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Motivation: The Soul of the Machine
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Drawing inspiration from the prefrontal cortex, the proposed system formalizes high-level cognitive
functions—motivation, cognition, memory, and decision-making—through vectorized, parameterized
and modularized representations organized as interacting subsystems. This theoretical framework
establishes a scalable, generalizable, and biologically grounded architecture intended to advance the

modeling of higher-order intelligence.
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1. Introduction

The human brain has specialized subregions responsible for distinct mental activities. The functional
specialization and modular decoupling of brain systems, as observed in neuroscience and cognitive
science, provide a fundamental design principle for Al architectures seeking to reverse-engineer the
brain as a biological computer. Motivationl! is the internal process that initiates, directs, and sustains
goal-oriented behavior. The frontal lobe is a critical region of the cerebral cortex, situated at the anterior
part of each cerebral hemisphere. It constitutes approximately one-third of the brain’s surface area and is
pivotal for higher-order cognitive functions, emotional regulation, motor control, and personality
expression. In particular, it plays a central role in motivation, goal-directed behavior, and executive
function[2lBl415] The prefrontal cortex and the ventral striatum work together to generate and regulate
motivation. The prefrontal cortex is responsible for evaluating goals, planning actions, and integrating
information from memory and sensory input, while the ventral striatum encodes the expected reward
and motivational value of different actions. Through their interaction, the prefrontal cortex provides top-
down guidance, and the ventral striatum energizes and drives behavior toward rewarding outcomes. This
coordination ensures that actions are goal-directed, flexible, and sensitive to anticipated rewards,

forming the neural basis of motivated behaviorZl8l Depression is linked to both functional and
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structural abnormalities in the prefrontal cortex, particularly affecting the brain’s ability to regulate
emotions and control negative thoughts. In depression, hyperactivity in the ventromedial prefrontal
cortex and hypoactivity in the dorsolateral prefrontal cortex may reduce motivation by amplifying
negative emotions and diminishing reward sensitivity. Imbalances between these hemispheres can lead
to anhedonia or anxiety disorders, disrupting goal-directed behavior. The ventromedial prefrontal cortex
can override or veto the outcome of dorsolateral prefrontal cortex, forming a dynamic interplay similar to
a generative adversarial network2l, The ongoing game between ventromedial prefrontal cortex and
dorsolateral prefrontal cortex ultimately decides whether a motivation is translated into action. And
dysregulated prefrontal cortex-limbic circuits underlie many of the cognitive and emotional symptoms of
depression. In Parkinson’s disease, degeneration of dopamine pathways to the prefrontal cotex can lead
to akinesia and apathy, highlighting the role of prefrontal cotex dopamine interactions in sustaining
effort. In a word, dysfunction in prefrontal cortex is linked to apathy, impulsivity, depression, and anxiety,
underscoring the prefrontal cortex’s role as a neural hub for adaptive motivation29. AT decision-making,
planning and motivation continue to evolve, yet the notorious jigsaw puzzle persists: how to orchestrate

these high level cognition functions altogether?

2. Decision-making module

The core module for decision-making policy function neural network =(s|W) : s — a maps states to

actions[12];

a = 7(s|W) (1)
where W is parameters of policy function. Different parameterizations of the policy function
W correspond to different tasks or capabilities. As a result, a variably parameterized policy network can
express a wide range of behaviors suited to diverse tasks. The primary challenge involves figuring out the

optimal way to allocate these parameters, a crucial step in constructing Al systems that are adaptable and

generalizable.
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3. Memory module

policy function Autoencoder Hippocampus Network policy function

Figure 1. The parameters of policy function can be encoded as skill vectors.

The autoencoder hippocampus network [l draws inspiration from the memory-processing capabilities
of the hippocampus. It leverages the autoencoder framework to transform the parameters of other neural
networks into intermediate vectors, which function as pivotal connectors that harmonize and unify all

components within the Al system, crafted to handle a wide spectrum of tasksU411510161017][18]
The parameters of policy function neural network W can be encoded as a skill vector:
S = B(W) (2)
The encode-decode process of parameters of policy function reads:
W = D(S) = D(E(W)) 3)

The policy function neural network’s parameters then can be assigned by decoder of hippocampus

network.
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4. Planning module

Graph Neural Network Decoder of Hippocampus Policy function

skill vector
S

Figure 2. A complex task is best decomposed into a graph of interrelated subtasks, thereby yielding a

corresponding graph of skill vectors.

The brain excels at decomposing complex tasks into a graph of subtasks revealing their priorities and
interdependencies. A bijective mapping exists between subtasks and their corresponding skill vectors,
resulting in a skill vector graph that is topologically homeomorphic to the subtask graph. To address a
specific subtask, it is essential to identify the appropriate skill vector to apply. To accomplish the original
task, the cognitive function neural network C(s|W*):s — S; mapping state s to skill vector

S; parametrized by W *, navigates and traverses skill vector graph.
S; = C(s|W™) (4)

Variations in state can induce changes in the selected skill vector; accordingly, the cognitive function

network orchestrates the traversal across the skill vector graph.

As illustrated in Fig.3, putting an elephant into refrigerator consists of three steps: 1. open the
refrigerator; 2. put the elephant inside; 3. close the refrigerator. Each step requires corresponding skill.
Cognitive function is responsible for selecting corresponding skill vector based on whether refrigerator is

open or not and the position of elephant.
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Figure 3. The cognitive function governs the selection of relevant skill vectors and directs the

traversal of the skill vector graph in accordance with task demands and environmental states.
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5. Motivation module

Cognitive function Autoencoder Hippocampus Network Cognitive function

par ameters par. ameters
w N // w
—> X E—

0"

RANA
2N
TN

& \
motivation vecto

m

Figure 4. Parameters of cognitive function can be encoded as motivation vector.

