network approach to the topics of cybersecurity, international

security, international relations, human rights, and sanctions, highlighting key conceptual changes and

structural patterns. Finally, we conclude with future research directions and discuss potential extensions

of this approach for broader scientometric and knowledge network applications.

Materials and methods

Database description

For our analysis, we used a corpus of 10,370 English-language documents obtained through JSTOR’s

Constellate platform (http://constellate.org), published between 2010 and 2024, with a primary focus on

International Security. Each JSTOR record includes the full text of the document along with associated
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metadata, such as title, authors, publisher, publication date, and the frequencies of all unigram, bigram,

and trigram occurrences in the title, abstract, and main text.

To construct a dictionary of concepts, we extracted keyword sections across all documents and identi�ed

the most frequent unique n-grams of each type, yielding a vocabulary of 46,287 keywords. A Google

BigQuery-based pipeline was used for data cleaning and duplication, ensuring high-quality document-

concept-frequency mappings. The processed dataset was then stored in a transactional MySQL database

for further analysis.

Model description

We use an information-theoretic metric called normalized Variation of Information (NVI), which was

originally introduced to measure the distance between partitions (or ’clusters’) in cluster analysis [32][36]

[37][38]. In our context, rather than comparing clusters, we apply NVI to quantify how different the

frequency distributions of two concepts are. Speci�cally, let   and   be random variables that represent

the frequency distributions of two distinct concepts in a set of documents. By interpreting these

distributions as analogous to clusters, NVI provides an intuitive measure of how far apart the concepts

are in terms of their observed frequencies and co-occurrence patterns. The metric is de�ned as [33]:

Here,    denotes their mutual information, and    together with    and    are the

joint and marginal Shannon entropies, respectively.

The metric   at any given    is a proper distance metric, satisfying the identity of indiscernibles,

symmetry, and the triangle inequality [32]. If two concepts share the same frequency distribution across

the corpus, then  ; if they never appear together in any document,  . The

properties of   as a metric are intuitive and robust for comparison. The triangle inequality, in particular,

implies that if two concepts (or clusters) are both close to a third, they cannot be too far apart from each

other. This property allows us to infer potential relationships between concepts, as proximity to a

common third concept suggests likely closeness. Such qualities make the VI metric a powerful tool for

exploring complex relationships and predicting links within a network of concepts. For consistent

comparisons between different pairs of concepts, it is essential to use the same underlying corpus and

frequency domain. In particular, including zero occurrences    in the de�nitions of 

  and    ensures that every document and possible frequency count is considered,

X Y

d(X,Y ) = nV I(X,Y ) = = = 1 − .
V I(X,Y )

H(X,Y )

H(X) + H(Y ) − 2M(X,Y )

H(X,Y )

M(X,Y )

H(X,Y )
(1)

M(X,Y ) H(X,Y ) H(X) H(Y )

d(X,Y ) t

d(X,Y ) = 0 d(X,Y ) = 1

d

(k,m = 0)

M(X,Y ) H(X,Y )
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preserving a common probability normalization. Otherwise, two pairs of concepts might both produce 

—one pair restricted to a handful of documents, the other spanning many more—yet the

results would differ in their statistical signi�cance if not measured on the same scale. By incorporating 

 as part of the distribution, we maintain a uniform basis to calculate   between all pairs

of concepts, allowing fair and interpretable comparisons within a document corpus of size  .

The frequency distributions of concepts are changing over time as new documents emerge. To account

for this, let    be the time-dependent probability that a concept    that appears in the 

 documents exactly   times given a total corpus of size   selected over a period of time  .

Then the mutual information   and the joint entropy   become time dependent and

can be written as [36][37]:

where    and    (respectively  )

represent the joint and marginal probability distributions of   and   at time  , respectively.

Having the selected collection of concepts obtained from LDA or with expert-provided manual selection

of the relevant collection of keywords that represents a topic of interest, we can calculate the pairwise

symmetric distance matrix with elements    representing distances between the

selected collection of concepts, which encapsulates information about the topological properties and

complexity of the corresponding topic knowledge network. Our �ndings show that temporal changes in

topic pairwise distances,   driven by changes in the number of relevant documents for each pair of

concepts expressed in terms of related velocity matrices, allow a granular study of the temporal evolution

of the network.

