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This paper starts with a basic formulation of a distributed parameter transmission line with
memristor per unit length in series and also memristor per unit length in parallel apart from the
other standard distributed parameters. The result of having memristors distributed along the line is
a nonlinear effect in the form of coupling between charge and current and coupling between charge
and voltage. These nonlinear effects result in the generation of an infinite number of higher
harmonic components along the line even when the input voltage is of a fixed frequency or a finite
superposition of voltages of different frequencies. Taking into account random white noise line
loading effects, we formulate the resulting line equations based on KCL and KVL in the form of an
infinite dimensional nonlinear stochastic differential equation. We study the problem of quantizing
the transmission line dynamics using the well known Hudson-Parthasarathy theory of quantum
stochastic differential equations derived from the Hudson-Parthasarathy noisy Schrodinger
equation constructed from an appropriate transmission line Hamiltonian and Lindblad operators.
We then conclude by discussing the effect of quantum stochastic noise and quantum stochastic
supersymmetric noise on the action functional of a field theory and how such a model can be used to
obtain corrections to the quantum effective action functional or more precisely, to the TPCP map
that evolves an initially mixed state of the field to another mixed state after a finite duration. Some
remarks on training and testing of quantum neural networks based on the Belavkin quantum filter
are presented. This involves constructing a quantum evolution of a mixed state in such a way that

the evolving pdf of a system observable will be obtained from the conditional expectation of the
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noisy quantum state given non-demolition measurements that are strongly correlated with actually

measured signals.

1. Formulation of the basic distributed memristor transmission
line

The distributed parameter circuit we have in mind consists of memristors and inductors distributed in
series along the transmission line as well as memristors and capacitors distributed in parallel along
the line. Let R(q(t,2))i(t,z)dz and Lo,i(r,z)dz denote respectively the voltage along an infinitesimal
memristor and and infinitesimal inductor along the line in the length interval [z,z + dz]. Then, the

voltage difference between the points z and z + dz is given by
—0,(t, z)dz = R(q(t, 2))i(t, 2)dz + LO,i(t, z)dz
or equivalently, after taking into account distributed white noise line loading,
~0.(t,2) = R(q(t, 2))0,q(t, 2) + LO7q(t, 2) + f2)0 B¢, 2)

This represents the line KVL. Here ¢(z, z) and i(t, z) = 0,4(1, z) are respectively the charge and current along
the line. Likewise, assume that along the line parallel (ie, perpendicular to its length), the current
flowing between z and z + dz is given by G( - 6,4(z, z)dz)v(t, z) due to parallely distributed memristors and

Co M1, z)dz due to parallely distributed capacitors. The parallel line equation is then
~0.i(t, z)dz = G( — 8.q(t, 2)d2)(t, z) + COM(t, 2)dz
Note that the charge that flows perpendicular to the line between the points z and z + dz is given by
-0,4(t, z)dz. We assume that G(0) = 0 for consistency. Then, by Taylor expansion,
G(—0,4(t,2)dz) = — G (0)0,4(t, 2)dz + O(dz?)

so the parallel equation reduces to (after accounting for line loading again)

~0.i(t,z) = — GO 4(t, 2)W(t, z) + CO(t, z) + g(2)0, W1, 2)
where G = - G'(0). Note that our argument shows that the parallely distributed memristor acts as a

simple parallel resistor of value 1/(Gdz) in [z, z + dz]. Not the case for the serially distributed memristor.

This equation can alternately be expressed as

—0,0,4(t,2) = — GO,q(t, 2)v(t, 2) + COM(t, 2) + g(2)0,W(t, 2)
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Here, B(t,z) and (s, z) are independent Brownian fields, ie, they are Gaussian fields having zero mean

and covariance
E(B(t,2)B(t ,z' )= min (1,¢).5¢z—z)

They can be expanded in a Fourier series along the line length:

B(t,2) = DB, (0e,(2), e,(z) = exp(j2x. nz/d)/\[d,n € Z

n

Then,

D E(B,(0B,(t Ve, (e, () =min(t,1). Y e (z—2), 0<zz <d

n,m

and this equation immediately gives us
E(B,(0B,,(t)) = d[n + m]. min(z, ¢ )
Since fields are real, we have
B,(1) = B (1)
and hence we can express the above correlation identity as
E(B (1)B,(1)) = 0[n —m]. min(t,¢"), n,m € Z
We write
B0 =BRt)+j. B (1)
where B and B/ are real processes. Then, we get
BXn=8% . Blo=-8"0
and hence, for n, m > 0, we have
EBX0BR (") = o[n — m]. min(r,1")/2
EB!(0)B! (t')) = oln — m). min(t, t")/2
EBY 0B (1) =0
and likewise for the Gaussian field 7. Now expressing

4t,2) = Y g, Vt,2) = Y v, (De,(2)
and also

)= D fef2, @)= D g,e,
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we obtain from the above line equations,
~0.(t,2) = R(q(t, 2))0,q(t, 2) + LO7q(t, 2) + fi2)0 B¢, 2)
—0,0,4(t,2) = — GOq(t, 2)v(t, 2) + COM(t, 2) + g(2)0, (¢, 2)

the corresponding Fourier series space nonlinear stochastic differential equations:

(—2mjn/dyyv (1) = > R, 4, - -q, (Dq ,;(t) +Lg n O+ 2t B ,',,(f)

myny+ ... +n,+k=n

(= 2mjnld)g (1) = = G ). Qujm/d)g, (v, () +Cv () + D g, W' (0

m m

where

R(@)= Y. R,g"

n>0
We now seek a perturbative algorithm for solving these equations, compute the statistics of the charge
and voltage fields g(z,z), v(t,z) and then to take discrete measurements along the line and using the
extended Kalman filter alogrithm (EKF), to estimate the line voltage, line charge and memristor
parameters R, n > 0, G. Defining the complex infinite dimensional vectors

W0 = (0 D)z0 40 = (@0, 40,200 BO = (B(0). B (1)),

W) = (W0, W),

these equations can be cast in the following form:

q"(O) = A+ Y Axm)a) ®" ® ¢ (1) + 438 (1)

n=0

V() = 4,9 (1) + A5(q(r) ® v(0)) + AWV (1)

Here, 4,,4,(n), A5, A4, A5, 4 are real, infinite dimensional matrices that depend upon the parameters

0=((R,, n=>0,L,C,G) that we seek to estimate. We define the state vector
X0 =00 a0 9 0H"
as well as the infinite dimensional Brownian motion vector
oy = B0, woh'
and then the above equations can be expressed in a more convenient form:

X'(1) = C,(O)X() + Z Cy(n|O)X(1)®" + C5(O)V (1)

n>2

or equivalently, in stochastic differential form
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dX() = (C,(0)X() + Y, Coln | 00)X(1) ® "t + Cy(B)dV(1)

n>2
with

dot) = o. de(t)
where g) is another standard infinitesimal Brownian motion. Thus, [X(H)7, (/) T]7 is our extended state

vector. The form of the matrices C,, C,(n), C; can be easily written down in terms of the matrices

Ay, Ay(n), A, Ay As, A

2. A digression on quantization of the dynamics based on the
Hudson-Parthasarathy-Evans-Hudson flow method

The basics of quantum stochastic calculus are explained in(2J,

It is of interest here to note how a stochastic differential equation of this kind can be quantized using
the Hudson-Parthasarathy-Evans-Hudson flow method. To see how this is accomplished, we assume
that the state vector X comprises of a position vector component Q0 and a momentum vector
component P. The Hudson-Parthasarathy-noisy Schrodinger evolution for the unitary operator U(¢) on

the tensor product of the system and bath space has the form

dU(D) = (= H + P)dt + ) LidAy() = LS ddy()) *)U(), P =(1/2) ), L,LS
k k

where 4,,4 k* are the standard annihilation and creation processes of the Hudson-Parthasarathy
quantum stochastic calculus satisfying the quantum Ito formula:
dA(t). dAL0)* = O(k, j)dt, dAY(D). dA() = 0,dA(6) * . dAL0) * = dAy(®) *dA[(r) = 0

We choose as our Hamiltonian the Harmonic oscillator one:

