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Abstract

We study Einstein’s gravity with negative cosmological constant
coupled to nonlinear electrodynamics proposed earlier. The metric
and mass functions and corrections to the Reissner–Nordström solu-
tion are obtained. Black hole solutions can have one or two horizons.
Thermodynamics and phase transitions of magnetically charged black
holes in Anti-de Sitter spacetime are investigated. The first law of
black hole thermodynamics is formulated and the generalized Smarr
relation is proofed. By calculating the Gibbs free energy and heat ca-
pacity we study the black hole stability. The Joule–Thomson expan-
sion is considered showing the cooling and heating phase transitions.

1 Introduction

Black holes behave as the thermodynamic systems [1, 2, 3] and it has the en-
tropy connected with surface area and surface gravity defines the temperature
[4, 5]. Black holes phase transitions occur in Anti-de Sitter (AdS) spacetime,
where the cosmological constant is negative [6]. It was discovered that gravity
in AdS spacetime is linked with the conformal field theory (the holographic
principle) [7] which has an application in condensed matter physics. In black
hole thermodynamics (in an extended phase space) the negative cosmological
constant being a thermodynamic pressure which is conjugated to a black hole
volume [8, 9, 10, 11]. In Einstein-AdS gravity coupled to nonlinear electrody-
namics (NED) (with coupling β) the constant β is conjugated to the vacuum
polarization. Black hole thermodynamics in Einstein-AdS gravity coupled to
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Born–Infeld electrodynamics was considered by [12, 13, 14, 15, 16, 17, 18] (see
also [19, 20]). Born–Infeld-AdS thermodynamics of black holes in extended
phase space was studied in [21, 22, 23, 24, 25]. The Joule–Thomson expansion
of black holes was investigated in [26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

In section 2 we obtain the metric function and its asymptotic with cor-
rections to the Reissner–Nordström solution. The first law of black hole
thermodynamics in the extended phase space is studied in section 3. We cal-
culate the thermodynamic magnetic potential and the thermodynamic con-
jugate to the NED coupling (the vacuum polarization). We show that the
generalized Smarr relation holds. In section 4, the critical temperature and
critical pressure are obtained. By analysing the Gibbs free energy and heat
capacity we show that phase transitions take place. It is demonstrated that
black hole thermodynamics is similar to Van der Waals thermodynamics.
The Joule–Thomson adiabatic expansion is studied in section 5. The Joule–
Thomson coefficient and the inversion temperature are calculated. Section 6
is a summary.

We use the units c = h̄ = 1, kB = 1.

2 Einstein-AdS black hole solution

The Einstein-AdS action with the matter is given by

I =
∫

d4x
√
−g

(
R− 2Λ

16πGN

+ L(F)
)
, (1)

where Λ = −3/l2 is negative cosmological constant with l being the AdS
radius. Here, we use the matter Lagrangian in the form of NED [36]

L(F) = − F
4π (1 + (2βF)3/4)

, (2)

with F = F µνFµν/4 = (B2 − E2)/2, where E and B are the electric and
magnetic fields, respectively. As β → 0 Lagrangian (2) becomes the Maxwell
Lagrangian LM = −F/(4π). From action (1) one obtains the field equations

Rµν −
1

2
gµνR + Λgµν = 8πGNTµν , (3)

∂µ
(√

−gLFF
µν
)
= 0, (4)
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where LF = ∂L(F)/∂F . The energy-momentum tensor reads

Tµν = FµρF
ρ

ν LF + gµνL (F) . (5)

The line element squared with spherical symmetry is

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2

(
dθ2 + sin2(θ)dϕ2

)
. (6)

We treat the black hole as a magnetic monopole with the magnetic field
B = q/r2, where q is the magnetic charge. The metric function is given by
[37]

f(r) = 1− 2m(r)GN

r
, (7)

with the mass function

m(r) = m0 + 4π
∫ r

0
ρ(r)r2dr. (8)

Here, m0 an integration constant (the Schwarzschild mass), and ρ is the
energy density. Making use of Eq. (5) the magnetic energy density plus
energy density due to AdS spacetime is given by

ρ =
q2

8πr (r3 + (βq2)3/4)
− 3

8πGN l2
. (9)

