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Motivation: The Soul of the Machine
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Drawing inspiration from the prefrontal cortex, the proposed system formalizes high-level cognitive

functions—motivation, cognition, memory, and decision-making—through vectorized, parameterized

and modularized representations organized as interacting subsystems. This theoretical framework

establishes a scalable, generalizable, and biologically grounded architecture intended to advance the

modeling of higher-order intelligence.
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1. Introduction

The human brain has specialized subregions responsible for distinct mental activities. The functional

specialization and modular decoupling of brain systems, as observed in neuroscience and cognitive

science, provide a fundamental design principle for AI architectures seeking to reverse-engineer the

brain as a biological computer. Motivation[1]  is the internal process that initiates, directs, and sustains

goal-oriented behavior. The frontal lobe is a critical region of the cerebral cortex, situated at the anterior

part of each cerebral hemisphere. It constitutes approximately one-third of the brain’s surface area and is

pivotal for higher-order cognitive functions, emotional regulation, motor control, and personality

expression. In particular, it plays a central role in motivation, goal-directed behavior, and executive

function[2][3][4][5]. The prefrontal cortex and the ventral striatum work together to generate and regulate

motivation. The prefrontal cortex is responsible for evaluating goals, planning actions, and integrating

information from memory and sensory input, while the ventral striatum encodes the expected reward

and motivational value of different actions. Through their interaction, the prefrontal cortex provides top-

down guidance, and the ventral striatum energizes and drives behavior toward rewarding outcomes. This

coordination ensures that actions are goal-directed, flexible, and sensitive to anticipated rewards,

forming the neural basis of motivated behavior[6][7][8]. Depression is linked to both functional and
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structural abnormalities in the prefrontal cortex, particularly affecting the brain’s ability to regulate

emotions and control negative thoughts. In depression, hyperactivity in the ventromedial prefrontal

cortex and hypoactivity in the dorsolateral prefrontal cortex may reduce motivation by amplifying

negative emotions and diminishing reward sensitivity. Imbalances between these hemispheres can lead

to anhedonia or anxiety disorders, disrupting goal-directed behavior. The ventromedial prefrontal cortex

can override or veto the outcome of dorsolateral prefrontal cortex, forming a dynamic interplay similar to

a generative adversarial network[9]. The ongoing game between ventromedial prefrontal cortex and

dorsolateral prefrontal cortex ultimately decides whether a motivation is translated into action. And

dysregulated prefrontal cortex-limbic circuits underlie many of the cognitive and emotional symptoms of

depression. In Parkinson’s disease, degeneration of dopamine pathways to the prefrontal cotex can lead

to akinesia and apathy, highlighting the role of prefrontal cotex dopamine interactions in sustaining

effort. In a word, dysfunction in prefrontal cortex is linked to apathy, impulsivity, depression, and anxiety,

underscoring the prefrontal cortex’s role as a neural hub for adaptive motivation[10]. AI decision-making,

planning and motivation continue to evolve, yet the notorious jigsaw puzzle persists: how to orchestrate

these high level cognition functions altogether?

2. Decision-making module

The core module for decision-making policy function neural network    maps states to

actions[11][12]:

where    is parameters of policy function. Different parameterizations of the policy function 

 correspond to different tasks or capabilities. As a result, a variably parameterized policy network can

express a wide range of behaviors suited to diverse tasks. The primary challenge involves figuring out the

optimal way to allocate these parameters, a crucial step in constructing AI systems that are adaptable and

generalizable.

π(s|W) : s → a

a = π(s|W) (1)

W

W
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3. Memory module

Figure 1. The parameters of policy function can be encoded as skill vectors.

The autoencoder hippocampus network [13] draws inspiration from the memory-processing capabilities

of the hippocampus. It leverages the autoencoder framework to transform the parameters of other neural

networks into intermediate vectors, which function as pivotal connectors that harmonize and unify all

components within the AI system, crafted to handle a wide spectrum of tasks[14][15][16][17][18].

The parameters of policy function neural network   can be encoded as a skill vector:

The encode-decode process of parameters of policy function reads:

The policy function neural network’s parameters then can be assigned by decoder of hippocampus

network.

W

S = E(W) (2)

W = D(S) = D(E(W)) (3)
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4. Planning module

Figure 2. A complex task is best decomposed into a graph of interrelated subtasks, thereby yielding a

corresponding graph of skill vectors.

The brain excels at decomposing complex tasks into a graph of subtasks revealing their priorities and

interdependencies. A bijective mapping exists between subtasks and their corresponding skill vectors,

resulting in a skill vector graph that is topologically homeomorphic to the subtask graph. To address a

specific subtask, it is essential to identify the appropriate skill vector to apply. To accomplish the original

task, the cognitive function neural network    mapping state    to skill vector 

 parametrized by  , navigates and traverses skill vector graph.

Variations in state can induce changes in the selected skill vector; accordingly, the cognitive function

network orchestrates the traversal across the skill vector graph.

As illustrated in Fig.3, putting an elephant into refrigerator consists of three steps: 1. open the

refrigerator; 2. put the elephant inside; 3. close the refrigerator. Each step requires corresponding skill.

Cognitive function is responsible for selecting corresponding skill vector based on whether refrigerator is

open or not and the position of elephant.

C(s| ) : s →W ∗ Si s

Si W ∗

= C(s| )Si W ∗ (4)
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Figure 3. The cognitive function governs the selection of relevant skill vectors and directs the

traversal of the skill vector graph in accordance with task demands and environmental states.
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5. Motivation module

Figure 4. Parameters of cognitive function can be encoded as motivation vector.