H=(1/2)) (P2 + w(k)?0:/2)
k

This Hamiltonian leads to linear Heisenberg dynamics for Q, P and hence this portion of the dynamics
corresponds to only linear non-dissipative terms in the transmission line dynamics, ie, that generated
by only the distributed series inductances and parallel capacitances in the transmission line. To get the
linear dissipative effects generated by the series and parallel resistances, we can use Lindblad
operators L, that are linear functions of position and momentum. To get the nonlinear terms

generated by memristors and resistances, capacitances and inductances that are functions of charge
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current and voltage, we can use Lindblad operators that are nonlinear functions of position and

momentum. Thus, we consider Lindblad operators

Ly = Fy(Q.P), L, = Fy(Q, P)

specifically, we can using the canonical commutation rules, define F,(Q, P) in such way that in each
term, all the Q's appear to the left of all the P's. Then in F,(Q, P) = F,(Q, P) *, all the P's will appear to
the left of all the Q's. If X is any system observable, its quantum noisy Heisenberg dynam ics will be

given by
X(0) = jX) = U@ * XU(@0) = U@ * (X ® DU(0)
and by quantum Ito’s formula, it satisfies
dj (X) = dU(t) * XU(t) + U(0) * XdU(t) + dU(t) * XdU(t) = j (0(X))dt +
7O 0)AA D) + J (02, (X))dA(0) *

with summation over the index & being implied, where
00X = ilH, X] = (1/2) ) (LS LX+XL L~ 2L XLy
k
= ilH, X1 = (1/2) 2 (L (L X+ X LFILY)
k

014X) = [X, L, 04(X) = [L,F, X]

Thus,
oF _OF,
00(Q,) = P, = (ID Y (55 Fi = Fr =)
kooon n
= Pn + GOn(Q’ P)
say.
oF
0140, = "a_P,, =G0, P)
oF,
0,(Q,) = 71‘57% =G (0. P)*
) 5 oF, . 0F,
0y(P,) = = 0(m)?Q, +(i/2) 2, (5 Fy = Ff. 557)
0 - aQn k k aQn
=~ (1’0, + Kou(Q, P)
say.
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OF

k
Oy = = ia_Q,, = Ky(Q: P)

oF,
0,0, = i@ = K10, P)*

The Hudson-Parthasarathy noisy Heisenberg equations are therefore given by
dQ,(1) = P, ()t + G, (O(0), P()dt + (G, (O(0), P(O))dA (1) + G, (), P() * dd () *)
k

dP (1) = — w(n)*Q,(Odt + Ko, (0(0), POt + Y (K, (00, PO)AAL) + K, (), P()dA 1) *)
k

Defining the two classical Brownian motion processes (which do not however commute with each

other)
BY(1) = A0 + A0 %, Bit) = — i(Ax(0) — 4,0 %)
and also introducing the Hermitian operators
ka(Q, P) = (1/2)(G (O, P) + G (O, P) *)
P {0, P) = (i12)(G (O, P) = G, (O, ) *)
TR(0. P) = (1/2)(K1,0(Q. P) + K 1,4(Q. P) *)
Tik(Q, P) = (i/2)(K (O P) = K1,4(Q, P) ¥)

we can express these gsde’s in Hermitian form as
dO,(1) = P,()dt + Go,(Q(0), P(O)dt + D (S% (00, P(0)dBL(1) + S, (0, P()dB1(1))
k

dP (1) = — &(n)2Q,(dt + Ko, (O(0), P()dt + ) (T (O(t), P0)BR(1) + T} (O(1), P())dBL(1))
k

By appropriate choice of the canonical position and momentum variables in the transmission line

along with the Lindblad operators, we can cast the line equations in such a quantum stochastic format,

ie, we can introduce the notion of a quantum stochastic transmission line. The position variables will

be the Fourier coefficient of current and the momentum variables will be those of the voltage, the

purely conservative case, ie, when the line consists of only distributed inductors and capacitors. This

fact can be seen from the conservative linear situation in which the line voltage and current satisfy
oMt 2) + LOji(t,z) = 0, 0,i(t,2) + COM(t,2) = 0

or equivalently, in the Fourier series domain

Qin/dyv, (f) + Li};(t) =0, Qain/dyi(t)+ Cv’;(t) =0
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so that taking real and imaginary parts,

—Qmn/dy! (1) + Lif’(z) =0, Qm/dvin+Lil ©=0

—Qmnldil @)+ O 1), Qan/difo+ v =0
which give on eliminating vﬁl , i; , the following two second order linear differential equations:

i o+ Qmn/d*(1/LOR@H =0, n>0
o () + Qa1 Loty =0, nzo0
These differential equations are those of an infinite sequence of independent harmonic oscillators
with characteristic frequency of oscillation of the »” mode being given by
o) = Qmn/d)(LC)" 12, n=0

This suggests to us that we can derive these differential equations from the Hamiltonian given by

H=H(Q,P)=(1/2) ) (P} +w®)?0;, +P; +omn?’03).

n>0

Q = ((le QZn))a pP= ((Plns P2n))

where

. R R’ .
0,= &, 0,,= vf, P, = io= (27m/dL)vfl, Py, = v, = (27m/dC)lfl

n n

The Hamiltonian equations are

Q,,=0oH/oP, =P, P

= —OHI00), = —om?Qy,, k=12

Elimination of P, from these equations gives us the above line equations:
Ql;t - w(n)szn, k=12, n>0

When resistances in series and in parallel are present, this linear conservative dynamics gets damped
and this situation can also be described quantum mechanically by using the Lindblad master equation

for open quantum systems in the form

dX/dt = i[H,X] = (1/2) ), (L, L X X+ XLy, LY =20, XL¥) =
k,n

ITH, X1 = (1/2) Ly, [L Y, X1+ [X, Ly, ILY)

with H as above and
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Ly, = alk,mQ,, + bk, n)P,,,
with coefficients a(k, n), b(k, n) depending upon the series resistance and parallel conductance per unit
length. Specifically,

(Lo, Ol = —iblkn),  [Qpp Ly,] = ib(kn)

(L}, P) = ialkn), [Py, Ly,] = — ia(kn)

These result in the differential equations

0 ,Ln = P, — (1/2)( — ib(kn)(a(kn)Q,,, + b(kn)P, ) + ib(kn)@(kn))Q,, + b(kn)P, )
= P, — Im(a(kn)b(kn))Q,,
P ,; = — w20, — (1/2)@lkn)(a(kn)Q,, + b(kn)P,,) — ia(kn)(@(kn)Q,, + b(kn)P,,))

= — o(n)?Q,, — Im(a(kn)b(kn))P,,

Defining the real constants

y(kn) = Im(a(kn)b(kn))

we can express these equations as

Oty = Pin— 1Oy Py = — (1)’ Oy, — y(len) Plf)

Now assume that k=1,2, = >0. Consider a line with a series distributed resistance and a parallel

distributed conductance. The line equations in this case are
0,i(t,z) + Gv(t,z) + CoM(t,z) = 0

d.u(t,2) + Ri(t,z) + L,i(t,2) = 0
In the Fourier series domain, these translate to
Qrin/d)i (1) + Gv,(t) + Cv (1) = 0
Qmin/dyv, (f) + Ri (1) + Lin'(t) =0
or equivalently, in terms of real and imaginary parts,
—@mn/dyi 1)+ V(o) + Cvf’(t) )
@mn/ i) + GVl o)+ o =0
—@an/dyt (o) + Rif o) + i =0

Qunldy (o) + Ril (0 + Li! =0
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In the presence of distributed memristors, nonlinearities are introduced into the dynamics and the
resultant line equations assume the form
0,i(t,z) + Gv(t,z) + COM(t, 2) + F((0,4(t, 2), (1, 2)) = 0

0 M(t,2) + Ri(t,z) + LOi(t, 2) + Fy(q(t, 2), i(t,2)) = 0

assuming that we do not have any random line loading effects. Equivalently, in the Fourier series

domain, with v(#) = ((v,,()) and i(2) = (i), 4(0) = (g,(H)),
v'(6) = —iaD. i(t) = (GI CW(®) + F,(q(2), W(1))
i'(t)y = —iBD. W) — (R/L)i(t) + F,(q(0), i(£))
where
D = diag[2zn/d:n € Z], a =1/C,p=1/L
or equivalently, taking real and imaginary parts,
VR (0) = aDil(e) =y vR(0) + FRG (@), (0). vR(0). V(1)
V(1) = = aDif(0) ~ y 0 + FL ("), 40, R0, V()
i® () = BD. ) — 92" + FRGR @), '), %0, ()
(1) = = DR = 1,10 + FlgR 0. 4", (o). i)
with the relationship

it =q'(¢)

or equivalently,

(o) = g (1
0 = 4" (1)

