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Scalars, vectors and tensors (of second and higher ranks)

formed the basic mathematical representation for the

description of physical quantities independent of the

choice of reference frame. However, the universe of the

elementary particles requires the introduction of another

class of mathematical objects called spinor. Truly

speaking, it does not belong to the family of tensors. Spin-

zero particles like    mesons, spin-1 particles (like

deuterons) and spin-2 particles (like gravitons) are

adequately described by scalars, vectors and tensors

respectively. Interestingly, the most common particles like

electrons, protons, and neutrons, all with one-half

intrinsic angular momentum, are missing from this list.

These particles are properly described by spinors which

differ from vectors or tensors with respect to the

properties under coordinate transformation  [1]. Twistor is

another mathematical representation, introduced by

Penrose, which also attracts recent attention of string

theorists.

Use of matrices as transformation operators also has

limitations. Quaternions, introduced earlier by

Hamilton  [2], eventually turn out to be more useful in

describing rotation about an arbitrary axis in three

dimensions (3-D). In fact, Hamilton's work on quaternions

has provided a sort of uni�cation of complex algebra and

3-D vector algebra (VA). The wedge product ( ) of two

vectors    and  , de�ned in the following year by

Grassmann in his Algebra of Extension (or simply, the

exterior algebra), on the other hand, is by far an inclusive

de�nition and aptly generalises the cross product of 3-D

vector algebra to higher dimensions [3]. Two, three or any

number of linearly independent vectors in a given

dimension are 'wedged' together to produce bivector,

trivector or even higher grade elements of the algebra.

Clifford  [4]  has �nally uni�ed the works of Hamilton and

Grassmann in 1876 to form the foundation for a new

algebra of mathematical physics with several distinctive

features. The multiplication rule of geometric product
(introduced by Clifford) combines both dot and wedge
products of vectors and allows any linear combination of

scalar(s), vector(s), bivector(s) and higher grade

multivectors to be a member of this algebra. A seamless

extension to any dimension and the further development

to its modern version geometric algebra (GA) by

Hestenes  [5], usher in a rapid advancement of this

pro�cient replacement for the vector and matrix algebras.

Hestenes has elaborated Clifford's work to show how it

unites "vectors, spinors, and complex numbers into a

single mathematical system with a comprehensive

geometric signi�cance"  [6]. It provides an approach to a

coordinate-free geometry where the geometric objects

(points, lines, planes etc.) are represented by members of

an algebra, rather than by equations relating coordinates.
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The geometric operations (rotation, translation etc.) are

then implemented by algebraic operations on these

(geometric) objects. The advantages of GA over traditional

approaches of vector, tensor and spinor algebras "are

similar to those of elementary algebra over arithmetic."

The geometric approach emphasises and explores the

geometric properties of the basic ingredients vectors,

bivectors etc., independent of any basis  [7][8]. Increasing

number of scienti�c groups are now applying GA to a

range of problems in varied research �elds.

We intend to provide an introductory exposure of this

rapidly growing powerful apparatus of theoretical physics

for advanced undergraduate students in two parts. In this

part, after an initial recapitulation of multiplication rules

in conventional 3-D vector algebra, we will discuss the

'wedge product' of vectors introduced by Grassmann and

also the quaternion and spinor algebras which form the

basis of our introductory discussion on GA in sec.4.

Starting from the usual de�nition of geometric product

between two vectors, procedure for obtaining the product
of three or more vectors are clearly described using the

proper order of multiplication for taking the three products -

dot, wedge and geometric of two vectors. With the help of

appropriate multiple dot/inner products, introduced earlier

in Grassmann algebra, geometric product between

multivectors of higher grades are also derived in some

detailfor any vector space of arbitrary dimension. We will

also learn in the following that, the very notion of

geometric product endows the basic vector space with an

algebraic structure that embraces the vector, complex and

the spin algebras in a single formalism and sets apart

geometric algebra from others.

For advanced students, well conversant with vector and

tensor algebras, sec.1 up to 1.2 might appear familiar. The

dot, cross and triple products of standard vector algebra

each admits both geometric and algebraic interpretations.

But, whereas the cross and triple products of VA are

de�nable only in 3-D, the wedge product allows for similar

interpretations even in two and all higher dimensions. To

start with, in the following discussions we will assume the

addition/subtraction rules of VA and proceed with the

different multiplication rules.

1. Cross and dyadic products -

products of the vector and tensor

algebras

Using Einstein's sign convention and the de�nition of

cross product ( ) for orthogonal basis

vectors  , the cross product of two 3-D vectors   and   in

VA is given by:

where    is the Levi-Civita symbol - each element of

which is given by the scalar triple product of unit

orthogonal coordinate basis vectors   in 3-D, as:

and collectively    form an antisymmetric (on each pair

of indices) covariant tensor of rank three. Also,    is a

second rank covariant tensor obtained by contracting1

 with the second vector  ,   being the product vector.

Furthermore,

So,    is an antisymmetric tensor of rank two and the

cross product of two contravariant vectors may be

expressed as a contraction (inner product) of an

antisymmetric covariant second rank tensor with one of

the (contravariant) vectors. In mathematics, a tensor is

introduced as a linear operator and a second rank tensor

transforms one vector into another. In physical theories

we have the examples of quantities like the (electric)

polarisability tensor converting the applied �eld into the

induced polarisation (vector) in an anisotropic medium,

the moment of inertia tensor transforming the angular

velocity into angular momentum of a rigid body. It may be

noted here that, for orthogonal (curvilinear) coordinate

systems2 the distinction between contravariant and

covariant disappears. However, in the present discussion

we retain the distinct notations to make the process of

contraction apparent.

The product vector of eq.(1) is de�ned along the normal to

plane formed by the two vectors    and    and its

magnitude is given by  , 

 being the angle between the two vectors. The magnitude

is, therefore, equal to the area of the parallelogram

determined by the two vectors. The cross product of two

vectors can also be expressed in the form of a determinant

of a special    matrix formed with the 3 orthogonal

unit basis vectors and the components of the two vectors

as the three respective rows. Thus, the cofactors along the

�rst row gives the components of the resulting vector.

However, it is to be noted that the absolute direction of the

product vector is �xed according to some convention -

right- or left-handed. Physical quantities like linear

displacement, velocity, acceleration and force, having an

absolute direction in space, are represented by ordinary or

polar vectors. But the representation of the angular

velocity of a rotating body as a vector along the axis of

rotation in VA, lacks an absolute direction and the

direction is �xed according to the convention. Similarly,

the direction of the magnetic �eld lines, produced by

moving charged particles, forming concentric circles

around the current carrying conductor (the length of the
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wire) is again convention (the right/left hand grip rule)

dependent. According to VA, such quantities are expressed

in physical theories by the cross product of two polar

vectors and called axial or pseudo vectors. They transform

like ordinary vectors except for improper rotation such as

a re�ection or inversion which produces an additional sign

�ip in them. The transformation rules for polar vectors

and pseudovectors can be compactly stated as:

where the rotation matrix    can be either proper or

improper. The symbol 'det' denotes determinant - the

Jacobian of the transformation. This formula works

because the determinant (the Jacobian) of proper and

improper rotation matrices are    and  , respectively.

Furthermore, it is evident from eq.(1) that, the cross

product of two polar vectors transforms like a covariant

vector under proper rotations3. It may also be noted that

depending on the types of the two vectors to be multiplied,

the product vector may be either polar or pseudo. Cross

product of two like vectors yield pseudovectors, whereas

for two unlike vectors (one polar another pseudo), the

product is an ordinary or polar vector.

The scalar product of an ordinary and a pseudovector (or

equivalently the scalar triple product of polar vectors)

gives a pseudoscalar which, unlike a true scalar, changes

sign under improper rotation. Geometrically, it is the

volume of the parallelepiped formed by the three vectors

and algebraically - the determinant of the matrix formed

with the three column vectors. Similarly, the divergence of

an axial vector �eld represents a pseudoscalar. Also,

multiplication of an ordinary vector by a pseudoscalar

produces a pseudovector. There are number of quantities

in physics which behave as pseudoscalars4.

In usual vector equations like  , both    and    are

either polar or axial vectors. Similar restrictions apply to

scalars and pseudoscalars and, in general, to the tensors

and pseudotensors, to be considered subsequently. Also, if

the nature does not distinguish between a right-handed or

a left-handed coordinate system, adding or mixing an

axial vector with a polar vector is not needed then.

However, a pronounced exception to this occur in the case

of beta decay involving weak interactions, where the

physical universe distinguishes between right- and left-

handed systems, and a proper description of the process

calls for a V-AV (vector minus axial vector) Lagrangian for

the weak interaction as proposed by Sudarshan and

Marshak [9].

Finally we note the dif�culties with the de�nition of cross

product in VA. The product vector lacks an absolute

direction and the de�nition introduces unwarranted

notion of 'handedness' in certain physical theories. More

importantly, it can be de�ned only in 3-D. In 2-D there is

no space for the product vector, whereas in higher

dimensions, the concept of a vector orthogonal to a pair of

vectors is not unique. Since it is not possible to de�ne the

cross product except for 3-D space, the notion of

pseudovector based upon the cross product cannot be

extended. In fact, an appropriate generalisation of it is

indeed possible in terms of the wedge product, which

allows for more ef�cient geometric and algebraic

interpretations and elucidates the notion of pseudovectors.

A brief outline of Grassmann's exterior algebra will be

presented subsequently.

