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Commentary

On a Paradox of Gravitational Redshift
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Gravitational redshift refers to the increase in wavelength (or reddening) of light as it escapes from a

gravitational well. Einstein �rst derived this phenomenon in 1907 and 1911 by combining special

relativity with the equivalence principle. The result was later incorporated into the full framework of

general relativity. Today, nearly all textbooks on general relativity, both introductory and advanced,

include derivations of gravitational redshift based on the principle of energy conservation. After a

thorough review of the most representative of these derivations, we present what appears to be a

previously unnoticed paradox affecting the energy-based derivation of gravitational redshift, and we

examine its implications.
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1. Introduction

In 1907, Einstein introduced the equivalence principle [1], using it to extend the effects of special relativity

to systems at rest in a gravitational �eld by positing their equivalence to uniformly accelerated systems.

In this seminal work, he was the �rst to derive gravitational redshift, time dilation, and light de�ection.

However, Einstein’s initial attempt to extend special relativity to gravitational phenomena, as he himself

acknowledged, left much to be desired. Consequently, he revisited the topic in 1911, presenting a simpler

derivation of time dilation, redshift, and light de�ection. Here, we brie�y examine this second derivation

of gravitational redshift [2].

Consider two material systems,    and  , which are at rest within a local, uniform gravitational 

 (Fig. 1).   and   are separated by a distance  . Now, envision a reference frame,  . This frame,  , is

a freely falling (gravitation-free) system located near  , with an initial instantaneous velocity of zero

relative to  .
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Figure 1. Material systems   and   remain stationary within a local, uniform gravitational

�eld  . The reference frame   represents a free-falling system, free of gravitational effects,

situated near   with an initial velocity of zero relative to  . According to the equivalence

principle, this con�guration is equivalent to   and   accelerating upward with an

acceleration of  , while frame   remains an inertial, stationary frame.

Suppose a ray of light with frequency   is emitted by   towards   when the velocity of the free-falling

frame   relative to   and   is still zero. The ray of light reaches   after a time approximately equal to 

, where    represents the speed of light. According to the equivalence principle, this scenario is

physically equivalent to one in which    is at rest, and    and    accelerate with acceleration    and

initial velocity equal to zero.

When the ray of light arrives at  , the velocity of    relative to the stationary frame    is equal to 

. Therefore, from the perspective of any observer in frame  , the ray of light received at   has

a frequency  , given by the Doppler formula:
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where   is the Doppler formula for  .

By substituting    for the gravitational potential   of  , with that of    taken as zero, and assuming

that the relation deduced for a homogeneous gravitational �eld would also hold for other �eld forms,

Einstein arrived at the well-known (approximated) formula for the gravitational redshift (or blueshift in

this case):

From this formula, Einstein also derived the gravitational time dilation formula. Suppose that, during the

time interval   (as measured by a clock at rest at  ),   emits   waves. Then, from the de�nition of

frequency, we have  . Let    receive these same    waves during the time interval    (as

measured by a clock at rest at S1). Then, again, according to the de�nition of frequency, we have 

. Hence, equation leads to the gravitational time dilation formula:

All these �ndings were subsequently integrated into the broader framework of general relativity (GR)

completed in 1916, becoming a fundamental part of it. However, GR itself does not provide an

independent or novel derivation of these phenomena [3].

In modern times, nearly every textbook on GR, whether introductory or advanced, includes derivations of

gravitational redshift grounded in the principle of energy conservation. In the following section, we

present what we consider to be a comprehensive and authoritative selection of gravitational redshift

derivations based on energy conservation. In Section 3, we present a thought experiment that appears to

be novel and challenges the consistency between energy conservation and gravitational redshift, thereby

leading to a paradox. Finally, in the concluding section, we evaluate the robustness of this argument and

examine its implications.

2. Gravitational redshift from energy conservation

The derivation of the gravitational frequency shift from energy conservation is widely considered an

alternative, independent con�rmation of the phenomenon, separate from the classical derivation based

on special relativity and the principle of equivalence. This approach is commonly found in many GR

textbooks. In the following subsections, we will showcase a representative sample of these derivations.
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2.1. Gravitational frequency shift and the ‘gravitational mass’ of a photon

One of the most well-known derivations of gravitational redshift is based on the following premises,

which are either explicitly stated or implicitly assumed:

�. Mass can be converted into energy, and all forms of energy have mass, as expressed by the mass-

energy equivalence formula  , where   is the rest mass [1][2];

�. Inertial mass is equivalent to gravitational mass;

�. The energy of a photon with frequency   is given by  , where   is Planck’s constant;

�. The principle of conservation of energy.

Consider a receiver   placed directly above an emitter   at a distance   in a uniform gravitational �eld  .

The emitter   releases a photon of frequency  , and energy   towards  . Although photons have

no rest mass, for the sake of this derivation, we assume that the emitted photon has an ‘effective’

gravitational mass    equal to its inertial mass obtained from the mass-energy equivalence, 

  (assumptions  1, 2, and 3). As the photon ascends a height    in the gravitational �eld, its

energy   at the receiver   is lower than  . By energy conservation (assumption 4), we have:

where the potential energy   is the energy ‘expended’ by the photon while ascending the distance  .