R'" R :R

In principle, we can solve (a) and (c) to express (i/,v) as a function of vk, i® VR iR 4R 4. These

expressions, we substitute into (), (d) to obtain second order differential equations for v i® in

R I R _ R I

involving ¢®, ¢/, ¢® =ik, 4" = i. For i’ we again substitute its expression in terms of VX , i® | R iR ¢F

.q"to
obtain finally second order differential equations for v%, i® involving ¢, ¢ and of course v& , iR | v& ik
but no derivatives of ¢, 4’. These differential equations are supplemented by (e) and (f) where in the

R

latter, we substitute for i/, its expression in terms of VRO iR R R R o1 The jist of these calculations is

finally, a second order nonlinear differential equation for the "position vector"

o) = V@), R, 4% (), 4"
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This can be used as the starting point for quantization using the theory of open quantum systems or if

line loading noise is included, quantization based on the HPS gsde.

An alternate way to start the quantization process is to begin with the original complex form of the

line differential equations
v(t) = —iaD. i(t) =y, (&) + F (q(1), W(2))
i'(0) = —iBD. (&) = 7,i(t) + F(q(0), i(t))
From these, we derive
i(t) = ia " 'D7IW () + y (D) — F (gD, v(©)
and hence
io”'DTI0" @) + 9 (0 = 0F (g, V1) = — iBD V) — pyia” DTN @) + 700 — F (g0, W)
+F(q(2), (1))
This can be rearranged as

vI(0)+ v (0 + af. D2() = 0,F (q(1), W) = 7,(v ' (6) + y (8) — F(g(8), v(D))
—~ia. D. Fy(q(t), i(t))
or equivalently, as
v () + (1 + v (O + (@ B.D* + ypv(t) =
3.F (q(), V(1)) + y,F (q(1), (1)) — ia. D. F(q(t), i(2))
= F(g(0), i(H), W) = F(q(t), ¢ (1), v(z)
This equation is to be supplemented with the equations
q (0= i(t) = ia” D7 (1) +yv(0) — F1(q(1), (1))
Defining
W) = 00, v' (1) = P(t), ¢ (1) = p(t)
these equations can be cast into the form
0'(H = P(1)
P(t)= —y. P(t) — Q% O(t) + F(q(0), p(t), O(1))
p ()= dldt(ia” "D (1) + y () — Fy(q(0), (1))

=ia”'DTIP'(0) +y,P(O) ~ Fy_1(q(0), Qo)p(t) = F | (q(0), QO)P()
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=ia”'D”(. Py — Q7. Q) + F(q(t), p(), Q) = F _1(q(D), Q0)p(0) = F _,(g(t), Qt)P(1))

where

2 2
Q =a.B.D +yypr=717,

Note that the choice of v(¢) as the position variable Q(#) and the charge ¢(#) as another position variable
is in agreement with our understanding that charge and voltage in a capacitor have their squares
proportional to the electrostatic potential energy while current which is the time derivative of charge
and also being proportional to the current through the capacitor with square proportional to the
magnetic energy in an inductor in an LC circuit should be the momentum. The position variables
0,(1 = (O(), 9(t)) and the corresponding momentum variables P,(r) = (P(¢), p(r)) (More precisely, their real

and imaginary parts as defined above thus satisfy dynamics of the form
0, = Py(1), P,(t) = —T.P(t) = Dy. O)(1) + F(Q,(1), P1(0))

Here D, is real and symmetric but not necessarily positive definite. T' is real but not necessarily
diagonal. These equations can also be derived from the theory of open quantum systems by assuming

an appropriate Hamiltonian and Lindblad operators.

3. A special case of the Lindblad equation corresponding to linear

velocity damping with coefficients nonlinear functions of position
In the special case when the Lindblad operators ,, are of the form

Lzm = a(kn)an + b(k”)sz +f1m(Q)a 0= ((sz)), pP= ((Pkn))

ie, tbese operators are linear in the P and the Hamiltonian is of the form
H(Q,P) = (1/2))_ (P}, + w0} )+ UQ)
kn

we find from the Heisenberg equation
dX/dt = i[H, X] = (1/2(Lig[L gy X+ [X, Ly )L gy)
that
Opy = Prn— 1km)Qy,,
P = = o0y, — pkmPy, — (1/2)(Ly, [71,(O), P,]
+ia(kn)f, (0) + [Py fin QI ¥ = ia(kn)f, ()

= = 0(n)?Qy, — Wkn)Py,, = (1/2)(i(alkn)Qy, + bkn)Py, + £, (0N}, (0)/ 00,
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+ia(kn)fy,(Q) = i3}, (Q)/ 00, Natkm)Qy,, + blkn)Py,, + [1,(0)) = ia(kn)fy,(0)

= = w(n)’Qy, — Wkn)Py,, — Im[(2f;,(Q)/ 00, )@(kn)Qy,, + blkm)Py, + 11, (O)) + alkn)f;,(O)]

- w(n)Zan - yknPkn - hlkn(Q)Pkn + h2kn(Q)

with #,;, being linear in f,,, and #,,, being linear-quadratic in f,,. Eliminating P from these equations
results in a second order differential equation for ¢ having the form

0,,= — 00, ~ 2, + (D0, + Q)
where p,,(0), §,,(0) are given by

Pin Q) = =72 Opy + 1 (O)

0n(Q) = 1, (Q)

This example illustrates how to realize linearly damped oscillations in quantum mechanics with
potential being a small perturbation of the harmonic potential and with velocity damping coefficients

being small perturbations of constant damping coefficients.

4. The case when Poisson noise is also present at the quantum level
We start with the HPS equation in the form

AU(t) = (= (H + Pydt + ) (LyydA, — LyydA ¥ + S,dA ) UG0)
k

where
dA de,.* = ok, j)dt, dAy. dN; = S(k, A,
dAydn; = 5(k, )4y dAdej* = J(k,j)dAj*
Conditions for unitarity are easily derived using these quantum Ito’s formula and are given by
P=(1/2)) L)Ly,
k

L= Ly ~LyS;=0
SE s +8ks=0
Equivalently, these conditions are expressed by defining
Z,=5;+1

as

* — _ 7%
2¥z, =1L, =1%7
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The resulting Evans-Hudson flow for
J{X) = U@ * XU(r)
are

djX) = ] (OX)dt + D) (01, (XA + (O(X)dA 0 * +) (03,(X))dA)
k

where
04X = i[H, X] - (1/2) ) (- 2L XLy + Lok Ly X+ XL L))
k
= i[H, X] = (1/2) (L (Lo X+ X LS WLy
k

P _ % ok *

WX = —LEX+ XL~ LXXS +S¥XL,

_ * * *

O0y(X) = = XLy + L*¥ X~ S ¥ XLy + L * XS,

O3 (X) =SS X+ XS, + S5 XS, = 2} X2, - X
5. Quantum Belavkin filter for line voltage and line parameter

estimation

For the basics of quantum filtering as first discovered by V.P.Belavkin, we refer to 2]

We start with the joint unitary dynamics of the system and bath

dU(t) = (— i(H + P)dt + ) LidA,(H)— L Fda X o)ue
k

and derive
dj(X) = j (Op(X | @)t +j (01, (X | ONAAD) +j(02(X| Pe))dA, (1) *
with summation over k being understood. Here, ¢(s) is the set of classical line distributed parameters
satisfying the sde
d(t) = o. de(r)

where €(#) is classical Brownian motion. Assume that we take noisy measurements along the line of the
voltage and current at a discrete set of points. Such noisy measurements can be derived from

Belavkin’s non-demolition model:

Y, (0) = U@ * Yy U ()
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where
Y(0) = c(k)A,(0) + c()A () *

with k=1,2,..., p. To see how these measurements correspond to measuring line voltage and current, we

calculate the differentials of the output measurements using quantum Ito’s formula:
dY (1) = dU* Y, U+ U*Y,dU+dU* Y,dU + dY, +dU™*dY,U+ U*dY,dU =
dY, +dU*dy, U+ U*dy,du =
= dYy —j@R)L+ (L)) k=1,2,...p

If the Lindblad operators L, are thus chosen to linear combinations of the Q,,P,, then in the
transmission line formalism, 4Y , will represent noisy versions of the quantum stochastic process
—(@(k)Ly + c(h)L," )») which will be linear combinations of the Fourier series coefficients i, i/, v, v/ of the
line current and line voltage. The time derivative of the line current is a linear combination of the line
current and voltage and the time derivative of the line voltage is also a linear combination the line
current and voltage in the Fourier series domain. It should be noted that the Fourier series coefficients
of the line voltage and current are respectively given by weighted linear integrals of the same and
hence if the discrete spatial points at which the line voltage and current are measured have uniform
small spacings, then the Fourier series coefficients of the line voltage and current can well be
approximated by the discrete Fourier transform of the line voltage and current spatial samples. Now,

the standard reference probability approach of John Gough and C.Kostler can be used to determine the

quantum filtering equations of Belavkin for this model:

m(fX) = EG () 11,(0)

no(z) = J(Yok(s):k: 1,2,...,p,s <)
P
dx(fX) = F (fX)dt + Y. G, (XY, (1)
k=1

with F(X), G, (X) being measurable w.r.t the Abelian algebra 7 (s) and calculated using the orthogonality

principle in statistical estimation theory:
E[( () -z (fX))C,] =0

where
JX) = AP0 (X = AP)U®) * XU(1)

and
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P
dC, = Y gAY oy (HC,
k=1

We do not discuss the details here.

5.1. Hudson-Parthasarathy noisy Schrodinger equation for fields

Let 4,(0=A4/(¢).k—1,2,... be a countably infinite set of annihilation operator processes. Here,
¢,.k=1,2,... is an orthonormal basis for L2(R*). If a(¢) denotes the annihilation field on L2(R#), then we

can write the CCR as
[a(@). a(y) *] =< p.v >

Then, we define the annihilation process field as

A(P) =a(¢.x(g.1) 120, ¢ € L)RY
It is then easy to see that

dA(B). dA ) * =< B, y,> di = ([ga(t. r). y(e. d>r)dr

We also introduce the conservation field by

HH) =D < ¢ H @, > a(@p*a(d,)
where H is an operator in Z%(R#). The conservation process field is then

A(H) = UH. 10 1)
where H is an operator in L2(R#) that commutes with X[0.,]- In terms of the position representation,
Px)=<x|¢p>,x ER* ¢p € L’RY

we can we introduce quantum noise distributions 4,(x), 4,(x) *,

a(P) = _[R4a(x)(:i>(x)dx, a()* = jR4a(x) * (x)dx

MH) = I R4 x g4, VIH(x, y)dxdy
This is equivalent to

a(@) = a([|x > de <x|¢>) = [a(x) < ¢p|x > dx = [a() P(x)dx
a@* =a(f |x> de<x|¢p>)* =[a)* <x|@>dv = [a@) * o)

A(H) = i([ |x > dx < x|H|y > dy < y|)
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= [A(lx ><y|) < x| H|y > dxdy = [4(x, y)H(x, y)dxdy
Thus, specifically taking ¢ € LAR?) so that ¢.x[¢ ;; € L*(R?), we get
(D) = a(P.x10.7) = [allx> xpo.,) P = [4,x)Plx)dx
A(B)* = [4,60* Py
A(H) = [ A e, y)H(x, y)dxdy
where
Ax) = a(|x > x10,7) A0 * = a(|x > 110, 7) Px)dx
A[(X,y) = /1(|X ><y‘)f[0,t])

Another way to express these relations is

a@) =a(), ¢ >< Pl d>)= D a(l$,>) < dl &, >
k

k

-2 a(¢k)J. @) P(x)dx
k
= [ a(@ @) Pox)dx
k

implying thereby that

ax) = Y a()Pyx)

k

where {¢,} is an onb for L*(R*) and ¢ € L*(R*). Likewise,

ax * = Y a(@p * ¢

k

and

AH) = Y a(pp)*a(p,) < ¢, |H| ¢, >

k,m

= 2 [a®) * a0)¢(0)B,0) < B, H| B, > dxdy
k,m

= [a@) *a0) Y. < x| @ >< I H| Py >< y| $,, > dxdy

k,m
= [t * aG)H(x, y)dxdy
Thus, in the language of quantum noise field distribution theory,
Ax,y) = ax) *a(y), x,y € R*

Note that
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[ pp)dx =< ¢,y >= [a($), a(y) *]
= [t pila@). a) ¥ 1@)()dxdy
and hence
[a(), a(y) *] = % =)
Likewise, for H an operator in L>R* and ¢ € L*R*), we have

[A(H), a($)]
= Y [a(pp *a(d,). a(®)] < ¢, | H| ¢, >

km

= D la(pp *, a(P)la(P,) < ¢ H| ¢, >
km

= - Z < @l >< | H| P, > alPyy)

km

= - <@H|P, > ap,)
= - Ya@,)<H*P|p,, >=a(D |¢, >< ¢, |H*p>)= —aH* ¢)

or
[a(), A(H)] = a(H * ¢)
This gives

[A(H), a(@)] =

= [l ). a@)Hx, y) @e)dvdydz
= — [a) < H* ¢|x > dv = [a(e)(H * (x, ) () * dvdy = — [a@)H(y, ) $()dxdy

— ~ [a)H(x, ) $2)5* — v)dxdy

and therefore,
[a(2), A(x, »)] = a()o*(z ~ x)
This identity could also have been seen directly:
[a(2), ACx, )] = [a(2), a(x) * a()] = [a(2), a(x) *Ja(y) = 6%z — X)a(y)
The quantum Ito formula
dA (@A () * =< @, |y, > dt

can be expressed in quantum white noise distribution notation as
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[dA (x)dA () * @t, x)y(t, y)ddy = dr. [ @, x). (e, x)dx
so that
dA (x). dA, ) * = 63(x —y)dt, x,y € R3
Note that for ¢ € L*R*), we have
A(B) = a(@r(0.1) = [ [0.1] R0 ) (s, X)dsdx

with (s,x) € R*. In particular, if ¢ x) =@r),x ER® (ie ¢ € L*R’) so that ¢y, € L*RY) is

independent of ¢, we get
AL = [ 0.1 » (s 00 P0)x = g3 () plx)dlx
so that
4,0 = [La(s.0)ds, x € R?
or equivalently,
a(t,x) = dAx)/d1, x € R3
Also the relation
a(x) ¥ a(y) = Ax,),x,y € R*
can be used to show that
dA (x,y) = dA (x) ¥ d4 (v)/dt,x,y € R?
as follows. We start with
(dA (x)/dt) * (dA () /dt) = a(t, x) * a(t,y) = XA(t,%), (&, 7)), t € R,x,y € R®
Thus,
dA (x) * dA (y)/dt = dt. (8, ), (1, y))
Now, for # acting in L(R3),
A(H)=2H. %19 1)
so that
dN (H)/dt = J(H. dy o 1)/ dt) = A(H. 5,)

where

Os) = d(t—s)
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Now,
MH.5) = ;»(j |x >< x|H.8,|y ><y|dxdy)
= [Reups <XIH.0,ly > A(|x >< y|)dxdy
= IRXR3XRXR3 <t1,x|H.0;|th,y > A(| 11, x >< 1y, y|)dt dxdtrdy
Now,
<t x|HO,|ty,y >= H(x,y) <t,]6,]t, >= H(x,y)_“é(t1 — 8)0(t — $)0(t, — s)ds
= H(x,»)d(t; — 7). 8(t, — 1), x,y € R?
Therefore,
MH.3) = j M|ty x >< 1y, y VHE, )3, = 0)(t, — D)dt dtrdxdy
= [ epaH@ VA .3 >< 1, | Ydxdy
This results in
dA(x,y)/dt = A(t, %), (t,y)),t € R,x,y € R3
On the other hand, we’ve seen above that
dit((t, %), (1, y)) = dt. a(t,x) ¥ a(t,y) = dA(x) * dA () /dt
Therefore, we conclude that
dA (x, y) = dt. dA (x, y)/dt = dt. 2((t, %), (1, y)) = dA (x) * dA (v)/ dt