1.1. The dyadic or tensor product of two vectors

In an  -dimensional Euclidean space, the dyadic product

of two vectors   ( ) and   ( ) is given by:

Since each component (  or  ) is associated to a pair

of unit vectors, it is called a dyad (the word 'dyad' means

pair). A dyad represents a quantity that has magnitude and

two associated directions and transforms like a tensor of

rank two. Also, it acts as a linear operator that transforms

one vector into another and therefore, is a tensor of rank

two. The dyad or any second-rank tensor is also

represented by a square array (matrix), with the  -th

element given by  . If  , it is the unit dyad,

similar to the identity matrix with the de�ning property: 

. The dyadic product is also called the tensor

product of two vectors. The dyadic product of a vector and

a pseudovector gives a pseudotensor.

In tensor calculus, the dyad    is de�ned as the

gradient of a vector  :

are the components of a second-rank mixed tensor. If we

contract over the indices    and    we get a scalar 

  - the divergence of  . Similarly, one can

de�ne the action of the vector differential operator   on a

dyad. The gradient of a dyad is a tensor of rank three, the

divergence gives a vector and the curl of a dyad is also a

dyad.

Although a dyad represents a tensor of rank two, not all

second rank tensors can be constructed using dyadic

product of two vectors, i.e. all tensors are not dyads. The

sum of two dyads or any linear combination of dyads

represents a tensor of rank two but not necessarily a dyad

because it may not be written as a dyadic product of two

vectors (unlike the sum of two vectors which is a vector). It

may be also noted that the nine components of dyadic

= Rv; (v, a polar vector)v̄

= det (R)(Rw); (w,  a pseudovector)w̄ (3)
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product actually involve six distinct scalars (the

components of the two vectors) only, whereas a general

second rank tensor has nine independent components

which are not related to each other in any way. Dyads,

therefore, represent a sub class of second rank tensors.

1.2. Properties of dyads

 The dyadic product is distributive over vector addition:

 If   is subtracted from itself, we get a null dyad  , each

elements/components of which is zero. Now, it is evident

that    dyadic products are not

commutative  .

 Multiplication with a scalar is associative:

, for any scalar  .

 The operations of a dyad/tensor on a vector, de�ned by

the pre and post dot and cross products of the vector with

the dyad may be appended as follows:

(i)  ,

(ii)  ,

(iii) 

and (iv) 

where, (i) and (ii) represent vectors (with a null vector  , 

), (iii) and (iv) gives dyads representing

pseudotensors.

Here, the dot and cross multiplications are to be carried

out �rst. Note that, the dot (inner) product of two dyads: 

  is a dyad and

not a scalar-valued function. One can also de�ne the

double dot product of two dyads as: 

, which gives a scalar.

Similarly, one can de�ne double cross and dot cross mixed

products of two dyads. Tensor product of a dyad with a

vector gives triad - a tensor of rank 3: 

, in which there are now   or

27 elements (components). Tensor product of two dyads

gives a tensor of rank 4 and so on.

Since    always has to be parallel to  , the

representation provided by the dyadic product, therefore,

cannot map a vector onto an arbitrary vector. Also, any

linear combination of dyads represents a second rank

tensor. It follows that not all second rank tensors can be

represented as a dyad as noted earlier.

Again, since    is a vector parallel to    whereas, 

  is a vector always parallel to  , it also implies

that dyadic products are in general noncommutative.

Swapping of vectors results in the conjugate or transposed

or adjoint dyad. In the special case when it is commutative,

the dyad is called symmetric. A symmetric dyad 

 obtained from the unit vector   projects an arbitrary

vector    parallel to  . These projection operators (

) are idempotent ( ).

Tensor relationships of the form    that take the

vector (quantity)    to a new vector  , and allow each

component of   to in�uence each component of  , arise in

many physical contexts, such as polarization or current

�ow in an anisotropic medium, or wave propagation in a

plasma. Each element of the tensor   relates the in�uence

of a component of the stimulus to one component of the

response; for example,   accounts for the contribution to

the  -th component of the response �eld   due to the  -th

component of the applied �eld  .

Under coordinate transformations, components of a

tensor transform in a speci�ed manner that conforms

with the golden rule of physics: physical observables must

not depend on the choice of coordinate frames. Tensors

furnish a concise mathematical framework for solving

problems in physics, especially in the theory of elasticity,

solid and �uid mechanics, electromagnetism and general

relativity.

A tensor   is said to be reducible, if it can be decomposed

into parts of lower rank tensors. Consider a general second

rank Cartesian tensor  . One can always separate it into

its symmetric and antisymmetric parts as:

The antisymmetric part    ( ) has only

three independent components and acts like a

pseudovector    in 3D, with    in cyclic

permutation of  . As we will see in the following

section, an antisymmetric second rank tensor is actually

equivalent to a bivector - the wedge product of two

vectors.

Also, the trace of  ,  , is a scalar quantity and

subtracting the scalar   and the antisymmetric part   or

the'vector'    from the original tensor, one can have an

irreducible, symmetric, zero-trace second-rank tensor  ,

given by:

with only �ve independent components. So, the original

Cartesian tensor    is composed of the three quantities 

  and    which have the same transformation

properties as the spherical harmonics    for 

  and    and are assumed to represent spherical

tensors of rank  ,  , and  , respectively.

Similarly, one can have a unique decomposition of a higher

rank tensor. Thus, it is possible to associate angular

momentum quantum numbers with the irreducible

tensors (operators). Exploitation of these properties leads

to the Wigner-Eckart theorem which offers a quick

∙
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determination of the selection rules that follow from

rotational invariance.

De�ned on a vector space, tensors describe linear relations

between scalars, vectors and other tensors. On the other

hand, the dot and cross products of VA are formally

de�ned by the metric and the Levi-Civita tensors

respectively. Tensors thus generalise and extend VA by

including scalars and vectors in the 'tensor family'.

However, the inadequacies of VA remains in the general

formulation. Moreover, the standard tensor algebra is still

treated as an add-on in the physics curriculum and the

language of Einstein's theory of relativity so differs from

the ordinary vector algebra that it amounts to a new

language for students to learn. In this context, it is

important to probe the assertion of Hestenes that, in

applications, GA is more versatile than tensor algebra [10].

2. The wedge product and Grassmann

algebra

The Wedge product, also known as the exterior product or

the progressive product of vectors, was de�ned by

Grassmann in 1844 in his new algebra – a theory of

scalars, vectors and multivector blades (bivectors,

trivectors etc.)5. It operates on both scalars and vectors –

with scalars, it is the simple scalar multiplication. The

wedge product of a vector   with itself is always zero – as

in the case of cross product (de�ned only in 3D). Using the

basis vectors  , wedge product is precisely de�ned as 

. This is clearly more accommodating

than the de�ning equation of cross product of VA and it is

this distinction which enables the wedge product to be

de�ned in any dimension starting from 2-D. Using the

above de�ning equation, the wedge product between two

distinct vectors   and   in 2-D can be easily expressed in

terms of their components as:

and the single-component 'bivector' in 2-D represents

another new mathematical entity - 'pseudoscalar', distinct

from both scalar and vector. Also,   represents

the unit pseudoscalar (

).

For two distinct vectors   and   in 3-D, one gets similarly:

a 3-D bivector. Since  , a bivector has   (

,    being the dimensionality of space) independent

components, but each component has    ( )

independent coef�cients (   and  ) associated with

it. Hence, we �nally have,

The bivector represents an oriented plane segment

(containing    and  ) in contrast to the directed line

segment representation of a vector. The orientation is

speci�ed by circulation around the edge of the bivector,

which is completely geometrical and devoid of any

convention for handedness. For the bivector    the

'direction of circulation' is traced by moving along the 

 direction �rst and then along the   direction. The wedge

product anticommutes ( ) which implies

that both have the same magnitude, but opposite

orientation. The components of the bivector in 3-D so

de�ned are identical to the components of the cross

product vector (pseudo) of VA. However, only in three

dimensions the number of independent components of a

vector is same as that of a bivector, and one can write 

  with 

 representing the three components of

the bivector and    as the unit bivector bases, 

 in cyclic order. The two appear to be the same object!

But this is not true for higher dimensions ( ) and in

the following, we will see how the difference between the

two becomes apparent. In 3-D also, it may be noted that

the squared 'norm' of the three distinct basis bivectors (

) is  . A bivector may also be expressed in terms of

the antisymmetric part of the dyadic or tensor products as:

With the vector differential operator  , one can similarly

de�ne   for a vector �eld   (in cartesian system):

The wedge product thus modi�es and extends the notion

of cross product of VA, with the following stipulations:

(i)    for any two vectors    and    in 

  ( -dimensional vector space over the real numbers) 

 for any vector   in  ;

(ii) The wedge product is, by de�nition, associative in the

sense:    unlike the cross

product;

v

ê i
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u v
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= ∧ + ∧u1v2 ê 1 ê 2 u2v1 ê 2 ê 1
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u v

u ∧ v = ∧ ,  i ≠ j,uivj ê i ê j
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+ ( − ) ∧u1v2 u2v1 ê 1 ê 2
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∧ê 3 ê 1
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(iii) The wedge product also incorporates a kind of closure

property. For example, a bivector    in two

dimensions and a trivector    in three

dimensions, both having only one component each that

�ips sign under re�ection, represent pseudoscalars of the

respective dimensions. But a trivector   in 2-D

and a quadrivector   in 3-D collapse back

down to scalar zero so as to prevent construction of any

element of grade higher than the dimensionality of the

space. Also, With the exceptions of (i) - (iii) all algebraic

rules which apply to ordinary multiplication, also apply to

the ' ' product.