From Eqs. (8) and (9) one obtains the mass function

m(r) = m0 +
q3/2

12 4
√
β

[
ln

r2 − 4
√
βq2r +

√
βq

(r + 4
√
βq2)2

−2
√
3 arctan

(
1− 2r/ 4

√
βq2√

3

)
+

π√
3

]
− r3

2GN l2
. (10)

The magnetic energy of the black hole becomes

mM =
q2

2

∫ ∞

0

r

r3 + (βq2)3/4
dr =

πq3/2

3
√
3 4
√
β
. (11)

The magnetic energy, which can be considered as a magnetic mass, is finite.
Thus, the coupling β smoothes singularities. Making use of Eqs. (7) and
(10) we obtain the metric function

f(r) = 1− 2m0GN

r
− q3/2GN

6 4
√
βr

[
ln

r2 − 4
√
βq2r +

√
βq

(r + 4
√
βq2)2
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−2
√
3 arctan

(
1− 2r/ 4

√
βq2√

3

)
+

π√
3

]
+

r2

l2
. (12)

As r → 0, when the Schwarzschild mass is zero (m0 = 0), one finds

f(r) = 1−
GN

√
qr

2β3/4
+

r2

l2
+

GNr
4

5β3/2q
+O(r6). (13)

As a result, the black hole is regular, f(0) = 1. Making use of Eq. (12)
(when Λ = 0) as r → ∞, we obtain

f(r) = 1− 2MGN

r
+

q2GN

r2
− q7/2β3/4GN

4r5
+O(r−6). (14)

We define M = m0+mM being the ADM mass. According to Eq. (14) black
holes have corrections to the Reissner–Nordström solution. When β = 0
the metric (14) becomes the Reissner–Nordström metric. The plot of metric
function (12) is depicted in Fig. 1 (at m0 = 0, GN = 1, l = 10). According to
Fig. 1 black holes may have one or two horizons. When coupling β increases
the event horizon radius is decreasing. If magnetic charge q is increasing, the
event horizon radius increases.

3 First law of black hole thermodynamics

We will consider the first law of black hole thermodynamics in extended phase
space, where the pressure is P = −Λ/(8π) [38, 39, 40, 41, 42] and coupling β
is a thermodynamic value. In this approach mass M is a chemical enthalpy
(M = U + PV with U being the internal energy). By using the Euler’s
dimensional analysis with GN = 1 [43], [38], we obtain dimensions as follows
[M ] = L, [S] = L2, [P ] = L−2, [J ] = L2, [q] = L, [β] = L2. Then one finds

M = 2S
∂M

∂S
− 2P

∂M

∂P
+ 2J

∂M

∂J
+ q

∂M

∂q
+ 2β

∂M

∂β
. (15)

The thermodynamic conjugate to coupling β is the vacuum polarization [11]
B = ∂M/∂β. The black hole entropy S, volume V and pressure P are defined
as follows

S = πr2+, V =
4

3
πr3+, P = − Λ

8π
=

3

8πl2
. (16)
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Figure 1: The function f(r) at m0 = 0, GN = 1, l = 10. Figure 1 shows
that black holes could have one or two horizons. In accordance with subplot
1, if coupling β is increasing the event horizon radius decreases. According
to subplot 2 when magnetic charge q increases the event horizon radius also
increases.

Making use of Eq. (12) for non-rotating black holes we obtain

M(r+) =
r+
2GN

+
r3+

2GN l2
+

πq3/2

4
√
3 4
√
β
− q3/2g(r+)

12 4
√
β

,

g(r+) = ln
r2+ − 4

√
βq2r+ +

√
βq

(r+ + 4
√
βq2)2

− 2
√
3 arctan

(
1− 2r+/

4
√
βq2√

3

)
, (17)

where r+ is the event horizon radius, f(r+) = 0. With the help of Eq. (17)
we find

dM(r+) =

[
1

2
+

3r2+
2l2

− q2r+
2(r3+ + (βq2)3/4)

]
dr+ −

r3+
l3
dl

+

[
−
√
qg(r+)

8β1/4
+

√
3qπ

8β1/4
+

qr2+
4[r3+ + (βq2)3/4]