Equation (4) can be rewritten as follows,

where   is the approximate gravitational potential difference between   and  . If the positions of   and 

 are reversed, the sign in the equation switches from minus to plus.

An ‘in�nitesimal’ version of this type of derivations can be found, for instance, in the book by Rindler [4].

2.2. Misner, Thorne, and Wheeler’s derivation

In their seminal highly in�uential book  [5], Misner, Thorne, and Wheeler presented the following

derivation. Consider a particle of rest mass   initially at rest in a gravitational �eld   at point  , which

falls freely to point  , covering a distance  . During this descent, it gains kinetic energy  , so that its

total energy becomes    (including rest mass energy    according to mass-energy

equivalence).
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Now, suppose the particle annihilating at point  , converting its total energy (including rest mass and

kinetic energy) into a photon with equivalent energy. This photon then ascends in the gravitational �eld

to point  . In the absence of gravitational effects, it would retain its initial energy upon reaching  .

However, this scenario creates a paradox: if the photon were converted back into a particle with rest mass 

, the excess energy    would be generated without cost, violating the principle of energy

conservation.

To resolve this paradox, and since photon energy is inextricably linked to its frequency, the photon must

experience a redshift as it ascends in the gravitational �eld.

2.3. Weinberg’s derivation

Steven Weinberg [6] proposed the following derivation. Consider a scenario where a photon is emitted at

point    by a heavy, nonrelativistic apparatus. In a locally inertial coordinate system moving with the

apparatus, an observer observes a change in the apparatus’s internal energy and inertial mass, related to

the observed photon frequency  . This relationship is expressed as  , where   is Planck’s

constant.

Now, suppose the photon is absorbed at point    by a second heavy apparatus. In a locally inertial

coordinate system moving with the second apparatus, an observer observes a change in the apparatus’s

inertial mass, linked to the observed photon frequency  , represented by  .

The conservation of total internal and gravitational potential energy of both apparatuses requires that

their sum remain constant before and after these events. This conservation leads to the equation

Here,   and   are the gravitational potentials at point   and  , respectively. Simplifying this equation

gives

Dividing both sides by   and solving for 
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For small differences in potential, this simpli�es to

Therefore,

where   is the gravitational potential difference between points   and  .

2.4. Feynman, Leighton, and Sands’s derivation

A further derivation from energy conservation is presented in another highly in�uential textbook, that

by Feynman, Leighton, and Sands  [7]. Consider an atom with a lowest energy state    and a higher

energy state  , capable of transitioning from   to   by emitting light. The frequency   of the emitted

light is given by  .

Now, suppose we have such an atom in state    sitting on the �oor, and we carry it to a height  . To

achieve this, work is required to lift the mass   against the gravitational force. The work done

is  .

Subsequently, the atom emits a photon and transitions to the lower energy state  . The mass now

becomes  . Therefore, upon returning the atom to the �oor, the energy returned is  .

Hence, the net work done is  .

If the emitted photon were to descend to the �oor and be absorbed, it should deliver more energy that 

. When we �nish, the energy at the �oor level is the energy   of the atom in its lower state plus

the energy   received from the photon. According to energy conservation, that energy must be equal to

the initial energy    of the atom plus the net work done  . Thus,    or 

.

Substituting   from earlier, the photon’s energy becomes

This energy corresponds to a frequency  , ultimately giving the formula for the gravitational

redshift
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where, as before,   is the approximate gravitational potential difference between the �oor and the point

at height  .

3. The paradox

Here, we introduce a simple and accessible thought experiment that reveals an unexpected con�ict

between gravitational redshift and the principle of energy conservation [8]. The underlying rationale of

this experiment has previously been employed to show that sound waves can escape any gravitational

well [9]. Notably, the experiment is based on minimal and straightforward assumptions.

While it is recognized that several complexities hinder a rigorous derivation from the principle of energy

conservation  [10], and that the simpli�ed redshift formula derived from this principle–as well as

Einstein’s original formulations–may lead to signi�cant paradoxes if applied indiscriminately  [11], the

paradox we present here does not belong to those categories.

Figure 2. Pictorial representation of the thought experiment described in section 3.

Consider a body of mass   stationary at point   and a macroscopic apparatus stationary at point   at a

height   above point   in a gravitational �eld   (Fig. 2). Let the apparatus do mechanical work on body  ,

raising it to point  . The work done by the apparatus is equal to  , which is also equal to the

gravitational potential energy of the body   relative to point  .

Now, if we allow the mass   to fall from   to   and let a beacon, placed at point  , use the kinetic energy

of the mass at point    (which is equal to its potential energy at point  ) to create a photon with that

energy, the energy of the photon must remain the same while climbing up the gravitational �eld back to
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point  . The photon energy at point   must still equal  . As a matter of fact, this is demanded by the

conservation of energy: by absorbing the photon, the apparatus must regain the same energy ( ) that

was expended on   at the beginning of the cycle. Therefore, owing to the Planck-Einstein relation, the

photon frequency must be the same at points   and  .