In Grassmann algebra, the dot or inner product of two

vectors is similarly de�ned as in VA, but always to be

carried out �rst in a sequence. Moreover, the inner product

or contraction between any arbitrary bivector and a vector

is naturally not scalar-valued and produces a new vector.

Like a second rank tensor, the bivector, therefore, de�nes a

vector transformation equation in the form:

– a transformed vector from   by the bivector operator  .

Unless otherwise speci�ed, we use Euclidean metric which

yields a positive-de�nite quadratic form. It is also evident

from eq.(6) that a bivector is equivalent to an

antisymmetric tensor of rank two. Also note that, the dot

product between vector and a bivector anticommutes, i.e. 

.

Another important aspect of Grassmann algebra is the

provision for appropriate multiple inner products or

contractions between two of its elements. For example,

between two bivectors, both single and double

contractions are possible. These are obtained respectively

by permuting the 'wedged' basis vectors only for distinct

terms:

∧v1 v2

∧ ∧v1 v2 v3

∧ ∧v1 v2 v3

∧ ∧ ∧v1 v2 v3 v4

∧

B. v = ∧ . = −Bij ê i ê j vk ê k Bij vj ê i Bij vi ê j

= ( − ) , i ≠ j,Bij Bji vj ê i (7)

= say,v′

v B

v. B = −B. v

A. B = ∧ . ∧Aij ê i ê j Bkl ê k ê l

= ∧ − ∧ − ∧ +Aij Bjl ê i ê l Aij Bkj ê i ê k Aij Bil ê j ê l Aij Bki

∧ê j ê k
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giving a bivector, and

= {( − ) ∧ + ( − ) ∧ }, i ≠ j ≠ k,Aij Bjk Bkj ê i ê k Bki Bik ê j ê k (8)

= −B. A,
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producing a scalar. Also,   gives the squared norm of

the bivector  .

The Wedge product of a vector and a bivector is a trivector

given by:

and the product commutes i.e.,  . In three

dimensions, the three basis elements  , 

 and   of a trivector are equivalent.

Hence, a trivector    in 3-D has only one

component (given by eq.(12) with  ), which is

identical with the scalar triple product representing

volume in VA - a pseudoscalar. The wedge product of the

three basis vectors   is the unit pseudoscalar in

3D. Interestingly, the double contraction of the bivector of

eq.(5) with the unit pseudoscalar   gives:

– the cross product of eq.(1). With nonorthogonal basis

vectors  , however,  . Similarly, 

 and one gets accordingly the curl of a

vector �eld    of Gibbs-Heaviside VA. Moreover, we note

that:

by adding and subtracting appropriate    to each

component. Similarly, we have: 

.

Although the wedge product is associative, the above

result shows that, by mixing inner and exterior products,

Grassmann algebra can manifest the nonassociativity of

the triple cross product of VA. We will encounter similar

results for geometric product in section 4.

In higher dimensions, one can de�ne a trivector or a

quadrivector by taking the wedge product among three or

four vectors and in general, with   vectors (where  ),

a ` -blade' may be formed. Thus, each dimension is

accordingly represented in exterior algebra. In the reduced

form, any  -fold wedge product (where  ) can be

expressed as:

A : B = ∧ : ∧ = ( − ), i ≠ jAij ê i ê j Bkl ê k ê l Aij Bji Bij (9)

= B : A,

B : B

B

v ∧ B = ∧ ∧ = ∧ ∧ ; i ≠ jvi ê i Bjk ê j ê k vi Bjk ê i ê j ê k

≠ k,

v ∧ B = B ∧ v

∧ ∧ê 1 ê 2 ê 3

∧ ∧ê 2 ê 3 ê 1 ∧ ∧ê 3 ê 1 ê 2

( ∧ ∧ )v1 v2 v3

n = 3

∧ ∧ê 1 ê 2 ê 3

= ∧ ∧I3 ê 1 ê 2 ê 3

− : u ∧ v = − ∧ ∧ : {( − ) ∧I3 ê 1 ê 2 ê 3 u2v3 u3v2 ê 2 ê 3

+ ( − ) ∧ + (u3v1 u1v3 ê 3 ê 1 u1v2

− ) ∧ } = ( − ) + ( − )u2v1 ê 1 ê 2 u2v3 u3v2 ê 1 u3v1 u1v3 ê 2

+ ( − )u1v2 u2v1 ê 3

≡ u × v (10)

ê i − : u ∧ v = u × vI3 |g|
−−√

− : ∇ ∧ f ≡ ∇ × fI3

f

− : {(− : u ∧ v) ∧ w} = −I3 I3 I3

: {( − ) + ( − ) + ( − ) }u2v3 u3v2 ê 1 u3v1 u1v3 ê 2 u1v2 u2v1 ê 3

∧ }wiê i

= − ∧ ∧ : {( − )( ∧ + ∧ )ê 1 ê 2 ê 3 u2v3 u3v2 w2 ê 1 ê 2 w3 ê 1 ê 3

+ ( − )u3v1 u1v3

( ∧ + ∧ ) + ( − )( ∧ +w1 ê 2 ê 1 w3 ê 2 ê 3 u1v2 u2v1 w1 ê 3 ê 1 w2 ê 3

∧ )}ê 2

= ( − )( − )u2v3 u3v2 w2 ê 3 w3 ê 2

+ ( − )(− + )u3v1 u1v3 w1 ê 3 w3 ê 1

+ ( − )( − )u1v2 u2v1 w1 ê 2 w2 ê 1

= ( − + − ) + (. . . )u2w2v1 v2w2u1 u3w3v1 v3w3u1 ê 1 ê 2

+ (. . . )ê 3

= ( + + − −u1w1v1 u2w2v1 u3w3v1 v1w1u1 v2w2u1

− )v3w3u1 ê 1

+ (. . . ) + (. . . ) = (u. w)v − (v. w)u ≡ (u × v) × w,ê 2 ê 3

uiviwi

− : u ∧ {− : (v ∧ w)} = (u. w)v − (u. v)w ≡ uI3 I3

× (v × w) ≠ (u × v) × w

k k < n

k

k k < n
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where   denotes the number of transpositions required to

obtain  .

The wedge product of any number    of independent

vectors (where  ) is usually called a `blade' or `form'

of grade    or simply, a  -blade or  -form. It lives in a

geometrical space known as the  -th exterior power. The

magnitude of the resulting  -blade is the volume of the  -

dimensional parallelotope (a generalisation of the

parallelepiped in higher dimensions). According to this

terminology for the elements of the algebra, a scalar is of

grade zero, a vector has grade 1, bivector has grade 2 and a

trivector is assigned grade 3 etc. In    dimensions, both

vectors and  -blades have   components and each 

-blade basis involve a combination of all except one

basis vector, and hence get the name antivectors or

pseudovectors. Now if we consider the wedge product

between a vector and a bivector in 3-D, for example: 

, the single

component (of the pseudoscalar) is similar to the result of

dot product between two unlike vectors (or scalar triple

product of like vectors) in VA. Actually in any dimension,

the wedge product between a vector and an antivector is a

pseudoscalar. This result clari�es and extends the notion

of dual space of VA - the dual of a vector is an antivector. In

3-D, for example, the dual of a vector is a bivector, the

wedge product of a pair of vectors that are orthogonal to it,

and the area of the bivector is equal to the magnitude of its

dual vector. Consequently, the dual of a bivector is its

normal vector in 3-D. This important notion will be

clari�ed further in the following discussions.

Consequently, this algebra has a total number of 8

multivector basis elements in 3-D: 1 scalar element, 3

vector elements, 3 bivector elements, 1 trivector

(pseudoscalar) element and no higher-grade elements.

Similarly, in four dimensions the total number of basis

elements is 16 and whereas the number of components of

a vector is 4, it is  , for a bivector. Thus the

distinction between a vector and a bivector becomes

apparent.

For a  -blade and an  -blade, the number of basis

elements, respectively given by the binomial coef�cients 

  and  , are the same. This produces an exact

symmetry and the total number of'multivector' basis

elements is always

Since the wedge product between a  - and an  -

blade is a pseudoscalar (in    dimensional space) and the

number of basis elements of those blades being same, they

constitute dual form. Full Contractions with unit

pseudoscalar    establishes a one-to-one mapping from

the  -blade basis space to the  -blade basis space

and vice-versa.

The number of  -blade basis elements and those of 

-blade (in    dimensional space) are same, the

wedge product between a  - and an  -blade can be

de�ned and the product is a pseudoscalar. Also with  -

tuple contractions (inner products), a  -blade basis

reduces    into a basis of  -blade and vice-versa.

Contractions with unit pseudoscalar   establishes a one-

to-one mapping from the space of the  -blade to the space

of  -blade and vice-versa. In fact, it provides an

implementation of the Hodge duality operation of

differential geometry  [11]. The image of a  -blade under

this mapping is called the (Hodge) dual of the  -blade, in

the sense that when applied twice, the mappings result in

an identity operation up to a sign factor which also

depends on the metric of the vector space.

Finally following eq.(11), the  -fold wedge product ( )

in   is given by:

is the determinant obtained from the    components of

each of the   vectors  .

The highest-grade ( ) element of this algebra has the lone

component ( ), and evidently from its expression (eq.12),

it �ips sign under re�ection. Hence follows the name -

pseudoscalar (or antiscalar), for the single component  -

blade. A pseudoscalar can be interpreted as the volume of

an  -parallelotope in an  -dimensional vector space and

the exterior algebra thus provides an appropriate

generalisation of the notion of the pseudoscalar.