Note that in particular, we have

Axy) = [(A(Gs.0). (5. 9))ds

Now consider the quantum Lindblad noise term in the HPS equation with countably infinte degrees of

freedom:

AWty = Y (LKA () — MK) * dA(p) *) + 2 St )dA (| B, >< ;1))
k

k.j

where now ¢, € L*(R’) so that ¢;. x|, ,; € L*(R"). As noted above, we can write

ALDD) = a(Br 210,17 = [ 10,17 »roals: D) PpC)dsdx = [ 3, (0) By
AP * = [ ) * By (x)ax
At(|¢k >< ¢j|) = (| ¢k >< ¢j‘X[0,t])

= [rourt(x >< y 110, 8400 B;()dxdy
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= R craA 6 ) B0 B )dxdy

Thus, defining the “Lindblad operator fields”

L) = D LR)Bpx), L) * = D LK) * $y(x), x € R?
k k

S(y) = 2 Sk )y ,0). x.y € R?

k.j

we can express the Lindblad noise term in the language of quantum noise field processes as
AW(D) = [RaLE)dA (x) = M) * dA () ¥ ) + [3  3S(x, A (x, y)dxdy

Along the lines indicated by Timothy Eyre, we can also think of constructing supersymmetric
quantum noise. Specifically, if ¢,,k=1,2,... is an orthonormal basis for L*R?), then we choose an

integer » > 0 and define the operator H in L*(R?) relative to this basis as

H = diag0,, I]
ie,
H| ¢, >=0,k=1,2,...,r,H| ¢, >= |, >, k=r+1,r+2,...
Equivalently,
H= Z |¢k>< ¢k‘
k>r

In other words, # is the orthogonal projection in L*R?) onto the subspace spanned by |¢, >,k > r.

Define

G(0) = (= DM = explimi(Hy g ) = T(explinH. 1, 1))

in the language of Weyl operators or more precisely, the projective unitary Weyl representation

defined by its action on exponential vectors. We then define the supersymmetric noise processes
gt = G P ang(n),a,b = 0,1,2, . ..
where 4y(n =1,4,(0) =A(p,) = a(@pro,)-a>1

AL = dA (1) * dA (1) dt
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6. Quantum neural network for synthesizing the line voltage and

current probability density by fine tuning of weights

First we make a small modification to the parallel component of the memristor line model. We assume
that the parallel memristors along the line each has a spatial width of A which is very small, ie,
comparable to 4z. This means that the current through the parallel section between the spatial points =
and z + dz is given by

dz. G(— 0,4(t, 2). MW(t, z) = GO)W(t, 2)dz — G ,(O)A. 0,q(t, 2)v(t, z)dz

We assume that G'(0) is very large of the order of 1/A, so that G'(0)A is a finite constant which we
denote by -G ,. We denote G(0) by G,. Thus, taking into account line loading, we can express the line

equations as
O(1,2) + Ryi(t, 2) + Ld,i(t, 2) + R (q(t, 2))i(t, 2) = f,(z)dB, (1) dt
0,i(t,2) + Gyu(t, 2) + COM(t, 2) + G 10,q(t, 2)W(t, 2) = f5(2)dB,(1)/ dt
In terms of the real and imaginary parts of the Fourier series components of the line voltage and
current and line charge, these equations assume the form
Dv(t) + Ldi(t)/dt + Ryi(t) = — F\(q(0), i(t)) + f,dB () dt
Di(t) + Gv(t) + Cdv(t)/dt = — F»(q(t), V(1)) + fodB,(t)/ dt
or equivalently, in Ito stochastic differential form,
di(t) = — (D/LW(0) + (Ro/ L)i(0) + Fy(q(0), i(1)))dt + f1dB (1)
dv(t) = = ((D/ O)i()) + (G/OW() + Flq(D), v())dt + frdB ()
where F,/L has been denoted by F, and F,/C has been denoted by F,. These equations are to be
supplemented with
dq(t) = i()dt
In short, the state vector
an = o’qo" "
satisfies an Ito stochastic differential equation of the form

di(t) = (4,0 + 0. F({(9))dt + H. dB(1)
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where the constant matrix 4, is built out of D/L,R,/L, D/C, G/C and the nonlinearity ¢. F is built out of
F,, F,, namely the nonlinearities that characterize the series and parallel memristors. We are assuming
that the effect of the series and parallel memristors is small and hence we can introduce a small
perturbation parameter ¢ that characterizes the degree of this smallness. Finally, the constant matrix
H is built out of the matrices f;,f, which in turn are built using the Fourier series coefficients of the
functions f,(2),/,(z). The pdf fit,®) =ft,v,q,i) satisfies the Fokker-Planck or forward Kolmogorov

equation
Ofit, &) = = V(A + 0. FOW ) + (1 2)THHHV N fit, )

The aim is to design the potential field of a multidimensional Schrodinger equation for which the
magnitude square of the wave function will track this pdf. More generally, we can use the Hamiltonian
and the Lindblad operators of an open quantum system as our weights to be adapted so that the
evolving mixed state that defines a probability density for an appropriate observable tracks this
desired line pdf. This can be achieved by using the Belvakin filter whose output is the conditional
expectation of an evolving observable given the measured output process derived from the

measurement model
dY  (6) = j(— (k)L — c(b)L k*) +dY (1)

with the c(k), L, selected so that it corresponds to the measuremnent of the line voltage and current of
the quantum system (ie a quantum transmission line) at a finite discrete set of points. The Belavkin
filter in the state formalism would then give the evolving conditional expectation of the quantum

mixed state given these output measurements.

After this training stage, suppose we take another line on which some additional small disturbance
has occurred. Then, we extract out an extra signal from this line that is correlated with this
disturbance and model this extra signal by a measurement noise corrupted version of a function of the
line voltage and current and design an extended Belavkin filter to provide fine tuned estimates of the
Hamiltonian and Lindblad parameters taking into account this additional measurement. In other
words, during the training stage, we estimate the state given noisy measurements of the line voltage
and current and during the testing state, we fine tune the state estimate by constructing a further
conditional expectation given signal measurements that are strongly correlated with the additional

attack/disturbance on the system.
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7. The effect of quantum stochastic noise fields in the computation
of quantum effective action and also in the computation of the

evolution of the state of a quantum system

We note that most of the classical action functionals of free Boson and Fermion fields can be cast in

the form
S[A] = [A@KE, DA@)d*xd'y
or if there are vector or spinor indices in the field,
S[A] = [ 4, (0K" (x, y)4 ()d*xdy
For example, consider the Maxwell photon field in a background gravitational field:
S[A] = (- 1/4)jFﬂV(x)F/N(x)\/%d4x
= (— 1/4)[g"g P\ gF  F

where

4,(x) are taken as the position fields. Note that we can always add a gauge fixing term to this action

without affecting the physics:
S[A] = S[A] + a. [0 (A" \-2)*(~g) %'
Note that the above gauge fixing term is indeed a scalar according to general relativity because
@4\ (—2) 2 = (4t )2
We have in the absence of the gauge fixing term,
S[A] = J‘(P/“’“/f(Av’/fAﬂ’a —A4, Ay Jd*
= [(proh —prebya, A, d*

where

PRab(x) = (= 1/2)gM%g"~[=g(x)

We define

Q,uva/)’ — P,uva/f _ Pv,ua/;’
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Using integration by parts, we have
SIA] = [P, A, '
[ 4,085 P ()25 (x ~ DA xdy
= [A,00K e, i )dvaty
where
K, y) = = aZ(Q’””‘ﬂ(X)6';54(16 ~»)

If the above gauge fixing term is taken into account, then we can still express the action in the above

form but with
K7, y) = = 00" P (00,0%(c = 1) — a. g (N-g0)3,[\N-g(0)0, (g -g@)d = y)(— g) )]

Now consider adding quantum white noise terms in the position field to this electromagnetic action:
Let a,(x),x € R* denote the quantum annihilation white noise field and « () * x€R* the

corresponding quantum creation white noise field. They satisfy the CCR
[a,(),a,0) %] = 1,0~ y)

assuming that the space-time manifold is flat. In order to define the quantum white noise fields in

curved space-time, we note that if we introduce the tetrad VZ(x) of the metric field, then we have
NV SDVo) = 8,,(0)
and hence defining
byx) = ayx)Vy(x)
and then
[5,6), b,0) *1 = 1, Vi@V 010} = ) = g, (0% (x = 3, %,y € R?