The relative velocity matrix is derived by taking the differences between the elements of the distance

matrices at various times  , where  . Using a �xed time interval   of one year, noise

and computational demands are minimized. For ease of notation, we denote    by 1. To maintain

comparability across varying scales of distance values, we suggest to compute the relative symmetric

difference as the following ratio for each entry in the velocity matrix:

d(X,Y ) = 0

(k,m = 0) d(X,Y )

N

P ( , t) =xk
(k,t)Nc

N(t)
c

(t)Nc k N(t) + tt0

M(X,Y , t) H(X,Y , t)

M(X,Y , t) = P ( , , t) ( ),∑
k,m=0

∞

xk ym log2

P ( , , t)xk ym

P ( , t)P ( , t)xk ym
(2)

H(X,Y , t) = − P ( , , t) (P ( , , t)),∑
k,m=0

∞

xk ym log2 xk ym (3)

P ( , , t)xk ym P ( , t) = P ( , , t)xk ∑ym
xk ym P ( , t) = P ( , , t)ym ∑xk

xk ym

X Y t

d( , ) ≡ =Xi Yj dij dji

Δd/Δt

tn n ∈ Z Δt = −tn+1 tn

Δt

= .vij
−d

tn+1
ij dtnij

+d
tn+1
ij dtnij

(4)
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The resulting relative ”velocity” matrix may contain both positive and negative elements, re�ecting the

increasing or decreasing proportional weight of documents that mention both concepts across successive

time slices. A positive value indicates that the relative occurrence of co-mentions is decreasing, leading to

an increasing conceptual distance, while a negative value suggests that co-mentions are becoming more

frequent, reducing the distance between concepts. In other words, if the relative number of such

documents increases, the conceptual distance decreases, indicating stronger topic convergence.

Conversely, if the relative number of co-mentions declines, the conceptual distance grows, signifying

topic divergence.

We represent the velocity matrix as the sum of two components, each containing elements of the same

sign: one corresponding to increasing proximity (negative values) and the other to increasing divergence

(positive values). By computing a Minimum Spanning Tree (MST) separately for these two components,

we can identify the most dynamic and in�uential connections within the network of concepts at each

time step. The smallest negative component extracted via MST highlights the strongest conceptual

convergences, where concepts become more closely related, while the largest positive components reveal

divergent subtopics whose components are moving further apart.

In the following section, we apply our model to analyze the dynamics of the topics related to

International Relations discipline.

Results and discussion

To analyze the evolution of the topic within the conceptual network, we �rst extract a subset of concepts

closely related to a given seed concept based on the normalized Variation of Information (NVI) metric,

considering all available documents in our data set. This subset is then de�ned as a topic, named after the

seed concept.

In this approach, the topic size is determined by the degree centrality of the seed concept within the

entire network, subject to a cutoff threshold applied to the distance measure between the seed concept

and all other concepts in the network. Since most seed concepts have a relatively limited number of direct

associations compared to the entire network, this method enables a more focused and computationally

ef�cient analysis while preserving meaningful conceptual relationships.

In practice, the collection of concepts associated with a given topic is constructed through a systematic

�ltering procedure. The selection process involves three key steps:
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Step 1: De�ne the Relevant Document Set

Iterate through the document corpus.

Identify and select documents where the seed concept appears at least   times ( ), where   is a

frequency threshold for the term.

Store these selected documents as the document set .

Step 2: Identify Concept Candidates

Within document set , extract all distinct occurring concepts.

Retain only those concepts that appear in at least in    of documents in  , ensuring statistical

signi�cance.

Store these selected terms in a concept set .

Step 3: Filter Concepts by Distance to the Seed Concept

Compute the NVI distance  for each candidate concept   in  .

Apply a distance threshold  , retaining only those concepts with  .

The resulting �ltered set represents the topic-speci�c conceptual network.

The �nal selection process ensures that only concepts with strong thematic and statistical relevance to

the seed concept are included in the analysis. This �ltered subset is used to study topic evolution,

structural properties, and interaction patterns within the conceptual network.