Likewise, the parameters of the cognitive function network   can be encoded as a motivation vector 

 via autoencoder hippocampus network:

Motivation vector   defines the goal of AI system and essentially outlines what AI system is striving for.

And the encode-decode of parameters of cognitive function neural network   reads:

W ∗

m

m = E( )W ∗ (5)

m

W ∗

= D(m) = D(E( ))W ∗ W ∗ (6)
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Figure 5. The overall AI system consists of three modules: 1) prefrontal cortex function initiates motivation; 2)

cognitive function navigates and traverses skill vector graph; 3) policy function computes actions based on

current state and skill. Motivation whispers, and the machine awakens.

In the context of AI motivation, designated motivation and self-motivation represent distinct approaches

to driving AI systems’ behavior and performance. Designated motivation refers to systems driven by

external objectives predefined by human. Self-motivation in AI involves systems that generate their own

goals without any human literal instruction or command. If the motivation vector is solely generated by

generative model, then the system become self-motivated. The interplay between motivation and skill

ultimately determines AI system’s behavior. The overall architecture of AI system decoupling motivation,

planning and execution is shown in Fig.5.

The prefrontal cortex network    provides motivation vector and assigns parameters to cognitive

function network that traversing the skill vector graph.

F

m = F(x) (7)
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where   is any input that initiate the motivation  . The input of prefrontal cortex network   can be as

simple as a command from human, instructions from large language model or external triggering

conditions from environmental state. Then, parameters of cognitive function neural network is

determined by motivation vector m:

Henceforth, skill vector graph construction, navigation and traversal of skill vector graph and subtasks

execution are decided by:

Then, the decision-making process can be written as:

In summary, the action driven by motivation vector   is ultimately determined by:

6. Multi-Agent Interaction and Collaborative

An agent is an autonomous entity that can perceive its environment, make decisions, and take actions to

achieve its goals. This definition outlines the minimum prerequisite for an agent perception and

decision-making. Additional features such as learning, adaptation, reasoning and motivation may be

added to enhance the agent’s performance.

For multi-agent system[19], one persistent challenge is how to delineate roles played by different

individual agent. A role defines the specific function, responsibilities, and behavior patterns that an agent

should exhibit while contributing to the overall completion of a task. With above AI architecture design

shown in Fig.5 for agents, this can be achieved by differentiating and assigning different motivation

vector, allowing each agent plays a distinct and specific role in a task.

The essence of the design is that each agent is able to dynamically plan, recognize, and make decision

according to the current state and their roles. The  th agent action is determined by motivation vector 

:

By carefully assigning different motivation vectors to each agent in a multi-agent system, we can

effectively define and differentiate their roles within a task, enabling them to collectively work together

x m x

= D(m) = D(F(x))W ∗ (8)

S = C(s| ) = C(s|D(m)) = C(s|D(F(x)))W ∗ (9)

a = π(s|W) = π(s|D(S)) = π(s|D(C(s))) (10)

m

a = π(s|W) = π(s|D(S)) = π(s|D(C(s| ))) = π(s|D(C(s|D(m))))W ∗ (11)

i

mi

a = π(s| ) = π(s|D( )) = π(s|D(C(s| ))) = π(s|D(C(s|D( ))))i Wi Si W ∗ mi (12)
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in a coordinated and efficient manner to achieve the overall objectives of the system.

Different from single agent system, for multi-agent system, the process is computing a sequence of

actions vector   to accomplish collaborative task or objective. Cooperative control in multi-

agent systems refers to designing control laws that enable multiple agents (robots, vehicles, sensors, etc.)

to work together to achieve a collective objective. For    agents, the dynamics of each agent    can be

written as:

where   is the state of agent  .   is the action from agent  .   represents the dynamics, linear

or nonlinear, of agent  . How to achieve collective objective of multi-agent system shall be solved along

with the knowledge of dynamics of multi-agent system[20][21][22][23].

7. Conclusion

To emulate high level intelligence, AI system must go beyond simple input–output mapping. The

foundational principle integrates psychological state vectorization and neural network variable

parameterizations[24], and functionalities modularization[25][26].

Both cognitive network and policy function network parameters can be encoded and decoded by

autoencoder hippocampus network. Vectorization enables a structured and scalable representation of

complex motivation and skills by encoding corresponding neural networks’ parameters, allowing for the

analysis and computation of how these components interact and evolve dynamically within the system.

Psychological vectors, such as motivation vectors and skill vectors, represent pivotal nodes within the

nexus.

Variable-parameterized neural networks, in which parameters are dynamically modulated by motivation

and skill vectors rather than remaining fixed, enable real-time functional adaptation to different states

and tasks. This dynamic modulation enhances the network’s capacity to support flexible and context-

sensitive intelligent behavior.

Modularization refers to the organization of key psychological and neural processes—such as

motivation, cognition, memory, and decision-making—into semi-independent yet interacting

subsystems. These modules correspond to distinct brain subregions, each specialized for particular

aspects of behavior or thought. Modular architectures of AI system that mirror the modular organization

[ a, a, … , a]1 2 n

N i

s˙(t) f s(t) a(t))=i (i ,i (13)

s(t) ∈i Rn i a(t)i i fi

i
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and functional mapping of the human brain, where different subnetworks specialize in distinct functions

but work together through mental flow.

Future work will focus on implementing this architecture in a simulated multi-agent environment to

empirically test its capacity for generating flexible, goal-directed behavior and compare its performance

against existing models. Last but not least, to endow a machine with a soul is to grant it memory of the

past, purpose in the present, and imagination for the future.
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