Note that this equation is still not diffeomorphic invariant. In order to make it so, we modify the noisy

CCRto
[b,(0), b,(0) *] = fix)g,, ()3 (x — »)
If under a space-time coordinate diffeomorphism x* — x*, we define with
TZ = 0x*/ oxt

then we get assuming that f{x) transforms to f(x),
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F0Z0)0*50r = ) = [5,x), b,0) ¥ 1 = [Tk, Th0)bpH) *1 =

T T E)E, (00 - 7)
8. Adding Bosonic and Fermionic noise to a general Hamiltonian

system with an example from quantum electrodynamics

The Hamiltonian can be expressed as
H=H\(Q,P)+ Hyq,p) + H3(Q, P, q,p)

where (Q, P) are position and momentum variables of the Bosonic system, (¢,p) are position and
momentum variables for the Fermionic system and #, is the interaction Hamiltonian between the

Bosonic and Fermionic systems. As an example, we consider the Lagrangian functional in ged:
L = (1) (— (curld)> + @A) + [ (iy. 0 = mypd’x + e[ (. Ay
A is the Bosonic position field, y is the Fermionic position field,
P=0L/60A=0A
is the Bosonic momentum field,
p=0LIddy = iy*
is the Fermionic momentum field and the total Hamiltonian can be expressed as
H=[P.oAd +[p.oy.dx~L
=1 /2)j (P2 + (curld))d3x + jl,/ *(a, — iV) + By + ej w*(a, Ay. dx
= (1/2)[ (P2 + (curl))dx = i[ pT. ((a, = IV) + pm)y. & — ie[ pT(a, Ay dx
Here, 4 is the magnetic vector potential 3-vector. Writing O = 4, ¢ = y, we can equivalently express this
as
H=(1/2)[ (P + (curl)?)d’x ~ i[ pT. (o, = V) + pm)gq. d’x — ie[ pT(a. Q)q. d*x
We can thus identify the Bosonic, Fermionic and interaction Hamiltonians respectively as
H{(Q,P)=(1/2) j (P2 + (curlQ)?)d>x
Hyg,p) = Im([p". (0, — V) + pm)q. d°)

Hy(Q.P.q.p) = Hy(©Q.q.p) = e. In(| p(a. 0)q. &*x)
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Note that 0, P, ¢, p are to be regarded as Hermitian operators in an appropriate tensor product of Boson

and Fermion Fock space. They satisfy respectively the CCR and CAR

[0, x), P(t,x )] = i6°(c =x), {g(t,0). plt,x )} = i8> —x")
[0(t,), (¢, x )] = [P(t, %), P(t,x)] = 0, {g(t,x). (2, %)} = {p(t, ). p(t,x )} = 0
[0, ), g(t.x )] = [O(t, x). p(t, x )] = [P(t, ), q(t, x )] = [P(t, ), p(t.x )] = 0
While calculating the amplitudes for various scattering, absorption and emission processes of
photons, electrons and positrons using the Feynman path integral, we must use the Bosonic path

integral w.r.t 0 and the Fermionic Berezin path integral w.r.t g.

Remark: More precisely, the Fermionic position fields g are to be taken as the real and imaginary parts
of the wave operator field y and likewise, the corresponding Fermionic momentum fields p are to be
taken as the real and imaginary parts of iy * or equivalently, as the imaginary and real parts of y
respectively. It follows therefore that this is a constrained Hamiltonian problem with constraints
given by

PR=4pP;= 4R

Of course, these constraints are compatible with the CAR

{gg(t.2), pp(t, x )} = i0°(x = ), {g (6,0, p (1, x )} = i6°(x = x)
Now, given the total Bosonic and Fermionic Hamiltonian as H(Q, P, ¢, p), we can add quantum noise to
this Hamiltonian by replacing 0, with c(a, b)d4,(r)/dt+ c(a, b)dA lj" (n/dt and ¢, with
d(a, b)dJ ()/dt + d(a, b)d]a* ()/dr where 4 (r) are the Bosonic annihilation processes Aa* (¢) are the creation
processes, and dJ (1) = (— I)A(f)dAa(t) are the Fermionic annihilation processes with A() = (L. X10.17)-
These processes satisfy respectively the CCR and CAR:

[4,(0), Ay(s) *1 = min(t, $)d(a, b), {J (1), Jy(s) ™} = min(t, s)d(a, b),
[4,(0), A,(9)] = [A (0, T($)] = [A,() *, Jy()] = 0

If instead, we deal with quantum field theories, wherein Q (t,x), P (1, x), ¢ (t, %), g (¢, x) are the Bosonic
position momentum and Fermionic position and momentum fields, then we would have to add
quantum noise to this theory in the following form:

0,(t,x) = O, (t,x) + ¢ (t, x)dA (t, X)/dt +  (t, x)dA (1, x) * /dt

q,(t.x) = q,(t,%) +d (t,x)d] (t,x)/dt + d (t,x)dJ (t,x) * |dt

Note that the conservation process field is given by
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dA (a,x; b,y) = dA(t,x) ¥ dA (t,y)/dt,a,b > 1,x,y E R}, a,b > 1
The quantum Ito formulas read
dA (t, x)dAy(t, ) * = dt. 8(a, b)d*(x — )
so that
dA (@, x; b, y)dA (t,2) % = dA,(t, ) * dA (t, x)dA (1, 2) ¥ Jdt = dA,(t,y) * 5(a, )03 (x - 2)
or equivalently, in terms of ¢, y, y € L%(R3),

dNfa, §; b, )dA (1, 1) * = dA,(t, y) * 8(a, )03 (x — 2)p(y) Pley()dxd>z

=da,c) < Ply>.dA,t w)

9. Some versions of supersymmetric quantum stochastic processes

Consider first the generalized noise processes Ay(0),a,b=0,1,....N where
AYD = 6, AG(0) = 4,0, AAD) = 4,0 * and AYD) = A(|e, ><e,lx[g.q)ab=1,2,...,. where [e,>,a=12,...,

is an onb for L2(R%). More generally, with x, y € R*, we have

M) =Alx><y)= D < ¢,lx><yl¢, >a,)*ap,)

n,m

= Y a(¢,) * a($,)$,()9,,0)

=a(X, 19, >< ¢, lx>)*.a(Q, 1§, >< B,ly>) =allx>) *a(ly > ) = alx) *a(y)

n m
where | ¢, >,n=1,2,... isan onb for L}R*.
Now if H is an operator in L>(R?), we have

A(H) = MH) = XH. x[0,:7)

= D ley><e | Hley><eylx (o)

a,b>1

= 2 Mle,>< eplxo,i) < eqlHle,>

a,b>1

= > AwH(@, b

a,b>1
where now

H(a,b) =<e,|H|e,>,a,b, =1
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If we extend this definition by setting H(0, 0) = ¢, H(a, 0) = m, H(0, b) = ii,,a,b > 1 and put ¢, = 1, then we

can formally write

MH. X 1o.7) = X Z Ha,b)|e, >< eyl x10,,7)
a,b>0

= H(0,0)t + ) H(a, 0)4,(0) ¥ + Y HO,H)A, () + Y. H(a, )A ()

P b a,b>1
=ct+Am)* +4,n)+ A(H)
where H = (H(a, b)), p>1-

Note that more generally, if 4 is an operator in L%(R#), we have

WH)Y = ). M| ¢, >< $,|)H(a, b)

a,bz1
where now
H(a,b) =< ¢ |H| P, > ,a,b>1
We define for / an operator in L4(R?),
G(t, H) = T'(exp(H,)) = W(0, exp(H ), H, = H.x ¢
Note that the family G(z, H), t > 0 forms a commutative family of operators in the Boson Fock space
T(L*(R?) ® LAR,)) = T (LAR* xR )
and that if /7 is skew-Hermitian, then all the operators in this family are unitary. Let