It is worth noting that topic concepts can be selected using various alternative approaches, as discussed

in the Introduction. For example, LDA or other topic modeling techniques can be employed to extract

relevant concepts in a data-driven manner. Additionally, expert-driven methods, such as domain-speci�c

taxonomies or manual curation, offer another way to de�ne topic boundaries. However, since the

primary objective of this study is not to develop a robust topic extraction method that is comparable in

ef�ciency to LDA or expert-based approaches, we adopted a simpli�ed �ltering protocol. This protocol

allows us to select concepts based on their co-occurrence structure and study the dynamics within the

selected cloud of concepts, focusing on their evolving relationships over time.

Table  1 presents the seed concepts along with the top 20 related concepts extracted at the frequency

threshold   for the seed concept, identi�ed based on their distance NVI from the seed concept in the

data set at 2024. Furthermore, we specify the protocol parameters used for the selection of concepts,

k k > 1 k

D

D

n% D

C

d(Seed Concept, )cj cj C

b d < b

k = 2
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including the document occurrence threshold ( ) and the distance cutoff ( ), which de�ne the

inclusion criteria for related concepts.

Seed Concept Related Concepts
Protocol

Parameters

international

security

international relations, international affairs, security, terrorism, security council,

national security, weapons, securitization, afghanistan, threats, defence,

insecurity, terrorist attacks, attacks, con�icts, russia, combat, cooperation, cornell

university, terror, allies

international

relations

security, security dialogue, securitization, diplomacy, politics, cooperation,

terrorism, dialogue, national security, borders, cornell university, defence, treaty,

russia, human rights, regimes, agreements, threats, democracy, con�icts

sanctions

security council, compliance, russia, weapons, courts, violation, security, national

security, president, provisions, treaty, human rights, crimes, legislation,

cooperation, congress, of�cials, agreements, defence, detention, obligations,

terrorism 

climate change

global environmental, emissions, global climate, intergovernmental panel, global

warming, mitigation, ecosystem, adaptation, sustainability, conservation,

disasters, temperature, pollution, disaster, sustainable development, ecology,

scientists, livelihoods, agriculture 

cybersecurity

cybercrime, malware, cyberspace, hackers, critical infrastructure, arti�cial

intelligence, external security, internal security, counterterrorism, microsoft,

regulators, security threats, privacy, computer, vulnerabilities, countering,

terrorism, decisionmaking, homeland security, oversight

human rights

protection, refugee, detention, justice, security, violence, obligations, borders,

traf�cking, asylum seekers, violation, courts, victims, amnesty, high

commissioner, migration, migrants, immigrants, government, persecution

Table 1. Selected seed concepts, related concepts, and protocol parameters.

n% b

n = 5%,

b = 0.984

n = 5%,

b = 0.982

n = 5%,

b = 0.982

n = 5%,

b = 0.96

n = 5%,

b = 0.991

n = 5%,

b = 0.968
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The table presents selected seed concepts, their corresponding related concepts, and the protocol parameters used

for concept selection based on document occurrence threshold ( ), and NVI distance cutoff ( ).

To ensure that all concepts are clearly visible and their relationships traceable in the �gures, we adjust the

threshold    to select only the top 20 most relevant concepts. Although including more concepts could

provide a broader view of the network, it would also reduce the readability of the �gures. For a more

comprehensive perspective, we provide a Mathematica notebook to obtain plots with an extended set of

related concepts in the supplementary materials (see Data Availability section).

Concept contextual evolution in cybersecurity topic

In Fig. 1, we present a bubble-�ow graph illustrating the converging (red) and diverging (blue)

connections between concepts related to the concept of ’cybersecurity’ as a seed concept in our topic

selection protocol. This visualization captures the dynamical evolution of the conceptual landscape,

allowing us to track how key concepts emerge, strengthen, or weaken over time.

Figure 1.Concept Evolution in Cybersecurity: Converging and Diverging Topics Over Time. The bubble-�ow

graph illustrates the evolution of topics related to the cybersecurity seed concept. The visualization highlights

topic convergence (red curves and bubbles), where concepts move closer to a hub concept in terms of the 

 metric, and topic divergence (blue curves and bubbles), where concepts become less related to the hub

concept over time. The size of the bubbles re�ects the degree centrality of each node in the MST-based topic

network.

n% b

b

d
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To construct this representation, we compute the velocity matrix at each yearly time step, which

quanti�es the changes in conceptual distances between concepts related to cybersecurity over

consecutive years. The velocity matrix is then decomposed into its positive and negative components,

corresponding to concepts that move closer together (converging) and those that move further apart

(diverging).