An important concept of Grassmann algebra, as

mentioned earlier, is the introduction of the dual form -

each element of the algebra has its dual. Pseudoscalar, the

highest-grade element of the algebra is the dual of the

lowest grade element, scalar and vice-versa. The scalar has

no spatial extent while its dual pseudoscalar, representing

volume of the  -parallelotope, has all the spatial extent.

The study of dual spaces states that the pseudoscalar plays

the role that the scalar does in normal space.

∧ ∧ ⋯ ∧v1 v2 vk = ∧ ⋯ ∧∑
=1i1

n

v1i1 ê i1 ∑
=1i2

n

v2i2 ê i2 ∑
=1ik

n

vkik ê ik

= (−1 … ∧ ⋯ ∧ ,∑
< ⋯<i1 i2 ik

)γ v1i1 v2i2 vkik ê i1 ê i2 ê ik

(11)

γ

< ⋯ <i1 i2 ik

k

k < n

k k k

k

k k

n

(n − 1) n

(n − 1)

∧ ∧ = ( ∧ ∧ )viê i Bjkê j ê k viBjk ê i ê j ê k

( ) = 64
2

k (n − k)

( )n
k

( )n
n−k

( ) = .∑
k=0

n
n

k
2n

k (n − k)
n

In

k (n − k)

k

(n − k) n

k (n − k)
k

k

In (n − k)
In

k

(n − k)

k

k

n k = n

V
n

Δ =

∣

∣

∣
∣
∣
∣

v11

v21

. . .

vn1

v12

v22

. . .

vn2

. . .

. . .

. . .

. . .

v1n

v2n

. . .

vnn

∣

∣

∣
∣
∣
∣

(12)

n

n vi

n

Δ

n

n n

n
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The computation of the square of the pseudoscalar    is

given by:  ,

one can either reverse the order of the second group or

apply a perfect shuf�e, both require   swaps and

yielding the sign factor  , which is 4-periodic,

and combined with   the square is given by  .

Note that the inverse 

.

On the other hand, physical quantities represented by

pseudovectors of classical Gibbs-Heaviside VA are aptly

replaced by bivectors in Grassman algebra. For a point-like

object with mass    and linear momentum    ( ),

both the angular velocity ( ) and angular momentum ( )

are represented by bivectors as:   where 

  is the object's position/radius vector and  . The

linear velocity    in this algebra6 is given by the inner

product  . Also, the centripetal and the Coriolis

accelerations are expressed by the angular velocity

bivector   as   and   respectively. In a recent

formulation of the elastic theory of shells using GA,

Gregory et al  [12]  have discussed the advantages of using

the bivector representation of angular velocity which

allows for a much more physical representation of the

governing laws and clari�ed the confusion created by the

usual conventions of VA. Similarly the torque   ( )

in a force �eld   is described by a bivector and so also the

magnetic �eld    of electrodynamics. According to Biot-

Savart law, the magnetic induction    at a point due to a

current-element is conventionally given by the cross-

product of the vectorial current-element with the position

vector of the point.

VA also introduces in its de�nition of cross product, a

handedness (chirality), even where there is no chirality in

the entity being modelled. The apparent chirality in

electromagnetism, i.e. Fleming's right-hand rule for

electric generators, and the left-hand rule for electric

motors, turns out to be actually a mathematical artifact

used by VA to describe the physical process and not a part

of the reality itself. In this context the resolution of the

'Pierre's puzzle' [13] regarding the symmetry (or lack of it)

in the magnetic �eld of a magnetic needle (a permanent

magnet) may be mentioned. It turns out that

electromagnetism has no chirality, as revealed in

geometric algebra which adopts exterior product of

Grassman. However, the Hodge dual mentioned earlier,

introduces a notion of handedness and can be used as an

optional feature added to the basic geometric algebra

package to handle genuine chirality which appear due to spin
of elementary particles in certain weak nuclear processes.

3. Quaternions and quaternion

algebra

If a given complex number    is multiplied by  , the

product   has the same length/magnitude as  , but gets

a rotation through an angle  . The complex multiplication

can, therefore, be used to produce a geometric operation -

rotation7. While investigating a higher dimensional

generalisation of the complex numbers, Hamilton in 1843

has developed the �rst noncommutative algebra - the

quaternion algebra. In analogy with the imaginary   of two

component complex number, he introduced the basic unit

triplet  8 - all square roots of  , representing the

set ( ) of unit quaternions, to de�ne the 4-component 

 quaternion   as:

and enunciated the fundamental equation (multiplication

rule) of quaternion algebra:

If the real part ( ) is zero, then   is a 'pure quaternion'.

3.1. Quaternion algebra

Just like the addition (subtraction) of vectors, addition

(subtraction) of quaternions acts component-wise. More

speci�cally, consider the quaternion    de�ned above and

another quaternion  . Then we have 

.

Multiplication of a quaternion with a scalar follows

ordinary (scalar) multiplication rules. The complex

conjugate of    is de�ned as   and from this

de�nition we immediately have 

. Also,

using the fundamental multiplication rule (eq.14), we get:

 Th

norm of a quaternion  , is the scalar denoted by 

. A quaternion is called a unit quaternion if its

norm is  . The only quaternion with norm zero is zero, and

every nonzero quaternion has a unique inverse. It implies

that the quaternions form a division algebra. An algebra 

 is a division algebra if given   with  , then

either   or  . Equivalently,   is a division algebra

if the operations of left and right multiplication by any

nonzero element are invertible9. The inverse    of a

quaternion    is de�ned as: 

. For a unit

quaternion  , the inverse is its conjugate  .

One can de�ne the product of two arbitrary quaternions 

 and   using eq.(14) as:

In

= ( ∧ ∧ ⋯ ∧ )( ∧ ∧ ⋯ ∧ )I 2
n ê 1 ê 2 ê n ê 1 ê 2 ê n

(n − 1)n/2

(−1)n(n−1)/2

⋅ê i ê i = ±1I 2
n

= ∧ ∧ ⋯ ∧ = (−1 = ±I −1
n ê n ê n−1 ê 1 )(n−1)n/2In In

m p = mv

Ω L

m Ω = L = r ∧ pr2

r r = |r|

v

r. Ω

Ω Ω. (Ω. r) 2Ω. v

Υ = r ∧ f

f

B

B

z eiϕ

zeiϕ z

ϕ

i

, ,q1 q2 q3 −1
S 3

( , , , )a0 a1 a2 a3 a

a = + , k = 1, 2, 3a0 qkak (13)

= − +qkql δkl ϵklmqm (14)

a0 a

a

b = +b0 qkbk

a ± b = ( ± ) + ( ± )a0 b0 qk ak bk

a = −a∗ a0 qkak

( = − (− ) = a; = (a + )/2,a∗)∗ a0 qkak a0 a∗ qkak

= (a − )/2a∗

a = ( − )( + ) = + + + = a .a∗ a0 qkak a0 qlal a2
0 a2

1 a2
2 a2

3 a∗

a

|a| = aa∗−−−√
1

A a, b ∈ A ab = 0
a = 0 b = 0 A

a−1

a

a = a = 1⟹ = |aa−1 a−1 a−1 a∗ |−2

α α∗

a b
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Thus the product    is in general not equal to    and it

follows that  . Also, the norm of the product of

two quaternions    and    is equal to the product of the

individual norms. This is easily veri�ed in the following:

Expanding the result in terms of components, one gets the

Euler's four-square identity,

This identity states that the product of two numbers, each

of which is a sum of four squares, is itself a sum of four

squares and is not quite as obvious as the 2-squares rule

(derived from ordinary complex algebra).

In modern mathematics, the quaternions are a number

system and its algebra extends both the complex and

vector algebras. In fact, the algebra of quaternions belongs

to a subalgebra (even) of GA -- the algebra consisting of

scalars, bivectors and quadrivectors, etc. The quaternion is

easily identi�ed with the geometric product (eq.17) of two

3-D vectors in GA. Expressed as the sum of a scalar   (the

scalar product part) and the pure quaternion part  , for

which the wedge product (bivector  , say) provides an

appropriate representation. In fact, the similar algebraic

properties of the pure imaginary    and the 'unit' bivector

bases allow an algebraic isomorphism. In the following

section, it will be shown that this representation of the

quaternion in GA is consistent with the quaternion algebra

and correctly reproduce the product of two arbitrary

quaternions (eq.15). Most literatures, however, erroneously

represent the pure quaternion part with a 'vector' and

express this equation in terms of the scalar and cross

products of two 'vectors'.

3.2. Euler-type formula for a quaternion and

rotation about any arbitrary axis

Making use of the Taylor expansion, one can de�ne the

exponential of a quaternion i.e.  . The inverse

operation, logarithm of  , may also be de�ned accordingly.

Now, from the de�nition of unit quaternion 

  and noting that 

, one can write    and 

where the factor    represents any unit pure

quaternion (unit 3-D bivector in GA)  . From this one gets

an Euler-type expression for a quaternion: 

. It also allows to de�ne the power

of    as  , 

 being a real number.