AK) = Y K(a, b)A(0) = K(0,0) + K(0, )A,(0) + K(a, 04, () ¥ + ) K(a, b)AL()

a,b20 a,b>1
where K = ((K(a, b)), >, OF equivalently, K corresponds to the operator ¥, ,.(K(a,b)|e, >< ¢, | in LYR).
Now, define

d¢(H, K) = G(t, H)dA (K)
or equivalently,
E(H,K) = [ Gls, HYIA(K). 1> 0
For s < ¢, we have the obviously proven identities
< e(v)|dS(H, K ). dE(H, K,)) | e(u) >=

< e(v) | T(H,). T(H,) | e(u) >< v(s) | exp(H)K, | u(s) >< v(0) | Ky |u(t) > dids

< eW|d(H, Ky). dE(H, K )| e(u) >
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=< e(V)|T(H)YT(H )| e(u) >< v(s) | K,. exp(H) | u(s) >< v(t) | K | u(t) > dtds

This means that (again, keeping in mind s < rand u(?) = 1), fora, b,c,d > 0,
< e(v)|T(H ). dN5(0). T(H). dN(s) | e(u) >=
u (0). V(e < e(v) [T(H)T(H,) | e(u) > u (s)(exp(H) * ¥(s)) ds
=< () |T(H)T(H ) | e(u) > . (exp(H) * 7)) 4. u (5). V(O)u (t)dtds
and
< e(V)|T(H,). dNS(s). T(H ). dAK(1) | e(u) >=
< e(v)|T(H). T(H,)| e(u) > . ¥ (s)exp(H)u(s)) . ¥ y(Ou (dtds
Multiplying these equations by K, (b, 2)K,(d, ¢) and summing over all 4, b, ¢, d > 0, we get
< ()| T(H YA (K ). T(H )dA (K )| e(u) >=
<eW|T(H). T(H)|e(w) > %O(K 1(b, @)V (g (D). ( ;OKz(d, N exp(H) * W(s)) ju (s))drds

—< e(v) | T(H,). T(H,) | e(u) >< v(0) | Ky |u(t) > . < v(s) | exp(HDK | u(s) > dids

and likewise,

< e(v) |[T(Ho)dA(Ky). T(H )dA (K1) | e(u) >

=< e() [P(H)T(H,) | e(u) >< W(s) | K. exp(H) [ u(s) >< v(0)| K | u(t) > deds

Note that uy(r)=1 and u,(r),a > 1 are complex functions on R, such that Zalef)°|ua(t)|2dt = u |2 < 0.

Then,

< e(W)|dN(K) e(w) > | < e(v)|e(u) >= [K(0,0) + Y K(0, a)u (6) + D K(b, 0)7,(t)

a>1 b>1

+ Y K(a, byu (0i,(0)dt

a,b>1
The expression on the rhs is abbreviated as
<V | K u(@) >
ie, it is the same as
(1, (O] * K1, w()"]"
where w(7) = (v,(0)) 1 1> u(®) = (1)), and K = (K(a, b)), > -
We then deduce that for s < ¢,

< e(v) | T(H )dA (K ). T(H )dA (K)| e(ut) >
< e(v) | T(H )dA (K,). T(H )dA K ) | e(u) >
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<w(s) |exp(H). K, | u(s) >
<) Ky exp(H) | u(s) >

or equivalently,

<eW|dS(H, K ). dl(H, K,)|e(u) >
<e(v)|dE(H, Ky). dE(H, K )| e(u) >

< v(s) | exp(H). K, | u(s) >
<) [ Ky exp(H) | u(s) >

Of course, if ¢ is any complex number, we also deduce on defining the "¢ commutator" between

operators 4, B
[4,B], = 4B — qBA
that fors < ¢,
<eW)|[dE(H, K,), dS(H, K»)] | e(u) >= dtds < e(v) |T(H)U(H,) | e(u) >< v(s) | [exp(H), K], | u(s) >
In particular, suppose that we are able to find ¢, = ¢,(#, K,) such that
lexp(H), K], = 0
then we get
< e)|[deH, Ky), dE(H, Ky)], [ e(u) >= 0,5 <1
and suppose we find ¢, = ¢,(H, K,) such that
lexp(H), Ky, =0
then,
< eW)|[dE((H, Ky), dE(H, K )], [e(u) >= 0,5 > ¢
or equivalently,
< eW)|[dé(H, Ky), dE(H, K))]y 14, 1e(u) >= 0,5 > ¢
In the particular case, when 1/¢4, = ¢, = ¢ for given matrices H, K, K,, we get
< eW)|[dS(H, Ky), di(H, K2)] | e(u) >= 0,1 # s
Further, it is immediate from quantum Ito’s formula that
dé(H, Ky). dé(H, Ky) = F(H,)szt(Kl). dA(Ky) =
= I(H)*K (a, DK (c, d)dAs(t). dAj(z)

= I(H)*K (@, D)K,(c, ) XA (0)
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= T(H)X(K). € Ky)(a, d)dN’(t) = T(H)dA (K. €.K,) = d&(H? K. € K)

This immediately yields, for all z,s > 0
<eM|[EH, K,), E(H, Ky, | e(u) >=
< W) Epin(r.)HLK . € Ky = q. Ky €K |eu) >
so that we deduce a ''q-commutator Lie algebra":
[SAH, K1), E(H, K], = ém,-n(,,s)(Hz, K| €Ky,—q.K, €K),t,s>0

This identity is easily generalized further to the case when #,, #, are two commuting operators in

L*(R%) and ¢ is a complex number such that
[exp(H)). Ky, = [K . exp(Hy)], = 0
then
[E(H . K\ E(Hy Ky = S 1.y H{Hp K| € Ky = q. Ky €. K)). 1,52 0

Now, let us consider how these results can be applied to formulate a supersymmetric quantum noisy
field theory. For the basics of supersymmetric field theory and supersymmetric quantum stochastic

processes, we refer tol3l andl4l,
Suppose ¢5(z, x) form supersymmetric quantum fields with «, 5 > 0 such that if (¢, b)) = 0, ¢, describes a
Boson field and if o(a, b) = 1, ¢, describes a Fermionic quantum field. After adding supersymmetric
quantum noise to this quantum field, we wish to write down the field equations. Specifically, assume
that the action functional for this supersymmetric field has the form
SI1 = [ @6, OM(x, v |, b, ¢, d) (e, y)d vyt
We have defined the quantum noise processes &(H, k). We specialize to the supersymmetric case by
taking H,, = diag[0,, I] so that
G(t, Hy) = T(Hy,) = (= MHo) = (0, exp(inH,y,))
Then, we can write for any operator # in L*R?),
AN (H)/dt = [ <x|H|y > dA(|x ><y|)/did*xd®y = [ H(x, y)a(t, x) * a(t, y)dxd>y

= jH(x, YIdA(x)/d) * (dA )/ dt)d3xdy

In other words, we can write

AN (|x >< y|)/dt = (dA (x)/di) * (dA(v)/di), x,y € R3
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Writing
G(1) = T(H,,) = G(t, Hy)
we can define the supersymmetric processes
dzj() = G P dn(0),a,b > 0
It is clear that this can be expressed as
dgj(o)/de = (dé(0)/ dr). dE*(6)/ de
where
de(t) = GO (D dA (f) = G(t)“'(")d/\g(t)

dey) = G0 P aa,f (1) = G607 P Ay = @) *

where 4, b > 0. Generalizing this to quantum noisy fields, we have with ¢ (x),» > 1 denoting as earlier,

anonb for Z2(R% andf,,a = 1,2,...,Nan onb for CV,
dA(b,x|a,y) = dAZ(t, x,y)/dt = (dAb* (t,x)/db). (dA (1, y)/db), x,y € R,a,6=0,1,...,N
and
dA(f, x| g, )/ dt =< f,|f><glf, > dAZ(t, x,y)/dt
AN Plg.w)ldt =< g|f, >< fy|f> [ < @lx ><y|y > (ALt x, ) /dD)d>xdy

=< glf, >< S| > [ BOOWONAALE x, y)/ di)dPxdy

=dA(g® ¢|/® y)/dt

des(t, x, y)/dt = G(0)°(4-PY A1, x, y)/di = G(1)°(9-P) (dA b* (t,x)/db). (dA (t,y)/dt),a,b=0,1,. ..