To extract the most structurally signi�cant conceptual shifts, we apply the MST algorithm separately to

the positive and negative components of the velocity matrix at each time slice. This allows us to identify

the most in�uential conceptual transitions, �lter out minor �uctuations, and highlight the dominant

patterns of conceptual change.

The bubble sizes in the graph represent the degree centrality of each concept within the MST, indicating

its relative in�uence on the shaping of the cybersecurity domain at each time step. The �owing edges,

represented as smooth Bézier curves, illustrate the continuity or disruption of conceptual relationships

over time.

Red curves indicate intensifying connections, suggesting the emergence or reinforcement of conceptual

ties.

Blue curves denote weakening relationships, capturing the divergence or fading in�uence of concepts

over successive years.

This visualization enables us to distinguish between stable, long-term conceptual anchors and ephemeral

trends, offering insight into the mechanisms driving:

Topic convergence – where previously distinct concepts become more closely linked.

Topic divergence – where formerly related concepts gradually lose their association.

The temporal convergence of concepts toward ’cybersecurity’ reveals distinct waves of thematic

realignment that correspond to major geopolitical, technological, and regulatory events. Between 2013

and 2014, the variation of information distance signi�cantly decreased between ’cybersecurity’ and

terms such as ’critical infrastructure’ and ’counterterrorism’, re�ecting heightened concern about

national resilience in the wake of the Snowden revelations [39] and renewed discourse on infrastructure

protection after Stuxnet  [40]. In 2015–2016, the focus shifts to ’cybercrime’, ’malware’ and ’arti�cial

intelligence’, re�ecting the attention of the OPM data breach  [41], Sony Pictures hack  [42], and concerns

over the potential for AI to be used in disinformation campaigns during the 2016 US election  [43]. The
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2016–2017 period is marked by a convergence with ’hackers’ and ’external security’, which aligns with the

rise of nation-state cyber threats [44]. By 2017–2018, the conceptual space expands to include ’cyberspace’,

’privacy’, and ’security threats’, consistent with WannaCry  [45]  and NotPetya  [46]  ransomware outbreaks

and the global push to implement the General Data Protection Regulation (GDPR) of the EU  [47]. The

2018–2019 window reinforces the role of cybersecurity in internal security and antiterrorism strategies,

amid ongoing concern about online radicalization and surveillance infrastructure  [48]. The 2021–2022

period re�ects a shift toward institutional governance, with a growing emphasis on regulators and

infrastructure protection following the Colonial Pipeline ransomware attack  [49]  and the US Executive

Order to Improve Nation’s Cybersecurity [50]. Most recently, in 2022-2023, we observed convergence with

“Microsoft”, “AI” and “cyberspace,” highlighting the mainstreaming of generative AI technologies (e.g.,

ChatGPT)  [51][52], increased private sector cybersecurity partnerships  [53], and the dimension of cyber

warfare of the Russia-Ukraine con�ict [54].

These patterns are further reinforced by the observation that ’arti�cial intelligence’ itself emerges as a

local hub of conceptual convergence in 2014–2015 and again in 2019–2020. During 2014–2015, its

proximity to terms such as ’cyberspace’, ’privacy’ and ’decision making’ anticipates the growing

discourse on AI’s role in surveillance and algorithmic governance. By 2019–2020 and later, its

convergence with ’critical infrastructure’, ’homeland security’ and ’oversight’ re�ects increasing

regulatory scrutiny and recognition of AI’s strategic importance in both public-sector security and civil

society. These early and intermediate signals strengthen the conclusion that AI has been an evolving

point of integration across cybersecurity, governance, and geopolitics - well before its mainstream

visibility in 2022–2023.

