Review of: "According to Nano molecular memory, there is a high potential for activity in this field"

Lucas Jeferson

1 Engineer Research and Development Center

Potential competing interests: No potential competing interests to declare.

Given the relatively large (physically speaking) storage devices we have now and the fact that we need gigabyte sizes in various areas, there is a high potential for activity in this field. Each quantum dot consists of a discrete ball of several hundred atoms that can have one of two magnetic states. This allows them to contain a single bit of information (zero or one), as is customary in machine computing. In conventional hard disks, the data bits must be spaced far enough apart that they do not overlap.

Quantum dots act as completely independent units that are not structurally connected, so they can become somewhat closer to each other. One of the new information storage tools is the use of nickel quantum dots in nanometer sizes, which are expected to be used to store terabytes of data. According to Nano molecular memory, there is a high potential for activity in this field. One of the goals of nanotechnology is to advance in the field of electronics and computer science, to make memories and chips with more capabilities and less cost. As explained above, achieving goals in this area will eliminate many defects in machines, especially memories and assemblers, which will be a huge revolution in the electronics industry in the field of nanotechnology. This allows them to contain a single bit of information (zero or one), as is customary in machine computing. In conventional hard disks, the data bits must be spaced far enough apart that they do not overlap. Quantum dots act as completely independent units that are not structurally connected, so they can become somewhat closer to each other. Quantum dots act as completely independent units. They are not structurally connected, so they can be somewhat closer to each other.

Conclusion:

Nickel nanoparticles (Ni_nanoparticle) are strong conductors of electric current and their surface is shiny and polished. This element belongs to the group of iron and cobalt elements.

References


7. ^Chad Allen. (2024). Review of: "FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities". Qeios. doi:10.32388/h3qk7b.


9. ^Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption.". Qeios. doi:10.32388/z3oxov.


15. ^Chris Olsen. (2023). Review of: "The miniaturization of components in microelectronic systems and circuits has caused a significant growth of this industry in recent years". Qeios. doi:10.32388/s6klw5.

16. ^Alain Advich. (2023). Review of: "The speed of growth of this industry is such that with the smaller components, the number of transistors in the unit area of each semiconductor chip and nanochips has increased". Qeios. doi:10.32388/1fhmw2.