Now with    as a unit quaternion and    a vector in 3D,

consider the transformation:

The inverse of this operation is simply  . In

literatures, this transformation (eq.16) is usually described

by treating the vector   as a pure quaternion (a quaternion

with zero real part). This is not proper – a pure quaternion

should be represented by a bivector in 3-D. Hestenes  [6]  has

provided an appropriate account to show that eq.(16)

describes pure rotation of   through an angle   where the

unit bivector represents both the plane and the sense of

rotation10. Thus, Euler's expression for a unit quaternion

consists of a unit bivector representing the plane of

rotation and half the angle of rotation i.e.    (representing

the scalar part). It may also be noted here that, it is always

better to de�ne a rotation by the plane of rotation rather

than the axis of rotation which is only de�nable in 3D. The

occurrence of half-angles in eq.(16) for a rotation is due to

the bilinear form of the transformation. It follows that a

unit bivector, geometrically representing a directed (unit)

plane, is also a generator of rotation and, multiplication by

it rotates any vector in that plane (of rotation) through  .

It is also shown there that in two dimensions, since all the

vectors lie entirely in the plane of rotation, the bilinear

form is not needed and this formula reduces to the single

sided operation, analogous to the conventional formula for

the rotation of ordinary complex number in the Argand

plane. With a simple computer programme, the action of

the quaternion rotation operator may be visually

demonstrated [14].

Note that both    and    represent the same rotation,

since  . Furthermore with  , the

rotation is twice the angle and in general, for    it is 

  times the angle along the same plane of rotation as  .

This can be extended to arbitrary real  , allowing for

smooth interpolation between spatial orientations.

Alternatively, from 

ab =( + )( + ) = − ( + + )a0 qkak b0 qlbl a0b0 a1b1 a2b2 a3b3

+ ( + + )a0 q1b1 q2b2 q3b3

+ ( + + ) + ( − )b0 q1a1 q2a2 q3a3 q1 a2b3 a3b2

+ ( − ) + ( − )q2 a3b1 a1b3 q3 a1b2 a2b1

(15)

ab ba

(ab =)∗ b∗a∗

a b

|ab = (ab)(ab = ab = a|b = a |b = |a |b .|2 )∗ b∗a∗ |2
a∗ a∗ |2 |2 |2

( − − − + ( + + −a0b0 a1b1 a2b2 a3b3)2 a0b1 a1b0 a2b3 a3b2)2

+( + + −a0b2 a2b0 a3b1 a1b3)2

+ ( + + −a0b3 a1b2 a3b0 a2b1)2

= ( + + + )( + + + )a2
0 a2

1 a2
2 a2

3 b2
0 b2

1 b2
2 b2

3

a0

qkak

A

i

exp(a)
a

α = a|a = ( + )|a|−1
a0 qkak |−1

|a ( + ) = 1|−2
a2

0 ak ak |a = cos θa0 |−1

|a = sin θ ⇒ α = cos θak ak
− −−−√ |−1

+ ( + + ) = cos θ + sin θ = exp(q1a1 q2a2 q3a3
sin θ

+ +a2
1 a2

2 a2
3√

ā ā

+ +q1a1 q2a2 q3a3

+ +a2
1 a2

2 a2
3√

ā

a = |a|α = |a| exp( θ)ā

a = |a exp( rθ) = |a (cos(rθ) + sin(rθ))ar |r
ā |r

ā

r

α v

= αv = vv′ α−1 e θā e− θā (16)

v = αα−1v′

v

v 2θ

θ

900

α −α

−αv(− ) = αvα−1 α−1 α2

αn

n α

n
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, we see

that composition of rotations simply corresponds to

multiplication of quaternions. While a unit quaternion

represent pure rotation in 3-D, it should be noted that in

addition to rotation a quaternion produces a dilation,

since    - similar to the way of a

complex number representing rotation and dilation in 2-D.

Using the quternion multiplication rule (eq.14), one can

also rewrite the quaternion 

 in terms of a pair of complex

numbers    and    as 

 -

also called a complex 2-vector. In the literature,

quaternions embrace following equivalent de�nitions:

(i) a 4-component 'hyper' complex number with three

'imaginary' components,

(ii) a complex 2-vector, which, together with the basic eq.

(14), describe the quaternion algebra, and

(iii) a scalar plus a 3-D bivector in GA and the equivalent

Euler's de�nition of a unit quaternion in terms of an angle

and a unit bivector.

3.3. Applications and advantages of quaternion

algebra

(i) In many applications the quaternion rotation procedure

is found to be more effective than the conventional

rotation matrix. Quaternions encode rotations by four real

numbers only, whereas the linear representation of these

transformations as    matrices requires nine.

Moreover, Hamilton's algebraic system guides intuition

and facilitates implementation in every detail with its

explicit geometrical import. In a sequence of rotations,

interpolation with quaternionic representation is more

convenient than that with the familiar Euler angles.

Quaternions are frequently used in computer graphics

programming.

(ii) The present day understanding of spinors, which

describe the spin states of electrons and other spin-half

elementary particles, is closely linked to Hamilton's

quaternions.

(iii) A variety of fractals can be explored using

hypercomplex numbers. For example, interesting 3-D

fractals have been generated with quaternions [15].

(iv) The quaternion product is invertible and the product of

two quaternion norms immediately gives the four-square

identity of Euler. Quaternions are also used in one of the

proofs of Lagrange's four-square theorem in number

theory, which states that sum of four integer squares is

required to obtain any nonnegative integer.

Despite so many advantages of quaternion algebra, the

original formulation by Hamilton was plagued by some

serious problems which upset its further developments.

For instance, the status of the pure quaternion introduced

as vector was not clear. Also, even the proponents felt that

the full quaternion product was of little use and preferred

to keep the scalar and the'vector' parts separate. This

approach missed a major advantage of the fact that the
quaternion product is invertible! Hamilton was also wrong in

describing rotation with quaternions. Instead of using the

double-sided transformation rule (eq.16) he used a single-

sided transformation rule  [3].

Maxwell in his 'Treatise' on Electromagnetic theory (of

1873), has modi�ed his original equations of 1865 and also

presented them in terms of twenty quaternion

equations  [16]. But actually, he kept the scalars separate

from the pure quaternion parts in his calculations. During

the formative period of the Electromagnetic theory, the

quaternion notation was often used without using the

whole bene�t of quaternion algebra11.

The vector algebra also, was not fully developed at that

point of time and after several years during mid 1880's,

Gibbs [17] and Heaviside [18] have independently developed

it in a seemingly direct and easily applicable form for 3-D

vectors which transformed Maxwell's equations into a

compact form. However, this has created a prolonged and

acrimonious debate  [19]  among many scientists and

Maxwell himself was convinced that the quaternions, and

not the vectors, can only provide a correct description of

electromagnetism. In fact, after the introduction of Special

Relativity, the four-vector representation close to the

quaternion formulation of Maxwell's equations became

more favoured.

Birkhoff and von Neumann  [20]  have proposed that

quantum mechanics can be formulated on vector space

de�ned over quaternion �eld instead of the usual complex

�eld. Constructing the quaternionic Hilbert space,

quaternionic generalisation of standard quantum

mechanics, was worked out extensively by Finkelstein et

al.  [21]. Adler  [22]  has discussed at length, the motivation,

both mathematical and physical, and the importance of

this generalisation.

3.4. Spinors and quaternions

A mathematical entity    is called'spinor' if it changes

sign under rotation of  , i.e.

Spinors thus differ from vectors or tensors under

rotational transformation. Compared to rather simple

visualisations of vectors and tensors, the pictorial

depiction of a spinor is more subtle. However, a spinor may

be visualized as a vector pointing along the Mobius band,

α(βv ) = (αβ)v( ) = (αβ)v(αββ−1 α−1 β−1α−1 )−1

av = |a αva−1 |2
α−1

a = + + +a0 q1a1 q2a2 q3a3

= +c1 a0 q1a1 = −c2 a2 q1a3

a = + + + = ( + ) + ( − )a0 q1a1 q2a2 q3a3 a0 q1a1 q2 a2 q1a3

= +c1 q2c2

3 × 3

= αvv′

ψ(θ)
2π

ψ(θ + 2π) = −ψ(θ)
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exhibiting a sign inversion when it is rotated through a full

turn of  .

In the process of classifying all possible linear

representations of rotation group, Cartan  [23]  �rst

formalized spinor as a mathematical object, closely related

to Hamilton's quaternion in the form of a two-component

complex vector. The term'spinor' was actually coined by

Ehrenfest in his work on quantum physics, and there are

various equivalent ways to introduce spinors.

Following the discovery of the intrinsic angular

momentum called'spin' associated to electrons and other

elementary particles, Pauli in 1927, has introduced spinors

in the theory of physics as the basic representation (two

component spin statefunctions) of his    (complex)

matrices ( ) for the quantum mechanical spin

observables    and    corresponding to the

components of the equivalent spin pseudovector. It turns

out that spin-   particles have statefunctions that

change sign under rotation of    and, therefore, can be

represented by spinors. Unlike a vector, rotating a spinor

by    does not bring it back to the same state but to the

state of opposite phase. To understand this, we note that

the three Pauli matrices together with the unit matrix

form the complete basis of an algebra, the Pauli

algebra [24]. This is identical with the quaternionic algebra

if    is used instead of    as the basis elements. Now,

consider the operator    which transforms

(rotates) the spin state of the system from   to  ,

i.e.  . It can be easily shown that this

transformation changes the expectation values 

  and    (   etc.) of the

operators   and   to

respectively, leaving    unchanged.  , therefore,

produces ccw rotation of the system about the z-axis

through an angle  . Now, if we take any arbitrary spin-half

ket (spinor)  :

For    we have, 

  and it requires a 

 spatial rotation to get back the original state vector.

Also, since a spinor represents probability amplitude of the

spin state, its modulus is a positive-de�nite scalar. So, it

can always be written as   and can be regarded as

an instruction for rotation and dilation. Therefore, both

Pauli spinors and the spin matrices can be represented by

quaternions, and equivalently by arbitrary even elements

(scalars plus bivectors) of 3-D GA.