]
dq
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+

[
q3/2g(r+)

48β5/4
− q3/2π

16
√
3β5/4

+
q2r2+

8β[r3+ + (βq2)3/4]

]
dβ. (18)

The Hawking temperature is given by

T =
f ′(r)|r=r+

4π
, (19)

where f ′(r) = ∂f(r)/∂r. By virtue of Eqs. (12), (19), one obtains the
Hawking temperature

T =
1

4π

[
1

r+
+

3r+
l2

− q2

r3+ + (βq2)3/4

]
. (20)

Equation (20) is converted into the Hawking temperature of Maxwell-AdS
black hole as β → 0. Making use Eqs. (15), (18) and (20) we find the first
law of black hole thermodynamics

dM = TdS + V dP + Φdq + Bdβ. (21)

Comparing Eq. (18) with (21) we obtain the magnetic potential Φ and the
vacuum polarization B

Φ = −
√
qg(r+)

8β1/4
+

√
3qπ

8β1/4
+

qr2+
4[r3+ + (βq2)3/4]

,

B =
q3/2g(r+)

48β5/4
− q3/2π

16
√
3β5/4

+
q2r2+

8β[r3+ + (βq2)3/4]
. (22)

The plots of Φ and B vs r+ are depicted in Fig. 2. According to Fig. 2 (sub-
plot 1) when parameter β increases the magnetic potential Φ is decreasing.
As r+ → ∞ the magnetic potential vanishes (Φ(∞) = 0), but at r+ = 0 Φ is
finite. Figure 2 (subplot 2) shows that at r+ = 0 the vacuum polarization is
finite and when r+ → ∞, B is zero (B(∞) = 0).

Making use of Eqs. (15), (16) and (22) one can verify that the generalized
Smarr relation

M = 2ST − 2PV + qΦ + 2βB (23)

holds.
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Figure 2: The functions Φ and B vs r+ at q = 1. The solid curve in subplot 1
is for β = 0.05, the dashed curve is for β = 0.2, and the dashed-doted curve
is for β = 0.5. It follows that the magnetic potential Φ is finite at r+ = 0 and
becomes zero at r+ → ∞. If coupling β is increasing the magnetic potential
decreases. The function B in subplot 2 vanishes as r+ → ∞ and is finite at
r+ = 0.

4 Thermodynamics of black hole

With the help of Eq. (20) one finds the black hole equation of state

P =
T

2r+
− 1

8πr2+
+

q2

8πr+[r3+ + (βq2)3/4]
. (24)

Equation (24) as β → 0 is converted into charged Maxwell-AdS black hole
equation of state [41]. Equation (24) is similar to the Van der Waals equation
of state if the specific volume reads v = 2lP r+ (lP =

√
GN = 1) [41]. Then

Eq. (24) becomes

P =
T

v
− 1

2πv2
+

2q2

πv[v3 + 8(βq2)3/4]
. (25)
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The inflection points in the P −v diagrams (critical points) may be obtained
by equations

∂P

∂v
= − T

v2
+

1

πv3
+

8q2(−v6 + (q
√
β)3)

πv2[v3 + 8(βq2)3/4]2
= 0,

∂2P

∂v2
=

2T

v3
− 3

πv4
+

8q2[5v6 + 8(βq2)3/4v3 + 32(βq2)3/2]

πv3[v3 + 8(βq2)3/4]3
= 0. (26)

By virtue of Eq. (26) one finds the critical points equation

[v3c + 8(βq2)3/4]3 − 24q2v4c [v
3
c − 4(βq2)3/4] = 0. (27)

Making use of Eq. (26) we obtain the critical temperature and pressure
equations

Tc =
1

πvc
− 8q2[v3 + 2(βq2)3/4]

π[v3 + 8(βq2)3/4]2
, (28)

Pc =
1

2πv2c
− 6q2v2c

π(v3c + 8(βq2)3/4)2
. (29)

The solutions (approximate) vc to Eq. (27), critical temperatures Tc and
pressures Pc are presented in Table 1. The P − v diagrams are given in Fig.