The degree order of the nodes, as illustrated in Fig. 2, demonstrates a periodic increase and decrease in

the contextual proximity of both ’cybersecurity’ and ’arti�cial intelligence’ to other concepts within this

topic. These �uctuations suggest cycles of integration and differentiation, where new research areas

periodically become highly relevant before stabilizing or branching into distinct sub�elds. Such

structural changes in the network highlight how cybersecurity continuously evolves, incorporating new

paradigms, challenges, and interdisciplinary in�uences over time.
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Figure 2. Node order degree evolution for ’cybersecurity’ and ’arti�cial intelligence’ concepts. Evolution of

’cybersecurity’ and ’arti�cial intelligence’ node order degrees over 2012-2023 in MST knowledge network

related to ’cybersecurity’ topic.

The different sizes of the data set between consecutive time slices pose a potential challenge, particularly

when the data set expands while speci�c target concepts, for which we measure distance, are not

mentioned in newly added documents. As shown in Supporting information, in such cases, the distance 

  exhibits a systematic decrease over time due to the increasing dominance of probability    in

Eqs.  2 and 3. This effect may bias the estimation of mutual information, making it appear arti�cially

large, as the absence of concepts in newer documents skews the underlying probability distribution.

However, as demonstrated in Appendix A, the most signi�cant contribution to    originates from

documents in which concepts co-occur contributing to the joint probabilities  . The

in�uence of these relevant documents represents the fast changing component that contributes to the

dynamics of the NVI distance    compared to the slow and predictable contribution of the background

documents.

To ensure that our analysis captures the most signi�cant structural changes, we apply the Minimum

Spanning Tree (MST) algorithm to �lter meaningful distance variations. This approach assumes that the

dominant contributions to MST-selected distances originate primarily from relevant documents, while

the slow accumulation of background documents (which do not mention target concepts) has a negligible

effect on the network’s core structure. Additionally, reducing the time step used in the analysis, can

further minimize the slow-trend bias, particularly when the dataset grows rapidly. In such cases, �ner

temporal granularity can be advisable to better account for dataset expansion effects. Finally, the growth

d P (0, 0)

d

P (k > 0,m > 0)

d
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dynamics of the observed dataset can inform strategies for normalizing the distance  , allowing us to

re�ne the methodology for different dataset size distributions over time.

Conclusion

This study examines the structural evolution of topics in International Security through an information-

theoretic lens, providing empirical evidence of how concepts such as cybersecurity, climate change,

sanctions, human rights, and international security have evolved over time. By analyzing temporal

contextual proximity, we identify recurring patterns of conceptual convergence and divergence, revealing

how knowledge structures adapt to emerging research agendas and geopolitical developments. Our

analysis demonstrates that thematic clusters form, dissolve, and reorganize dynamically, re�ecting

broader transformations in policy discourse, academic priorities, and international relations scholarship.

Our �ndings con�rm that dataset expansion alone does not signi�cantly in�uence conceptual distance.

Instead, conceptual proximity is primarily dictated by co-occurrence patterns, the frequency with which

two concepts appear together in documents, rather than the sheer size of the dataset. The observed

relationships between mutual information, joint entropy, and document co-occurrence frequencies

reinforce this conclusion, underscoring the importance of relational dynamics over corpus size in

shaping conceptual structures. By applying velocity matrices and the Minimum Spanning Tree (MST)

algorithm, we quantify how concepts dynamically cluster, fragment, and restructure, offering a �ne-

grained quantitative perspective on knowledge evolution within the �eld of International Relations.

The methodological framework presented in this study offers a systematic approach to tracking topic

evolution in scienti�c research. Future research could expand upon this work by integrating external

geopolitical and regulatory factors to assess their impact on topic dynamics. Furthermore, incorporating

AI-driven predictive modeling could enhance the ability to anticipate topic trajectories, enabling the early

identi�cation of emerging research trends.

Our �ndings contribute to a broader understanding of the self-organizing nature of international

relations research, demonstrating how knowledge structures adapt and evolve in response to

technological advancements, policy transformations, and global challenges. As interrelated issues such

as cybersecurity, human rights, and climate change continue to shape international discourse, tracking

their structural evolution will be crucial for researchers, policymakers, and practitioners seeking to

navigate and respond to complex geopolitical and academic landscapes.

d
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Supporting information

Correction to distances from changing data set size. We want to answer the question: Do we have to take

into account the growing size of the dataset    when comparing the distances    for the

same pair of target concepts    and    but for different time frames (that is, when 

 for   and  )?