To emphasize the conclusion above, consider the cycle in reverse. The �rst step now involves the

apparatus emitting a photon of energy   (frequency  ) suitably lower than  . The original energy 

  is such that when the photon arrives at the beacon, it becomes equal to   ( ) owing to

the standard gravitational redshift (blueshift in this case). In this way,    is what is exactly needed to

raise the mass   to the apparatus at the height  . Then, the mass is released back to the initial position,

and the energy coming from that release ( ) goes into the apparatus reservoir. At the end of the cycle,

the apparatus will gain positive energy ( ) out of nowhere.

4. Discussion

Today, gravitational redshift is widely recognized as a phenomenon with a robust theoretical foundation

and substantial experimental validation, most notably through the well-known results of Pound and

collaborators [12][13]. Furthermore, the practical implications of gravitational time dilation are evident in

modern technology. For example, clocks on GPS satellites are adjusted prior to launch to account for the

faster passage of time in orbit. It is often asserted that, without relativistic corrections, GPS-based

applications, such as those used in mobile phones, would lose accuracy within hours. However, it is

important to clarify that, in principle, the accuracy of the GPS system does not directly rely on the explicit

inclusion of relativistic effects in the calculations. Rather, the use of signals from at least four satellites

enables the system to determine the clock bias between the satellite-borne atomic clocks and the less

accurate clock in the GPS receiver. Therefore, any delay due to relativistic effects would inevitably be

absorbed into the determination of the clock bias through redundant satellite data.

Nevertheless, since we cannot neglect the robust theoretical and practical support for gravitational

redshift, our paradox must admit a resolution. In this section, while we do not claim to provide a

de�nitive solution, we aim to rule out what we consider to be incorrect approaches and conceptual dead

ends by presenting the following three considerations.

Consideration 1: A common initial reaction to our paradox might be to question the validity of the

assumptions or the logical steps in the reasoning process. However, after thorough examination, we have

not found any �aws in our assumptions or inference chain. In fact, our thought experiment relies on
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fewer assumptions compared to the well-known proofs presented in Section 2, and the inference steps

are analogous. We are reasonably con�dent that neither the assumptions nor the inference chain are

�awed or weaker.

Consideration 2: Some may argue that the paradox is invalid because its proof lies outside the framework

of general relativity. However, we have two objections to this notion. First, our thought experiment is

constructed within the weak �eld and low velocity ( ) approximations, where GR reduces to

Newtonian mechanics. Hence, results obtained in Newtonian mechanics are applicable in this context.

Second, if the validity of our paradox is questioned due to its derivation outside of GR, the same logic

should apply to all thought experiments presented in Section 2, as they too were derived outside of GR. In

fact, it can be demonstrated that the derivations outlined in Section  2 are logically inconsistent and

exhibit at least one �aw in their deductive reasoning. This inconsistency is not related to the fact that

they were derived outside the framework of GR. Readers seeking a more detailed analysis of this issue are

referred to the work cited in reference [8].

Consideration 3: Another possibility is that there might be a fundamental, yet subtle, �aw in our

understanding of gravitational redshift.

References

�. a, bEinstein A 1907 On the relativity principle and the conclusions drawn from it Jahrbuch der Radioaktivitä

t 4 411

�. a, bEinstein A 1911 On the in�uence of gravitation on the propagation of light Ann. Phys. 35 898

�. ^Earman J. and Glymour C. Stud. Hist. Phil. Sci. 2(3), 175 (1980).

�. ^Rindler W 2006 Relativity: Special, General and Cosmological, 2nd Ed. (Oxford University Press: Oxford, U

K) Sec. 1.16, p. 24

�. ^Misner CW, Thorne KS, and Wheeler JA 1973 Gravitation (W.H. Freeman: San Francisco, USA) Sec. 7.2, p. 187

�. ^Weinberg S 1972 Gravitation and Cosmology (J.Wiley & Sons: New York, USA) Sec. 3.6, pp. 84–85

�. ^Feynman R P, Leighton R B, and Sands M 2011 The Feynman Lectures on Physics, Vol 2 (The New Millenni

um Edition; Basic Book: New York, NY, USA) Sec. 42-6

�. a, bD’Abramo G 2025 On gravitational frequency shift derived from energy conservation Phys. Usp. 68(1) 87

�. ^D’Abramo G 2024 Sound escapes any gravity well Phys. Educ. 59(3) 035011

v ≪ c

qeios.com doi.org/10.32388/YQCEJR 9

https://www.qeios.com/
https://doi.org/10.32388/YQCEJR


��. ^Scott R B 2015 Teaching the gravitational redshift: lessons from the history and philosophy of physics J. Ph

ys.: Conf. Ser. 600 012055

��. ^Fabri E 1994 Paradoxes of gravitational redshift. Eur. J. Phys. 15 197

��. ^Pound R V and Snider J L 1964 Effect of Gravity on Nuclear Resonance Phys. Rev. Lett. 13 539

��. ^Pound R V and Rebka G A 1968 Apparent Weight of Photons Phys. Rev. Lett. 4 337

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/YQCEJR 10

https://www.qeios.com/
https://doi.org/10.32388/YQCEJR