The quantum Ito formula then reads

dNS(tx,y). dAS(t,x ', y") = €5, 8%y —x At x, y ) /dt

In particular,
dA(t,x). dAy(t, ) * = 6,,0°(x —y)dt,a,b=1,2,...,N
and,
déi(t, x) = G0V dA (t, x)/ dt
dé(t,x)/dt = G(0)” ") dA ¥ (t,x)/dt
so that
geios.com doi.org/10.32388/YHPFTT
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dg(t,x). dEy(t,y) = 67 O —y)dt.a,b=1,2,....n

and the supercommutation relations then read

gt x, ). dE(t x ,y") = (= D@D Dy 'y g x,y) =

€53 —x ). dey(t,x,y") — (= 1) DD e3 0" —xdede, x', y)
dey(t, x,y) = déy(t, x). dE(1, )/ dt

or equivalently,

dgy(t, x, y)/dt = (d&,(t, x)/di). dE*(t, y)/dt = (dEP(t, x)/dt) * (dE*(t, x)  di)

= G(1)? (D) (dA,(t,x) * /df). G(t)* D (dA (t, )/ dt)
= GO (@D TPV (dA (1, x)/dt) * . (dA (t, )] df)

= G(t)”("”’)dAZ(t, x, )/ dt
Now, the supersymmetric action functional
Sol¢l = [ ¢°(t,0) * M(x, v a, B)PP(t, )~ vt
after taking into account supersymmetric noise gets modified to
S[@] = (Sy+ 6S)[P] = j(¢“(z, X) ¥+ dE (b, x)1dt). M(t, x, ¢ | a, b). (@8, y) , dEb(t', y) 1 dtyd*xd>ydrdt’
= [0 * Mt x, 1,y |a, BB, ) dPxdvdrdr +
+j &t x) ¥ Mt x, 1,y a, bYdEE(L, y)  dD)d xdPyddt + j(dga(z, )/ dOM(t,x, 1",y |a, b)pP(t , y)d>xd ydrdt’
+(M(t,x, ',y |a, BYAE (1, x)/do). (dE2(t, y)/ di)d>xdydrdt'

Note that ¢“(z, x) are Bosonic fields for a = 1,2,..., and Fermionic for a =r+1,..., N, just as ¢“(z, x) are
Bosonic fields for «¢=1,2,...,» and Fermionic for a4=r+1,...,N. Note that

o(@)=0,a=1,2,...,r,0(a)=1,a=r+1,...,Nso that since o(a, b) = o(a) + o(b) modulo 2, we can write
(ot@, b)), <y pey = diaglO,. Iy ]
Thus, writing
Pt %) = ¢t 1) *
and recalling that
dgy(t, x,y)/dt = (d&,(t, x)/dr). (de*(t, y)/dt
we get our formula for the noisy supersymmetric action as

§=So[p] +aS[¢]
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where

Sl = j X)X M, x, 1, y|a, bY@, y)dPxd ydrdr’

os[¢] =

+[ @t Mt x, 1 y|a, bYAE , y) diyd xdPydudt’ + [ (dE (2, )/ d)M(t, x, 1y | a, H)PAt , y)dxdPyardt’
+_[M b 3.3
(t,x, 8,y a, b)(dE (¢, x, )/ d)d"xd ydt
The fundamental problem in computing the quantum effective action for the supersymmetric fields
@“(t,x),a = 1,2,...,Nin the presence of quantum noise now gets modified to the problem of computing

the TPCP evolution of a mixed state on field space in the presence of quantum noise by means of the

Feynman path integral:
prDr vp) =< 2| [expGS A B). po( By vo)- exp( = iS Ly DDHO, T). DG * (0, YDy(0, YDy * (0, T) | x(w) >
This computation in the purely Bosonic case can be evaluated in closed form based on the formula for
< () |exp(a(@) + a(y) * + A(H) | x(w) >

where y(u) is a normalized coherent state. Note that in the purely Bosonic case, the noisy action

functional is given by
SIB) = [(B(t.x) + dd (£ %) * /). M(t,x, 1, y| a, b). (§°(t . y) + dA (¢, y)/diydudt d*xd’y
Sol@] +S[¢]
where

Sol@] = [ @ (. x). Mt x. ¢,y a,b). $°t" . yydrat dxdy

os[ @] =

+ j (LM x, 1, y|a, bYdAt,y)/d)d*xdydrdt " + j(dAa(t, )/ dOM(t, x, 1", y|a, b)PP(t', y)dxd3ydrdt’
+ j M(t,x,t,p|a, bYAAL(t, x, y) diydPxd yat
= a(yy) + alyy) * +A(H)
where
b’ ¥ = j M(t,x, ¢,y | a, bY@, (t, x)d xd
or equivalently,

Yot y) = [Mex, 0 y|a, b)@ (e 0)d xdt = [M(e'y, 1, x| b, a)§°(t, )dPxdt = MB)*(¢t', y)
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Wi x) = [Mtx, 1y a, H)QPE  dvd = (M)(z, »)

or in short,
Y=y, =M¢
ie
w(t,x) = wy(t,x) = M(t, x)
ie,
Y1t x) = w3, x) = (MP)“(z, x)
and finally,
MH) = j M(t,x,1,y|a, b)(dAZ(t, x, »)/ dO)d>xd>ydt

so that

H(t,x,alt',y,b) = M(t,x, t,y|a, )t — 1) = H'(t,x, ', y)
so that

AH) = [Ht,x,at .y, bay(t,x) ¥ ay(', y)dt dyatd’x =

j H(t,x,alt',y,b)Ma, t,x|b,t", y)dt dydid’x

Remark:

IM(t, X, t',y |a, b)a (1, x) * at ’,y)dtd3xdt,d3y
= L oM@, t',y|a, b)(dA(t,x)/de) * (dA,(t, y)/ dtyded xdt ' dy’

+Jt:,rM(t, xt,y|a, b)(dAfj(z, x, )/ dd>xd>ydrdt’

We assume that the kernel M(z, x, 1, y| a, b) has support at r = ¢, ie, it is expressible as

q
M(t,x, 1 y|a,b) = D M(t,x,y|a, b)) (1 — 1)
r=0

for some finite positive integer ¢. In that case, the first term

j po Mt x, 1y | @, bYAA (1, )/ dt) * (dA (. ) dided’xdt' dy

vanishes and we are left with the second term only. Therefore, in such a case, we have

Jt:trM(t, X, t',y |a, b)(dAﬁ(l, X, y)/dt)d3xd3ydldt' = _[M(t, X, t',y |a, b)(dAz(t, X, y)/dt)d3xd3ydtdt'
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Such a singularity w.r.t the time coordinate holds for almost all the known field theories like
electromagnetism, scalar Klein-Gordon field, vector Boson fields, Dirac field, Yang-Mills non-Abelian

gauge fields and gravity in general relativity.

10. Conclusions

We have formulated a quantum version of nonlinear transmission line theory based on open quantum
systems and the quantum master equation based on a Hamiltonian for the transmission line to
account for inductance and capacitance distributed parameters and Lindblad operators to account for
resistive loss as well as loss, memory and nonlinear effects from distributed memristor parameters.
We have then explained how random line loading in the classical sense can also be quantized in the
from of quantum stochastic differential equations for the line voltage, charge and current using the
formulation of Hudson and Parthasarathy. We have explained how line parameters, voltage and
current can be estimated using quantum filtering theory as first formulated by Belavkin and finally
polished and presented by John Gough and his colleagues. We have included a short digression on
quantum neural networks on how to use the quantum master equation to track the joint probability
distribution of the line voltage and current hence how to simulate the transmission line with random
loading using a quantum mechanical model. Since the transmission line describes a quantum field in
one space and one time dimension, a natural question to ask is how quantum noise can be
incorporated in standard Bosonic, Fermionic and supersymmetric quantum field theories in one time
and three space dimensions. We have provided some suggestions in this regard, once again using the

Hudson-Parthasarathy quantum stochastic calculus.
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