To answer this question, we have to consider two cases: �rst, when   does not have any documents

where the target concepts are mentioned (that is,    and  ); and second, when 

 and   so concepts appear in the new documents.

In Fig. S1, we calculate the dependence of    when    continuously increases from an initial value 

, while the newly added documents do not mention the target concepts. In this scenario, the

probability  , which represents the fraction of documents in which neither of the two concepts

appears, increases its relative weight in correspondence to other probabilities as the dataset grows. Since

these new documents contribute equally to both the numerator and the denominator of  , this

probability approaches asymptotically a higher value as   increases.

Conversely, all other probabilities    for  , representing the co-occurrence of concepts in

meaningful documents, are affected differently. The extra documents contribute only to the denominator

of these terms, effectively “reducing” their values. As a result, the mutual information and entropy

measures derived from these probabilities become increasingly “dominated by the growth of  ”,

which skews the calculated distance metrics over time.

We �nd that the distance   as a function of the size of the data set behaves following the model:

As we can see in Fig. S1, the model dependence obtained for a �xed value of the parameters 

  represents a slow and predictable behavior when    gradually decreases over time.

The rate of change in   is higher if a pair of concepts initially was closer to each other. At small  , the

function   can be approximated by the linear function (see Eq.(5)) with parameters   and 

. The parameter    shows a high sensitivity to changes in the number of ’relevant’

documents with non-zero frequencies (i.e. for which  ) for the target concepts. It increases if the

number of documents that mention both concepts is decreasing, which, as expected, drives the distance 

  (see Fig. S1b). And    is decreasing as the number of documents mentioning at least one of the

N(t) d(X < Y , t)

A B

N( ) − N( ) = ΔN > 0t2 t1 >t2 t1 = constt0

ΔN

Δ = 0NA Δ = 0NB

Δ > 0NA Δ > 0NB

d(N) N

= 10000N0

P (0, 0)

P (0, 0)

N

P (k,m) k,m > 0

P (0, 0)

d(N)

d(a,α, l;N) = (1 + α(logN + L)) ≃ b + if ΔN → 0.
a

logN

c

logN
(5)

a > 0,α > 0,L < 0 d

d ΔN

d(N) b = aα > 0

c = a + bL < 0 b

k,m > 0

d → 1 b
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concepts is decreasing (see Fig. S1c,d) while the number of documents where concepts co-occur is kept

constant. The parameter   denotes the slope of   as   increases, showing a weak dependence on the

variation in the number of relevant documents, and it is mainly a function of  .

c d(N) N

N
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Figure S1. Dependence of the Conceptual Distance   on Dataset Size for Different Document Removal

Strategies. For two target concept pairs –“Pair 1” (blue palette) and “Pair 2” (red palette) – the distance 

 is calculated over a range of data set sizes from   to  , with   increasing in steps

of  . In these experiments, only the number of documents with zero citation frequencies for the target

pair is increased. For each pair, three series of   data points are calculated and �tted with the model in

Eq. (5), corresponding to the following scenarios:1. Baseline: All relevant documents (that is, those with 

) are retained, with the baseline data shown as empty squares and the �tted model plotted as a

dashed curve.2. 20% Removal: At each step, 20% of the relevant documents are randomly removed from the

union of all papers that mention at least one of the target concepts, while the background (documents with

zero citations for the target pair) increases by  .3. 50% Removal: Similarly, 50% of the relevant

documents are randomly removed at each step (green points for Pair 1 and orange points for Pair 2).Each

sub�gure represents a different target for random document removal: sub�gure (a) shows removal from the

union of all papers mentioning either concept; sub�gure (b) shows removal from the intersection (i.e. only

those documents that mention both concepts); and sub�gures (c) and (d) show removal from the complement

(i.e. only those documents that mention a single concept from the target pair).To demonstrate that the

dynamics of the conceptual distance   for a given pair of concepts   and   is weakly in�uenced by the size of

the data set   and the increasing number of background documents with zero concept frequencies, and that

the primary driver of the decrease in conceptual distance is the number of documents mentioning both

concepts  , we present in Fig. S2 the time series for key metrics observed for multiple pairs of concepts in

the studied dataset. Key metrics include NVI distance  , mutual information, joint entropy, total size of the

d(N)

d(N) N = 10 000 N = 100 000 N

1 000

d(N)

k,m > 0

1 000

d A B

N

NAB

d
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dataset  , number of background documents  , the ratio of documents mentioning both concepts   to

the total size of the dataset, and the ratio of   to the sum of documents   mentioning only one

concept   or  .