Table 1: Critical values of the specific volume, temperatures and pressures
at q = 1

β 0.1 0.2 0.4 0.5 07 0.8 0.9 1

vc 4.790 4.708 4.552 4.472 4.297 4.196 4.080 3.936

Tc 0.0438 0.0442 0.0448 0.0452 0.0459 0.0463 0.0467 0.0472

Pc 0.0034 0.0035 0.0036 0.0037 0.0038 0.0039 0.0040 0.0041

3. At q = 1, β = 0.5 the critical specific volume is vc ≈ 4.472 and the critical
temperature is Tc = 0.0452. Figure 3 shows that at some point the pressure
is zero corresponding to the black hole remnant. Then if the specific volume
is increasing the pressure increases and the pressure has a maximum. Then
the pressure decreases that is similar to ideal gas. At the critical values we

8



0 1 2 3 4 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

v

P

 

 

T=0.0452

T=0.1

T=0.2

T=0,3

Figure 3: The function P (v) at q = 1, β = 0.5. The critical isotherm
corresponds to Tc ≈ 0.0452 possessing the inflection point.

have similarities with Van der Waals liquid behavior having the inflection
point. Making use of Eqs. (27), (28) and (29) and for small β one finds

v2c = 24q2 +O(β), Tc =
1

3
√
6πq

+O(β), Pc =
1

96πq2
+O(β). (30)

At β = 0 in Eq. (30) we obtain the critical points of charged AdS black hole
[21]. Then the critical ratio becomes

ρc =
Pcvc
Tc

=
3

8
+O(β), (31)

with the value ρc = 3/8 corresponding to the Van der Waals fluid.
The Gibbs free energy for fixed charge q, coupling β and pressure P is

given by
G = M − TS, (32)
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where M is considered as a chemical enthalpy. Making use of Eqs. (16),
(17), (20) and (32) we obtain

G =
r+
4

−
2πr3+P

3
+

πq3/2

4
√
3β1/4

+
q2r2+

4[r3+ + (βq2)3/4]
− q3/2g(r+)

12β1/4
. (33)

The plot of the Gibbs free energy G versus T for β = 0.5 and vc ≈ 4.472,
Tc ≈ 0.0452 is depicted in Fig. 4. We took into consideration that r+ is the
function of P and T (see Eq. (24)). Subplots 1 and 2 at P < Pc show first-
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Figure 4: The plots of the Gibbs free energy G vs. T at q = 1, β = 0.5.
According to subplots 1 and 2 we have the ’swallowtail’ plots with first-
order phase transitions. Subplot 3 shows to second-order phase transition
with P = Pc ≈ 0.0037. Subplot 4 shows the case P > Pc with non-critical
behavior of the Gibbs free energy.

order phase transitions similar to liquid-gas transitions with the ’swallowtail’
behaviour. In accordance with subplot 3 the second order phase transition
for P = Pc takes place. Subplot 4 corresponds to the case P > Pc, where
there are not phase transitions.
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The entropy S vs temperature T at q = β = 1 is given in Fig. 5. Figure
5 (subplots 1 and 2) show that entropy is ambiguous function of the temper-
ature and, therefore, first-order phase transitions take place. According to
subplot 3 the second-order phase transition occurs. The critical point sep-
arates low and high entropy states. In accordance with subplot 4 there are
not phase transitions at q = β = 1, P = 0.005.
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Figure 5: The plots of entropy S vs. temperature T at q = 1, β = 0.5.
According to subplots 1 and 2 (in some range of T ) entropy is ambiguous
function of the temperature and first-order phase transitions occur. In ac-
cordance with subplot 3 the second-order phase transition takes place.