In the following year 1928, Dirac has developed the fully

relativistic theory of electron spin by showing the

connection between spinors and the Lorentz group. Both

tensors and spinors are connected with the rotation group

representations and are de�ned in terms of their

transformation properties. Actually, spinors allow a more

general treatment of the notion of invariance under

rotation and Lorentz boosts. They can be used without

reference to relativity, but arise naturally in the

discussions of Lorentz group. Further insightful

developments by Dirac, Weyl and Majorana will be

discussed in the next part of our study.

It may be noted that the quaternions and spinors have

equivalent algebraic properties as well as the same

geometric signi�cance  [6][25]. In fact, a generalisation of

the rotation-dilation produced by quaternions in 3-D to  -

space is also possible with the spinors. Like quaternions,

the spinors form a subalgebra of GA - the even subalgebra

formed by the vectors of an  -dimensional vector space 

  and generate rotation and dilation. Hestenes  [26]  has

also carried out a reformulation of Dirac theory of spinors

using this concept.

Apart from the crucial application in the study of matter

and �elds in quantum mechanics, spinors are also

important in the study of the spacetime geometry  [27].

Moreover, some closely related ideas were already present

in the study of rotation of rigid bodies. The

appellation'spinors', as suggested by Ehrenfest, was

formally introduced by van der Waerden in 1929 to all

�nite order of the Lorentz Group representations, long

after Cartan found them in 1913 in his study of

representations of simple groups. Even earlier in 1897,

Klein  [28]  has introduced similar objects - the so-called

'Cayley-Klein parameters' in rotational dynamics, in terms

of which one can de�ne two conjugate spinor kets or

column vectors [29].

The 'Twistor' theory, proposed by Penrose [30] in 1967 with

the intention of unifying general relativity and quantum

mechanics into a theory of Quantum Gravity, also requires

an understanding of spinors. It may be viewed as an

extension of spinor algebra which uses the subset of 'pure

spinors'. In 2003, Witten  [31]  has proposed a connection

between the string theory and the twistor geometry that

he called 'twistor string theory'. String theorists are

presently showing renewed interest in twistors.

Spinors are used in a wide range of �elds, from the

quantum physics of fermions, general relativity, pulse

synthesis and analysis, image processing, computer vision

and recognition, aeronautics and robotics to fairly abstract

areas of algebra and geometry. Also, Hestenes  [6]  has

clearly demonstrated the advantages of using the spinor

formulation in the study of dynamics of rigid bodies in

classical mechanics. Both quaternions and spinors are also

2π

2 × 2
σk

,sx sy sz

1/2
2π

2π

−iσk σk

=Rϕ e
−i ϕsz

ℏ

|χ > |χ >ϕ

|χ = |χ >>ϕ Rϕ

< >sx < >sy < >=< χ| |χ >sx sx

sx sy

< =< > cos ϕ− < > sin ϕ, andsx >ϕ sx sy

< =< > cos ϕ+ < > sin ϕsy >ϕ sy sx

< >sz Rϕ

ϕ

|χ >= |+ > + |− >c1 c2

|χ = |χ >= |+ > + |− >.>ϕ e
−i ϕsz

ℏ e
−iϕ

2 c1 e
iϕ

2 c2

ϕ = 2π

|χ = − |+ > − |− >= −|χ >>ϕ=2π c1 c2

4π

χ = |χ|R

n

n

V
n
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used in the formulation of various technological

developments in the �elds of computer science, image

processing, edge detection to name a few.

A number of new mathematical techniques and languages

were introduced by some great mathematicians during the

second half of the 19th centuries. The search for a unifying

mathematical language, which began with the works of

Hamilton, Grassmann, Cartan and Clifford, generated

considerable interest among contemporaries. This,

however, was largely eclipsed with the development of a

more straightforward and easily applicable'vector algebra'

by Gibbs and Heaviside. Subsequently discrete algebraic

systems, such as matrix, tensor and spinor algebras etc.

are adapted and created as and when required. In this

context it may be pointed out that, the �rst formulation of

quantum mechanical spinor algebra by Pauli signalled,

though not being acknowledged, a resurgence of Clifford

algebra in the form of geometric algebra. Hestenes has

revealed the geometric meaning of Clifford, Pauli and

Dirac algebras and pioneered GA in the mid-1960s. While

providing an immensely powerful mathematical

framework in which the most advanced concepts of

quantum mechanics, relativity, electromagnetism, etc. can

be expressed, it is also claimed that GA is straightforward

and simple enough to be taught to school children! It has

taken so many years since, to acknowledge the claim of

Hestenes "that GA is the universal language for physics

and mathematics" [32].

4. Rudiments of Clifford's Geometric

Algebra

Inspired by Hamilton's work on quaternions, Clifford

searched for a higher dimensional algebra  [4]  and

ultimately found uni�cation of quaternions with

Grassmann algebra. The distinctive feature of this algebra

is incorporated through its novel multiplication rule. The

geometric product uv of any two vectors u and v is

designed to contain all the information about the relative

directions of vectors u and v. This is done �rst by

separating the symmetric and the antisymmetric parts of

uv. The symmetric part is then identi�ed with the

projection of one vector on to the other i.e. the dot product 

  and the antisymmetric part is represented by the

wedge product  . The geometric product is, therefore,

given by:

Note that a scalar quantity    is added here to a

bivector and uv contains all the    elements    of the

dyad  . In fact, the even subalgebra generated by the

geometric product uv contains only scalars and bivectors

and in two dimensions the even subalgebra is isomorphic

to the complex numbers, while in three it is isomorphic to

the quaternions. The algebra thus introduces a linear and

invertible product - the fundamental product of the

algebra, since other products i.e. the inner and the exterior

products, can be derived from it. Also, a fact should be

mentioned here that Grassmann, in his later years,

combined the inner and exterior products to form a new

product  [33]  very similar to eq.(17). Thus, Grassmann has

also discovered the key idea of geometric product

independently of Clifford and evidently somewhat before

him. Many historians of mathematics have overlooked

this important later work of Grassmann.

Clifford algebra incorporates both the inner and wedge

products with the de�ning equation: 

. The rule makes the

manipulation of orthogonal basis vectors quite simple.

Given a product    of distinct orthogonal basis

vectors of  , one can put them into standard order while

including an overall sign determined by the number of

pairwise swaps needed to do so. Orthogonal Clifford

algebra - the most familiar one, is necessarily Riemannian

and the symplectic12 Clifford algebra is referred to as Weyl

algebra.

The product uv (eq.17) acquires a geometrical signi�cance

from the interpretations given to   and   and gives

a direct measure of the relative directions of vectors   and 

. Thus, if the two vectors are collinear, then they

commute, i.e.,  , and if    and    are orthogonal,

they anticommute:  . In general,    describes

the 'degree of commutativity' somewhere between these

two extremes. The two products   and   together,

i.e. the full product uv, provides the complete geometrical

relation between   and  . Since  , the geometric

product of   with itself is identical with  , i.e. represents

the squared norm of the vector  .

Apart from the comprehensive geometrical signi�cance

gained from the geometric product de�ned as a sum of a

scalar and a bivector, combinations of scalar, vector,

bivector, and pseudoscalar turn out to be signi�cant in

many applications in physics  [34]. Any general element of

this algebra is called a'multivector', 'clif' or 'geometric'. A

multivector that has a de�nite grade is called

homogeneous and is necessarily either a blade or the sum

of a number of blades, all of same grade. Scalars, vectors,

bivectors, trivectors etc., therefore, represent elements of

different grades of the GA. We are familiar with the idea of

adding scalars to scalars, vectors to vectors and so on i.e.

addition of elements of same grade only. But while a

comparison of elements of different grades is not possible,

GA admits addition of elements of different grades, like a

complex number having an imaginary part added to the

real part. For example, it can have an element C such that: 

u ⋅ v

u ∧ v

uv = u. v + u ∧ v, (17)

with u. v = (uv + vu)/2 (18)

and u ∧ v = (uv − vu)/2 (19)

(u. v)

n2 vi
1v

j
2

u ⊗ v

+ = 2 ,   j, k = 1, 2, . . . , nê j ê k ê kê j δjk

. . .ei1 ei2 eik

V
n

u ⋅ v u ∧ v

u

v

uv = vu u v

uv = −vu uv

u ⋅ v u ∧ v

u v v ∧ v = 0
v v. v

v
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, where   is a scalar,   is a vector, and   is

a bivector13 in the extended Clifford space .

Hestenes  [6]  has shown that the electromagnetic �eld is

best represented by a clif consisting of a vector and a

bivector. On the other hand, the algebra of ordinary

complex numbers, quaternions or spinors are even

subalgebra of multivectors formed by the geometric

product of two vectors.

Dirac was �rst to recognize Clifford algebra as a superior

expression for his theory of electrons, although it was

Hestenes who appreciated its wider signi�cance and

applicability. Hestenes argues that it is not just another

algebra, but a fundamental discovery of the geometrical

roots of all algebras, and prefers to call it 'geometric

algebra'. It was actually Clifford's own choice, because

'Clifford algebra' sounds much like 'just another algebra'

rather than what it really is. One may generate a �nite-

dimensional GA by choosing a unit pseudoscalar ( ). The

set of all vectors   that satisfy   constitutes a

vector space. The geometric product of the vectors in this

vector space then de�nes the GA, of which   is a member.