N N00 NAB

NAB +NA NB

A B
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Figure S2. Dynamics of conceptual distance   and the growth effects of the data set Time series of key

metrics that illustrate the relationship between conceptual distance  , the size of the data set  , relevant

documents and the number of background documents  . The plots present the dynamics of the NVI

distance   between concepts   and  , their mutual information  , joint entropy  , total

dataset size  , the number of background documents   (documents that do not mention these concepts),

the ratio of documents mentioning both concepts   to the total dataset size, and the ratio of   to the

sum of documents mentioning only one of the concepts,  . The results indicate that while dataset

expansion alters global entropy-based measures, the conceptual distance is predominantly shaped by the

number of co-occurring mentions of the concepts, underscoring the role of shared contextual usage rather

than dataset size alone.The analysis of conceptual distance dynamics highlights that the expansion of the

dataset, as re�ected in the dynamics of   or   in Fig. S2, does not affect the behavior of the distance   in

the manner predicted by the model in Eq. 5 when only the number of background documents of type 

 increases. This �nding suggests that the conceptual distance is primarily dependent on the number of

documents in which the target concepts co-occur, which is evident from the behavior of the ratios 

 and  : as these ratios increase, the distance   decreases.Furthermore, the effect of

random variations on the number of relevant documents, as observed in Fig. S1, reinforces this conclusion.

The random removal of relevant documents affects the dynamics of   in a way that is consistent with its

dependence on the presence of concept co-occurrence, rather than merely on dataset size and the number of

background documents. These results collectively indicate that meaningful conceptual proximity is driven by

shared document contexts rather than by the absolute number of documents in the dataset.

d
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Figure S3. Evolution of the semantic proximity between concepts in the international relations topic. The

bubble-�ow graph illustrates the evolution of topics related to the ’International Relations’ seed concept. The

visualization highlights topic convergence (red curves and bubbles), where concepts move closer to a hub

concept in terms of the   metric, and topic divergence (blue curves and bubbles), where concepts become less

related to the hub concept over time. The size of the bubbles re�ects the degree centrality of each node in the

MST-based topic network.

d
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Figure S4. Evolution of the semantic proximity between concepts on the topic of climate change: Converging

and Diverging Topics Over Time. The bubble-�ow graph illustrates the evolution of topics related to the

’Climate change’ seed concept. The visualization highlights topic convergence (red curves and bubbles), where

concepts move closer to a hub concept in terms of the   metric, and topic divergence (blue curves and bubbles),

where concepts become less related to the hub concept over time. The size of the bubbles re�ects the degree

centrality of each node in the MST-based topic network.

d
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Figure S5. Evolution of the semantic proximity between concepts on the topic of international security:

Converging and Diverging Topics Over Time. The bubble-�ow graph illustrates the evolution of topics related

to the ’International Security’ seed concept. The visualization highlights topic convergence (red curves and

bubbles), where concepts move closer to a hub concept in terms of the   metric, and topic divergence (blue

curves and bubbles), where concepts become less related to the hub concept over time. The size of the bubbles

re�ects the degree centrality of each node in the MST-based topic network.

d
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Figure S7. Evolution of the semantic proximity between concepts in the security topic: Converging and

Diverging Topics Over Time. The bubble-�ow graph illustrates the evolution of topics related to the

’Security’ seed concept. The visualization highlights topic convergence (red curves and bubbles), where

concepts move closer to a hub concept in terms of the   metric, and topic divergence (blue curves and bubbles),

where concepts become less related to the hub concept over time. The size of the bubbles re�ects the degree

centrality of each node in the MST-based topic network.
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