Let us study local stability of black holes by considering the heat capacity
which is given by

Cq = T

(
∂S

∂T

)
q

=
T∂S/∂r+
∂T/∂r+

=
2πr+T

GN∂T/∂r+
. (34)

Equation (34) shows that when the Hawking temperature has an extremum
the heat capacity diverges and the black hole phase transition occurs. The
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plot of the Hawking temperature is given in Fig. 6 for parameters β =
0.1, 0.3, 1 (l = q = 1). In accordance with Fig. 6, the Hawking temperature
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Figure 6: The plots of the Hawking temperature T versus horizon radius r+
at l = q = 1, β = 0.1, 0.3, 1. Figure shows that the Hawking temperature
has a minimum.

possesses a minimum and the heat capacity diverges. The plot of the heat
capacity (34) at q = l = 1, β = 0.1 (GN = 1) is depicted in Fig. 7.
In accordance with Fig. 7 the heat capacity has a singularity in the point
where the Hawking temperature has a minimum. One can see from Eq. (34)
that when the Hawking temperature is zero the heat capacity vanishes. For
the case l = q = 1, β = 0.1, equation T = 0 has two real roots r1 ≈ 0.213
and r2 ≈ 0.472. The heat capacity diverges (∂T/∂r+=0) at r3 ≈ 0.318 and
the black hole undergoes the phase transition from small black hole to large
black hole. In the region where the heat capacity is positive the black hole
is stable, otherwise the black hole is unstable. Thus, at r3 > r+ > r1 and at
r+ > r2 the black hole is stable but at r2 > r+ > r3 and r1 > r+ the black
hole is unstable.
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Figure 7: The plot of the heat capacity Cq versus horizon radius r+ at l =
q = 1, β = 0.1. According to the figure, the heat capacity has a singularity
where the Hawking temperature possesses a minimum.

5 Joule–Thomson expansion

During the Joule–Thomson isenthalpic expansion the enthalpy (the mass M)
is constant. The cooling-heating phases are described by the Joule–Thomson
coefficient

µJ =

(
∂T

∂P

)
M

=
1

CP

[
T

(
∂V

∂T

)
P

− V

]
=

(∂T/∂r+)M
(∂P/∂r+)M

. (35)

Equation (35) shows that the Joule–Thomson coefficient is the slope of the
P − T function. At the inversion temperature Ti the sign of µJ is changed,
and Ti can be found by equation µJ(Ti) = 0. In the cooling phase (µJ > 0)
initial temperature is higher than inversion temperature Ti and the final
temperature decreases. If the initial temperature is lower than Ti then the
final temperature increases in accordance with the heating phase (µJ < 0).
Making use of Eq. (35) and taking into account equation µJ(Ti) = 0, we
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obtain

Ti = V

(
∂T

∂V

)
P

=
r+
3

(
∂T

∂r+

)
P

. (36)

The inversion temperature separates cooling and heating processes. The
inversion temperature line goes through P − T diagrams maxima [27, 28].
Equation (24) may be represented as equation of state

T =
1

4πr+
+ 2Pr+ − q2

4π (r3+ + (βq2)3/4)
. (37)

At β = 0 Eq. (37) is converted into equation of state of Maxwell-AdS black
holes. From Eq. (17) and using equation P = 3/(8πl2) one obtains

P =
3

4πr3+

[
M(r+)−

r+
2

− πq3/2

4
√
3β1/4

+
q3/2g(r+)

12β1/4

]
. (38)

We depicted the P −T isenthalpic diagrams in Fig. 6 by taking into account
Eqs. (37) and (38). Figure 6 shows that the inversion Pi−Ti diagram crosses
maxima of isenthalpic curves. Making use of Eqs. (24), (36) and (37) we
find the inversion pressure Pi

Pi =
3q2(2r3+ + (βq2)3/4)

16πr+ (r3+ + (βq2)3/4)
2 − 1

4πr2+
. (39)

By virtue of Eqs. (37) and (39) one obtains the inversion temperature

Ti =
q2(4r3+ + (q2β)3/4)

8π(r3+ + (q2β)3/4)2
− 1

4πr+
. (40)

Substituting Pi = 0 in Eq. (39), we find the equation for the minimum of
the event horizon radius rmin

3q2rmin(2r
3
min + (βq2)3/4)− 4

(
r3min + (βq2)3/4

)2
= 0. (41)

From Eqs. (40) and (41) at β = 0, one obtains minimum of the inversion
temperature corresponding to Maxwell-AdS magnetic black holes

Tmin
i =

1

6
√
6πq

, rmin
h =

√
6q

2
. (42)
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Figure 8: The plots of the temperature T vs. pressure P for q = 30, β = 0.5.
The Pi−Ti diagram goes via maxima of isenthalpic curves. The solid curve is
for mass M = 90, the dashed curve corresponds to M = 100, and the dashed-
doted curve is for M = 110. The inversion temperature Ti vs. pressure Pi

(q = 30, β = 0.5) is depicted by solid line. If black hole masses are increasing
the inversion temperature Ti increases.