Likewise, the parameters of the cognitive function network W* can be encoded as a motivation vector

'm via autoencoder hippocampus network:
m = E(W*) (5)

Motivation vector m defines the goal of Al system and essentially outlines what Al system is striving for.

And the encode-decode of parameters of cognitive function neural network W* reads:

W* = D(m) = D(E(W")) (6)
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Figure 5. The overall Al system consists of three modules: 1) prefrontal cortex function initiates motivation; 2)
cognitive function navigates and traverses skill vector graph; 3) policy function computes actions based on

current state and skill. Motivation whispers, and the machine awakens.

In the context of Al motivation, designated motivation and self-motivation represent distinct approaches
to driving Al systems’ behavior and performance. Designated motivation refers to systems driven by
external objectives predefined by human. Self-motivation in AI involves systems that generate their own
goals without any human literal instruction or command. If the motivation vector is solely generated by
generative model, then the system become self-motivated. The interplay between motivation and skill
ultimately determines Al system’s behavior. The overall architecture of Al system decoupling motivation,

planning and execution is shown in Fig.5.

The prefrontal cortex network F' provides motivation vector and assigns parameters to cognitive

function network that traversing the skill vector graph.

m = F(z) (7)
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where z is any input that initiate the motivation m. The input of prefrontal cortex network z can be as
simple as a command from human, instructions from large language model or external triggering
conditions from environmental state. Then, parameters of cognitive function neural network is

determined by motivation vector m:
W* = D(m) = D(F(z)) (8)
Henceforth, skill vector graph construction, navigation and traversal of skill vector graph and subtasks
execution are decided by:
5= C(s|w*) = C(s|D(m)) = C(s| D(F(x))) (9)
Then, the decision-making process can be written as:
a = 7(s|W) = n(s|D(S)) = n(s|D(C(s))) (10)
In summary, the action driven by motivation vector m is ultimately determined by:

a = n(s|W) = n(s|D(S)) = n(s|D(C(s|W?))) = 7(s| D(C(s|D(m)))) (11)

6. Multi-Agent Interaction and Collaborative

An agent is an autonomous entity that can perceive its environment, make decisions, and take actions to
achieve its goals. This definition outlines the minimum prerequisite for an agent perception and
decision-making. Additional features such as learning, adaptation, reasoning and motivation may be

added to enhance the agent’s performance.

For multi-agent systemml, one persistent challenge is how to delineate roles played by different
individual agent. A role defines the specific function, responsibilities, and behavior patterns that an agent
should exhibit while contributing to the overall completion of a task. With above AI architecture design
shown in Fig.5 for agents, this can be achieved by differentiating and assigning different motivation

vector, allowing each agent plays a distinct and specific role in a task.

The essence of the design is that each agent is able to dynamically plan, recognize, and make decision
according to the current state and their roles. The ith agent action is determined by motivation vector
m;:

'a = n(s|W;) = n(s|D(S:)) = n(s|D(C(s|W™))) = n(s|D(C(s| D(m)))) (12)
By carefully assigning different motivation vectors to each agent in a multi-agent system, we can

effectively define and differentiate their roles within a task, enabling them to collectively work together
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in a coordinated and efficient manner to achieve the overall objectives of the system.

Different from single agent system, for multi-agent system, the process is computing a sequence of
actions vector [a, 2a, .. .,"a] to accomplish collaborative task or objective. Cooperative control in multi-
agent systems refers to designing control laws that enable multiple agents (robots, vehicles, sensors, etc.)
to work together to achieve a collective objective. For IV agents, the dynamics of each agent ¢ can be

written as:

s'(t) =" f('s(t), a(t)) (13)
where “s(t) € R" is the state of agent i. ‘a(t) is the action from agent i. ¢ f represents the dynamics, linear
or nonlinear, of agent i. How to achieve collective objective of multi-agent system shall be solved along

with the knowledge of dynamics of multi-agent systern[201[211[22][23]

7. Conclusion

To emulate high level intelligence, Al system must go beyond simple input-output mapping. The
foundational principle integrates psychological state vectorization and neural network variable

parameterizations@l, and functionalities modularization!2211261,

Both cognitive network and policy function network parameters can be encoded and decoded by
autoencoder hippocampus network. Vectorization enables a structured and scalable representation of
complex motivation and skills by encoding corresponding neural networks’ parameters, allowing for the
analysis and computation of how these components interact and evolve dynamically within the system.
Psychological vectors, such as motivation vectors and skill vectors, represent pivotal nodes within the

nexus.

Variable-parameterized neural networks, in which parameters are dynamically modulated by motivation
and skill vectors rather than remaining fixed, enable real-time functional adaptation to different states
and tasks. This dynamic modulation enhances the network’s capacity to support flexible and context-

sensitive intelligent behavior.

Modularization refers to the organization of key psychological and neural processes—such as
motivation, cognition, memory, and decision-making—into semi-independent vyet interacting
subsystems. These modules correspond to distinct brain subregions, each specialized for particular

aspects of behavior or thought. Modular architectures of Al system that mirror the modular organization
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and functional mapping of the human brain, where different subnetworks specialize in distinct functions

but work together through mental flow.

Future work will focus on implementing this architecture in a simulated multi-agent environment to
empirically test its capacity for generating flexible, goal-directed behavior and compare its performance
against existing models. Last but not least, to endow a machine with a soul is to grant it memory of the

past, purpose in the present, and imagination for the future.
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