Since every �nite-dimensional GA has a unique  , one

can de�ne or characterize the GA by it. With the

pseudoscalar, the dual of a clif is also easy to calculate - it

is the geometric product of the clif and the pseudoscalar.

In geometric calculus, the vector differential operator   is

equivalent to the usual gradient operator when operates

on a scalar �eld. Here the gradient of a vector, or of any clif,

is also a well de�ned quantity. Just like the geometric

product of eq.(17), for a vector �eld  ,

and contains both the divergence and curl ( , to

be precise) of VA and describes the complete rate of change

of   across a surface.

Using the multiplication rules of exterior algebra, one can

similarly write the geometric product of a vector    and

bivector   as:

with,  , and  .

Note here the differences with the equations (18) and (19) -

with the change of grade, there is a change of sign in the

commutation relation. Also note that, in  , the geometric

product of two blades of grade   and of grade  , is de�ned

to contain blade of all grades from   to   ( ) in

steps of  . For example, the product between two

bivectors   and   is given by:

C = s + v + B s v B

G
n

In

{v} v ∧ = 0In

In

In

∇

f

∇f = ∇. f + ∇ ∧ f (20)

(∇ × f)I3

f

v

B

vB = v. B + v ∧ B (21)

v. B = (vB − Bv)/2 v ∧ B = (vB + Bv)/2

V
n

r s

|r − s| r + s ≤ n

+2
A B
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and it contains a scalar (grade 0), a bivector (grade 2) and a

quadrivector (grade 4) for  . Following the

multiplication rules of exterior algebra, all these product

terms between arbitrary multivectors of different grades

are derived explicitly in ref.  [35]. For a simple bivector14 (

), since both    and    are identically zero, the

geometric product    is equal to  , and gives the

squared magnitude of the bivector. In 3-D, the �nal term

i.e. the wedge product term on r.h.s. of eq.(22) vanishes and

the product contains a scalar and a bivector only,

representing a quaternion. Similarly, the geometric

product of two trivectors can be de�ned with the

introduction of triple dot product in addition to the single

and double dot products. It may be noted that the

geometric product of two (nonzero) elements of the same

grade always yield a quaternion in 3-D and in higher

dimensions, elements of even subalgebra, containing only

even grade components. We also mention in this context

that since    and    both are zero, eq.(10)

can be rewritten as:    - the l.h.s. being

identical with the geometric product between the

pseudoscalar and a wedge product of two vectors.

The scalar plus bivector representation of quaternions in

3-D and with its appropriate multiplication rules, GA

reproduces the product:

AB = A : B + A. B + A ∧ B =< AB + < AB +>0 >2

< AB ,>4

(22)

n > 3

B B. B B ∧ B

BB B : B

. u ∧ vI3 ∧ u ∧ vI3

− u ∧ v = u × vI3
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as    in 3-D. By taking 

  and 

  (which satisfy

the fundamental multiplication rule of quaternion algebra

(eq.14)), we get from eq.(8) and eq.(9):

and

Thus eq.(23) is identical with eq.(15).

The inner and exterior products of a vector    with the

geometric product   is de�ned as:

 and 

, i.e. multiplications

indicated by symbols are to be carried out �rst, starting

with the inner product. Maintaining this order of

multiplications, one can now readily de�ne the geometric

product of more than two vectors and easily verify that the

product is associative. For example, with three vectors we

get:

The associativity also follows even with nonsimple

multivectors. For example, using equations like (7), (8), (9)

etc., it can be easily shown that for arbitrary bivectors 

  and  :    and    and so

on  [35]. The wedge product also has the associative

property and with three vectors, eq.(19) takes the form: 

.

Fully general expression for a pure  -blade can accordingly

be written as the sum over all possible   permutations of

geometric product of    linearly independent vectors 

, with a sign factor de�ned to be    for

even permutations and   for odd permutations.

Geometric product equips the vector space with an

algebraic structure that provide a very powerful tool to

unify and describe in a single formalism the structures of

the vector, complex and the spin algebras in the realm of

GA. Clifs are in general represented as the sum of different

pure grade elements and spinors form even subalgebra.

Tensors, on the other hand, are of de�nite rank, having

�xed number of multilinear vector arguments, cannot

represent spinors. In this sense GA is more general than

tensor algebra. However, pure grade multivectors can

represent only antisymmetric tensors of rank equal to or

less than the dimension of the basic vector space. Unlike

the grade of a multivector, the rank of a tensor is not

restricted by the dimension of the vector space. Hestenes

has proposed to introduce tensor as multilinear functions

de�ned on geometric algebras [5].

Physical theories are more conveniently and economically

described with GA. Furthermore, noncommutative

compositions and nonassociative structures are

consistently introduced using various star product
procedures in algebraic formulation of some recent

advanced physical theories  [36][37]. We also intend to

discuss these and other important issues in the next part

of our work.

The strength of GA, compared to other mathematical tools,

may also be argued using 'Occams Razor' as it provides a

simpler and economic model, naturally extending from

one to two, to higher dimensions. The effectiveness of this

algebra is amply demonstrated as it encapsulates the usual

four Maxwell's equations of electromagnetism describing

the electromagnetic �eld for the charge density    and

current density    as sources in a single, compact

equation [38]:

where   is the velocity of light. The electromagnetic �eld F

is described as the sum of the electric �eld vector and the

magnetic �eld bivector, i.e. represented by a clif and   is

similarly de�ned like eq.(20). The four geometrically

distinct parts of eq.(24) – its scalar, vector, bivector, and

pseudoscalar parts, are respectively equivalent to the

standard set of four equations. The formalism allows

descriptions of electrodynamics, �uid mechanics and

special relativity by extending the algebra of space to the

algebra of spacetime (e.g. GA on Minkowski space, with

replacement of the Euclidean metric by the Minkowski

metric) [3][5][39].

The advantages of using this geometric formulation in the

algebra of spacetime and in Dirac theory are discussed

with examples in several studies  [5][10][37][40]. Speci�cally

we note here that the uni�cation of the separate equations

for divergence and curl in electromagnetism in a single

ab = ( + A)( + B) = + B + A + AB =a0 b0 a0b0 a0 b0 a0b0

+ B + A + A : B + A. B,a0 b0

(23)

A ∧ B = 0
= − ,   = − ,   = −a1 A12 A21 a2 A31 A13 a3 A23 A32

= ∧ ,   = ∧ ,   = ∧q1 ê 1 ê 2 q2 ê 3 ê 1 q3 ê 2 ê 3

A : B = ( − ),  i ≠ jAij Bji Bij

= − ,ai bi

A. B = {( − ) ∧ + ( − ) ∧ },  iAij Bjk Bkj ê i ê k Bki Bik ê j ê k

≠ j ≠ k,

= ( − ) + ( − ) + ( − ),q1 a2b3 a3b2 q2 a3b1 a1b3 q3 a1b2 a2b1

u

vw

u. v ∧ w = (u. v)w ≠ u. (v ∧ w),  u. vw = (u. v)w ≠ u

. (vw)
u ∧ vw = (u ∧ v)w ≠ u ∧ (vw)

(uv)w = (u. v + u ∧ v)w = (u. v)w + (u ∧ v). w + (u ∧ v)
∧ w

= (u. v)w + (v. w)u − (u. w)v + u ∧ v ∧ w

= u(v. w) + (u. v)w − (u. w)v + u ∧ v ∧ w

= u(v. w + v ∧ w) ≡ u(vw) .

A B (uv)B = u(vB) (vA)B = v(AB)

u ∧ v ∧ w = (uvw + vwu + vwv − vw − uwv − wvu)1
3!

k

k!
k

( , , . . . , )v1 v2 vk +1
−1

ρ

j

( + ∇)F = ρ − ,c−1 ∂

∂t

j

c
(24)

c

∇F
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equation is nontrivial - the uni�ed equation can be

inverted directly to determine the �eld. Also this equation

is invariant under coordinate transformations, rather than

covariant like the tensor form. The �eld bivector is the

same for all observers; there is no question about how it

transforms under a change of reference system. However,

it is easily related to a description of electric and magnetic

�eld in a given inertial system.

Secondly, the gauge invariance of electromagnetic �eld

bivector can be demonstrated easily. Regarding gravity,

Doran has noted in his thesis  [41]: "The gauge theory of

gravity developed from the Dirac equation has a number

of interesting and surprising features." Lasenby et

al [42] have presented a theory of gravity in terms of gauge

�elds, rather than spacetime geometry. The �eld

equations are then derived from an action principle and

the requirement that the gravitational action should be

consistent with the Dirac equation leads to a unique choice

for the action integral (up to the possible inclusion of a

cosmological constant). It is claimed that the physical and

mathematical content of the theory is best expressed in

the language of 'geometric algebra' and "reproduces the

predictions of general relativity for a wide range of

phenomena, including all present experimental tests".

Hestenes has formulated standard problems on particle

and rigid body dynamics using GA and developed the

spinor theory of rotations and rotational dynamics  [43].

Calculations with spinors are demonstrably more ef�cient

compared to the conventional matrix theory and provides

new insights into the treatment of the topics discussed.

Specially in rotational dynamics and celestial mechanics,

this unique treatment has both practical as well as

theoretical advantages. Hestenes  [44]  has also given an

invariant formulation of the Hamiltonian mechanics in

terms of 'geometric calculus' - a generalization of the

calculus of differential forms according to GA. He also

envisaged an extension of the invariant formulation for

systems of linked rigid bodies in phase space to have

important applications in robotics.