Making use of Eqs. (30) and (42) at β = 0 we find the relation Tmin
i = Tc/2

which corresponds to electrically charged AdS black holes [26]. With the
help of Eqs. (39) and (40) we plotted Pi − Ti diagrams in Fig. 6. According
to Fig. 6. the inversion point increases when the black hole mass increases.
The inversion diagrams Pi − Ti are depicted in Figs. 9 and 10. According
to Fig. 9 when magnetic charge q increases then the inversion temperature
increases. Figure 8 shows that when the coupling β increases the inversion
temperature decreases. From Eqs. (35), (37) and (38) we find(

∂T

∂r+

)
M

= − 1

4πr2+
+ 2P |M + 2r+

(
∂P

∂r+

)
M

+
3q2r2+

4π[r3+ + (q2β)3/4]2
,
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Figure 9: The inversion temperature Ti vs. pressure Pi at q = 25, 30 and
35, β = 0.1. When magnetic charge q increases the inversion temperature is
increasing.

(
∂P

∂r+

)
M

=
3

4πr4+

[√
3q3/2π

4β1/4
−3M+r+−

q3/2g(r+)

4β1/4
+

q2r2+
2[r3+ + (βq2)3/4]

]
, (43)

where P |M is given in Eq. (38). Equations (35) and (43) define the Joule–
Thomson coefficient as the function of the magnetic charge q, coupling β,
black hole mass M and event horizon radius r+. When the Joule–Thomson
coefficient is positive (µJ > 0) a cooling process occurs. If µJ < 0 a heating
process takes place.

6 Summary

We obtained new magnetic black hole solution in Einstein-AdS gravity cou-
pled to NED. The metric and mass functions and corrections to the Reissner–
Nordström solution were found. When coupling β is increasing (at constant
magnetic charge) the event horizon radius decreases. If magnetic charge in-
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Figure 10: The inversion temperature Ti vs. pressure Pi at β = 0.1, 0.2
and 0.4, q = 20. Figure shows that if the coupling β increases the inversion
temperature decreases.

creases (at constant coupling β) the event horizon radius is increasing. The
black holes thermodynamics in an extended phase space with negative cos-
mological constant (which is a thermodynamic pressure) was studied. In
this approach the mass of the black hole is the chemical enthalpy. The vac-
uum polarization, which is a thermodynamic quantity conjugated to coupling
β, and thermodynamic potential, conjugated to magnetic charge, were ob-
tained. We showed that the first law of black hole thermodynamics and the
generalized Smarr formula take place. It was demonstrated that black hole
thermodynamics is similar to the Van der Waals liquid–gas thermodynamics.
We analysed the Gibbs free energy and heat capacity showing phase transi-
tions. The critical ratio ρc obtained is different from the Van der Waals value
3/8. We studied the black hole Joule–Thomson isenthalpic expansion and
cooling and heating phase transitions. We found the inversion temperature
which separates cooling and heating processes of black holes.

17



References

[1] J. M. Bardeen, B. Carter and S. W. Hawking, The Four laws of black
hole mechanics, Commun. Math. Phys. 31 (1973), 161-170.

[2] T. Jacobson, Thermodynamics of space-time: The Einstein equation of
state, Phys. Rev. Lett. 75 (1995), 1260-1263, [arXiv:gr-qc/9504004].

[3] T. Padmanabhan, Thermodynamical Aspects of Gravity: New insights,
Rept. Prog. Phys. 73 (2010), 046901, [arXiv:0911.5004].

[4] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973), 2333-
2346.

[5] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.
43 (1975), 199-220.

[6] S. W. Hawking and D. N. Page, Thermodynamics of Black Holes in
anti-De Sitter Space, Commun. Math. Phys. 87 (1983), 577.

[7] J. M. Maldacena, The Large N limit of superconformal field theories
and supergravity, Int. J. Theor. Phys. 38 (1999), 1113-1133, [arXiv:hep-
th/9711200].

[8] B. P. Dolan, Black holes and Boyle’s law? The thermodynamics of
the cosmological constant, Mod. Phys. Lett. A 30 (2015), 1540002,
[arXiv:1408.4023].

[9] D. Kubiznak and R. B. Mann, Black hole chemistry, Can. J. Phys. 93
(2015), 999-1002, [arXiv:1404.2126].

[10] R. B. Mann, The Chemistry of Black Holes, Springer Proc. Phys. 170
(2016), 197-205.

[11] D. Kubiznak, R. B. Mann, M. Teo, Black hole chemistry: ther-
modynamics with Lambda, Class. Quant. Grav. 34 (2017), 063001,
[arXiv:1608.06147].

[12] S. Fernando and D. Krug, Charged black hole solutions in Einstein–
Born–Infeld gravity with a cosmological constant, Gen. Rel. Grav. 35
(2003), 129–137, [arXiv:hep-th/0306120].

18



[13] T. K. Dey, Born–Infeld black holes in the presence of a cosmological
constant, Phys. Lett. B 595 (2004), 484–490, [arXiv:hep-th/0406169].

[14] R.-G. Cai, D.-W. Pang and A. Wang, Born–Infeld black holes in (A)dS
spaces, Phys. Rev. D 70 (2004), 124034, [arXiv:hep-th/0410158].

[15] S. Fernando, Thermodynamics of Born–Infeld-anti-de Sitter black holes
in the grand canonical ensemble, Phys. Rev. D 74 (2006), 104032,
[arXiv:hep-th/0608040].

[16] Y. S. Myung, Y.-W. Kim and Y.-J. Park, Thermodynamics and phase
transitions in the Born–Infeld-anti-de Sitter black holes, Phys. Rev. D
78 (2008), 084002, [arXiv:arXiv:0805.0187].

[17] R. Banerjee and D. Roychowdhury, Critical phenomena in Born-Infeld
AdS black holes, Phys. Rev. D 85 (2012), 044040, [arXiv:1111.0147].

[18] O. Miskovic and R. Olea, Thermodynamics of Einstein–Born–Infeld
black holes with negative cosmological constant, Phys. Rev. D 77 (2008),
124048, [arXiv:0802.2081].

[19] Behnam Pourhassan, M. Dehghani, Mir Faizal, Sanjib Dey, Non-
Pertubative Quantum Corrections to a Born–Infeld Black Hole and
its Information Geometry, Class. Quantum Grav. 38 (2021), 105001,
[arXiv:2012.14428].

[20] B. Pourhassan, M. Dehghani, S. Upadhyay, Izzet Sakalli, D. V. Singh,
Exponential corrected thermodynamics of quantum Born–Infeld BTZ
black holes in massive gravity, Modern Physics Letters A 37 (2022),
2250230, [arXiv:2301.01603].

[21] S. Gunasekaran, R. B. Mann and D. Kubiznak, Extended phase space
thermodynamics for charged and rotating black holes and Born—Infeld
vacuum polarization, JHEP 1211 (2012), 110, [arXiv:1208.6251].

[22] D.-C. Zou, S.-J. Zhang and B. Wang, Critical behavior of Born-Infeld
AdS black holes in the extended phase space thermodynamics, Phys.
Rev. D 89 (2014), 044002, [arXiv:1311.7299].

[23] S. H. Hendi and M. H. Vahidinia, Extended phase space thermodynamics
and P-V criticality of black holes with a nonlinear source, Phys. Rev. D
88 (2013), 084045, [arXiv:1212.6128].

19



[24] S. H. Hendi, S. Panahiyan and B. Eslam Panah, P-V criticality and
geometrical thermodynamics of black holes with Born-Infeld type non-
linear electrodynamics, Int. J. Mod. Phys. D 25 (2015), 1650010,
[arXiv:1410.0352].

[25] X.-X. Zeng, X.-M. Liu and L.-F. Li, Phase structure of the Born–Infeld-
anti-de Sitter black holes probed by non-local observables, Eur. Phys.
J. C 76 (2016), 616, [arXiv:1601.01160].
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