The structures of the Pauli's  - and Dirac's  -matrices

correspond to the structures of geometric algebra  [45],

rendering an implicit geometric interpretation for

quantum mechanics. Consistent formulations of both

classical and quantum mechanics (QM) with GA facilitates

the introduction of spin as a physical observable and

thereby removes the �rst conceptual barrier for

uni�cation. Moreover, Hestenes  [46]  has de�ned "the

'geometrically puri�ed' version of the Dirac algebra" by

eliminating 'irrelevant features' and �nally identi�ed the

formulation with the geometric algebra on four-

dimensional Minkowski ( ) metric over the real

number �eld and christened it as the spacetime algebra

(STA). In this formulation the spin is revealed as a

dynamical property of the electron motion. It is

emphasized that the association of the spin with a local

circulatory motion 'zitterbewegung', �rst proposed by

Schrodinger, is actually characterized by the complex

phase factor, which is the main feature, the Dirac wave

function shares with its nonrelativistic limit.

Developing the nonrelativistic QM as a statistical theory

over phase space, the Weyl-Wigner-Moyal (WWM)

formalism  [47]  represents the observables in terms of the

corresponding phase space functions (c-number) instead

of the Hilbert space operators of standard QM. Replacing

the conventional product of functions, the star product

regime (also called the Moyal product or Weyl-Groenewold

product)  [48]  used in this formalism, produce

noncommutative composition of the phase space

functions (the so-called deformation quantization). The

star product encodes the quantum mechanical action and

the formalism thus accommodates the uncertainty

principle in systematic analogy with the noncommuting

Hilbert space operators.

Bayen et al [49] have elaborated and used this formalism in

the derivations of harmonic oscillator, angular momentum

and hydrogen atom spectra. Hirshfeld and

Henselder  [50]  have shown that the deformation

quantization through its star product formalism leads to

'Cliffordization'  [37]  of phase space variables i.e., allows a

consistent algebraic formulation of quantum mechanics

(of both the bosonic and fermionic systems) on phase

space with GA. Phase space description being the

traditional framework of classical dynamics, the WWM

star-deformation formalism imparts proper

understanding of the classical-quantum interface.

Treating both coordinate and momentum spaces on equal

footing, this formulation of QM in GA manifestly reveals

closer connections with classical mechanics and offers

better insights into the problem of classical limit of QM.

Starting from the early acquaintances of vector algebra, we

have gone through some elaborate discussion of various

multiplication rules (cross, dyadic and wedge products) of

vector and exterior algebras - up to the geometric product

of GA. The resurgence of Clifford algebra as GA and its

increasing use in some most advanced areas of physics are

indicated. In fact, eliminating the passive transformations

and retaining only active transformations, GA dispenses

with the unnecessary excess baggage and irrelevant

features of vector and tensor algebras in extending and

exploring new horizons of mathematical physics. We

conclude the present discussion which forms the basis of

our intended further discussion on these issues in the next

part of our study.

σ γ

M4
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Notes

1. In tensor analysis, the generalisation of the dot or scalar

product of VA is known as contraction or inner product.

The dot product of two vectors in VA is an operation which

associates a real number (scalar) to each pair of vectors in

a vector space i.e.  . In terms of

components of the vectors (in arbitrary coordinate

system):    and the scalar product is

de�ned by interpreting   ( ) as the   element

of the fundamental metric tensor or simply the metric of

the (vector) space, whose components transforms like a

second rank covariant symmetric tensor, since  .

Actually, it maps a vector    to its covector    (

), in a dual vector space (or just dual space in

short), to produce a scalar quantity, its squared norm

(length), i.e.  . Likewise, the inverse

of    de�nes the contravariant metric    (

) which may be used to raise the

indices, converting a covariant vector to its contravariant

dual. Any vector space has a corresponding dual space

having the same dimension as the original space.

Elements of the dual space are also called associate

vectors. A basis corresponds (one to one) to its dual basis if

and only if, it is an orthonormal basis. If the coordinate

system is orthogonal, the metric    is diagonal. For �at

Euclidean space the metric is a unit tensor. Also, for

orthogonal coordinate systems, the reciprocal

contravariant and covariant basis vectors (   and  )

become identical sets and no distinction is made between

contravariant and covariant components of a vector.

When two indices, one covariant and the other

contravariant, are set equal to each other, then the implied

summation over the repeated index induces the

contraction. For example, one can contract a second rank

mixed tensor    to a scalar and verify it from the

following transformation equation:

So, the contracted second rank mixed tensor remains

invariant under coordinate transformation    and,

therefore, is a scalar. However, it may be noted that, the

inner product or contraction of tensor algebra is not

necessarily scalar-valued and thus differs from the scalar

product in VA.

2. For arbitrary set of nonorthogonal basis vectors 

 and   the metric    is nondiagonal. Also, the cross

product, say  , is not simply equal to    and in

general given by:  . This can be

extended for two arbitrary vectors,    and    (say) as: 

.

3. The components of the product vector    of eq.(1)

transform as:

4. The volume of a parallelepiped denoted by the scalar

triple product of three polar vectors provides a simple

example of a pseudoscalar in 3-D. Each element of the

Levi-Civita tensor, given by a scalar triple product of the

unit orthogonal cartesian bases, is a pseudoscalar. Other

examples of pseudoscalar include (i) the magnetic �ux - it

is the result of a dot product between a vector (the unit

surface normal) and the magnetic �eld pseudovector, (ii)

the helicity is the projection (dot product) of spin angular

momentum pseudovector onto the direction of

momentum (a polar vector) and (iii) pseudoscalar particles

like pseudoscalar mesons, i.e. particles with spin 0 and

odd parity (whose statefunction changes sign under parity

inversion). In the following, we will discuss the

appropriate generalisation of the notion of pseudovectors

of conventional vector algebra with the introduction of the

concept of bivectors and also the generalisation of the

de�nition of the pseudoscalar in exterior algebra.

5. In fact, a ‘blade’ is de�ned to represent any scalar, vector,

or the wedge product of any number of vectors. It is also

important to note the distinction between a trivector and a

3-vector or more generally between a  -blade and a  -

vector. A trivector/ -blade is visualized as the 3-

dimensional/ -dimensional region spanned by three

vectors/  vectors. This region may be embedded in a space

that is 3-dimensional/ -dimensional or higher. In

contrast, a 3-vector/ -vector is a single vector that lives in

a space with exactly 3-dimensions/ -dimensions.

6. Since  ,    is �nally given by    – the

geometric product (eq.21) between a vector and a bivector

in GA.

7. In complex algebra multiplication by a complex number,

in general, produces both rotation and dilation.

8. This notation relates to traditional Hamilton’s

notation  [2]  as  ,  ,  , where the

fundamental quaternion equation reads: 

.

9. Of the four possible normed division algebras (real,

complex, quaternion and octonion), GA provide a way to

generalize the �rst three. The octonions being

nonassociative  [51][52]  the family of GA appears to diverge

at the point of the octonions. Nonassociative algebras are

also being used in some recent string theoretic models

and in quantum systems with magnetic charges. Proper
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1
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accommodation of this algebra in physical theory requires

the introduction of nonassociative star products [36].

10. It is also shown here that, similar bilinear mapping

with a unit vector    can reverse the direction of any

vector collinear with   and leaves any vector orthogonal

to it unaffected, and represents a re�ection in the plane

orthogonal to  . In fact if the �rst mapping is followed by

a mapping with a second unit vector  , the resulting

composite mapping is equivalent to the transformation

represented by eq.(16) and is simply a rotation of   through

an angle twice the angle between   and  . Note that this

result is derived using the rules of geometric product and

not only that the composition of two re�ections is

equivalent to a rotation, but every rotation can be

expressed as a product of two re�ections.

11. It is argued that, if the founders of electrodynamics

would have used the full quaternion notation, “they would

have discovered relativity much before Voight, Lorentz and

Einstein”. Electromagnetic theory is inherently a

relativistic theory and according to the special relativity, a

pure quaternion in one inertial frame of reference is not a

pure quaternion in a different one. New set of Maxwell’s

equations, developed in recent literatures  [53]  using

quaternions/biquaternions, transform to usual vector

equations when the Lorentz gauge is applied. Quaternionic

formulations of electromagnetic duality and the Maxwell’s

equations in the presence of both electric and magnetic

charges (dyons, with a zero electric charge is usually

referred to as a magnetic monopole) have also been

developed recently.

12. Symplectic geometry is not directly related to the

properties of space and time. It is rather intimately related

to the description of the dynamics of physical systems.

The symplectic transformation of the    dynamical

variables/operators preserves the basic algebraic bracket

relations (Poisson or commutator) of the relevant

mechanics. It is, therefore, implicit that symplectic

geometry is de�ned on a smooth even dimensional

differentiable manifold. The symplectic ‘form’ in

symplectic geometry allows for the measurement of sizes

of two dimensional objects in the space and plays a role

analogous to that of the metric (tensor) in Riemannian

geometry. Whereas the metric ‘measures’ lengths and

angles, the symplectic form measures areas. The

symplectic geometry has been one of the most rapidly

advancing areas of mathematics over the past years.

13. In geometric Algebra, it is traditional not to distinguish

between scalars, vectors, bivectors etc. using boldface or

other decorations. It treats all multivectors on pretty much

the same footing. Multivectors can be scalars, vectors,

bivectors etc., pseudoscalars or linear combinations of the

above. However, we retain here the distinctions we used in

the introductory section of vector algebra.

14. Multivectors of de�nite grade    (like bivectors,

trivectors etc.) that can be written as the wedge product of 

 independent vectors are called a simple  -blade.
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