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Palmprint recognition has emerged as a prominent biometric technology, widely applied in diverse

scenarios. Traditional handcrafted methods for palmprint recognition often fall short in

representation capability, as they heavily depend on researchers’ prior knowledge. Deep learning (DL)

has been introduced to address this limitation, leveraging its remarkable successes across various

domains. While existing surveys focus narrowly on speci�c tasks within palmprint recognition—

often grounded in traditional methodologies—there remains a signi�cant gap in comprehensive

research exploring DL-based approaches across all facets of palmprint recognition. This paper bridges

that gap by thoroughly reviewing recent advancements in DL-powered palmprint recognition. The

paper systematically examines progress across key tasks, including region-of-interest segmentation,

feature extraction, and security/privacy-oriented challenges. Beyond highlighting these

advancements, the paper identi�es current challenges and uncovers promising opportunities for

future research. By consolidating state-of-the-art progress, this review serves as a valuable resource

for researchers, enabling them to stay abreast of cutting-edge technologies and drive innovation in

palmprint recognition.
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I. Introduction

Biometric recognition technology has emerged as a prominent identity management method in recent

years, with applications spanning diverse domains[1]. Its effectiveness relies on the uniqueness of

physiological traits such as face[2], iris[3], and palmprint[4], as well as behavioral traits like keystroke

dynamics[5], gait[6], and signature[7]. As a relatively new physiological modality, palmprint encompasses

a rich array of distinctive features, including wrinkles, principal lines, intricate ridges, and �ne-grained

characteristics[8]. Palmprint is generally perceived as less intrusive than other biometric modalities, and

the recognition process is notably user-friendly. These attributes make palmprint recognition a highly

promising approach for achieving high accuracy and reliability in personal veri�cation and identi�cation

applications.

The palmprint recognition process follows a structured pipeline comprising four essential steps: image

acquisition, preprocessing, feature extraction, and matching, as depicted in Fig. 1. Palmprint images are

captured during enrollment, and regions of interest (ROI) are identi�ed, making preprocessing a critical

step to facilitate accurate feature extraction and matching. The extracted discriminative features are

stored as templates during enrollment. The query features, derived from the same processing steps, are

compared against stored templates to verify or determine an individual’s identity. These foundational

steps have shaped the evolution of palmprint recognition, advancing from statistical methods to deep

learning-based approaches.
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Figure 1. The pipeline of the DL-based palmprint recognition system.

Palmprint recognition has evolved signi�cantly across different technological eras. In its early stages, the

�eld relied heavily on statistic-based approaches, which depended on manually designed methods to

extract statistical information. However, these approaches often fell short of capturing the intricate

texture details of palmprints. A major shift occurred in 2003, with researchers focusing on texture

features extracted from palmprint images. Among the seminal works of this period was PalmCode[9].

Introducing Competitive Code (CompCode)[10] further advanced the �eld, highlighting the robustness of

ordering features in palmprint recognition. This discovery spurred extensive research into developing

powerful competition mechanisms to enhance recognition accuracy.
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The advent of deep learning (DL) further transformed the �eld. While initial attempts with generic DL

models produced suboptimal results, combining DL with traditional encoding techniques led to

signi�cant breakthroughs. These innovations addressed challenges unique to palmprint recognition,

propelling the �eld toward robust and accurate solutions.

Several survey papers on palmprint biometrics have been published, primarily emphasizing traditional

feature extraction techniques or specialized tasks. For instance, Zhong et al.[11] provided an overview of

palmprint recognition, addressing data collection, datasets, preprocessing, traditional feature extraction,

matching strategies, and fusion techniques. Similarly, Fei et al.[12]  categorized traditional feature

extraction methods into four types, examining the theoretical foundations of extraction and matching

approaches, particularly for 3D palmprint images. Ungureanu et al.[13]  investigated unconstrained

palmprint recognition, focusing on ROI extraction methods, feature extraction strategies, and matching

algorithms. Lately, Zhao et al.[14]  highlighted recognition methods based on multi-view learning,

discussing how integrating complementary features from multiple perspectives enhances recognition

performance.

However, unlike the more specialized reviews, this paper comprehensively explores diverse tasks,

highlighting the transformative impact of DL technologies. It delves into emerging advancements in

palmprint biometrics, including secure and privacy-preserving recognition, open-set recognition, cross-

domain and cross-modality techniques, lightweight systems, and applications extending beyond identity

recognition. A comparison with previous surveys is summarized in Table  I, highlighting the expansive

scope of this review.
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Paper Title Year Focus/Keywords Technique

A survey of palmprint recognition[15] 2009

�. Feature extraction

�. Acquistion devices

�. Preprocessing

�. Privacy protection

Traditional methods

A comparative study of palmprint recognition

algorithms[16]
2012

�. Feature extraction

�. Low-resolution

palmprint

Traditional methods

A survey on minutiae-based palmprint feature

representations, and a full analysis of palmprint feature

representation role in latent identi�cation

performance[8]

2019

�. Latent palmprint

identi�cation

�. Minutiae-based

features

�. Latent palmprint

matching

Traditional methods

Decade progress of palmprint recognition: A brief

survey[11]
2019

�. Preprocessing

�. Feature extraction
Traditional methods

Feature extraction methods for palmprintrecognition:

A Survey and evaluation[12]
2019

�. Feature extraction

�. Image analysis
Traditional methods

Feature extraction for 3-D palmprintrecognition: A

survey[17]
2020

�. 3-D palmprint

recognition

�. Feature extraction

�. Data acquisition

�. Preprocessing

Traditional methods

Toward unconstrained palmprint recognition on

consumer devices: A literature Review[13]
2020

�. Acquistion devices

�. ROI extraction

�. Feature extraction

Traditional methods

and deep learning

methods
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Paper Title Year Focus/Keywords Technique

Multiview-learning-based generic palmprint

recognition: A literature review[14]
2023

�. Multiview learning

�. Palmprint

recognition

�. Open-set

environments

Traditional methods

and deep learning

methods

Deep learning in palmprint recognition: A

comprehensive survey (Ours)
_

�. Preprocessing

�. Feature extraction

�. Closed-set and

open-set

recognition

�. Security and

Privacy

�. Other palmprint

recognition tasks

Mainly deep learning

methods and several

traditional methods

Table I. Comparison between recent surveys and this paper

The main contributions of this paper can be summarized as follows:

This paper spotlights the revolutionary role of DL technologies, unveiling their transformative

potential across a wide spectrum of tasks in palmprint biometrics.

This paper explores emerging tasks in palmprint recognition that were not addressed in previous

surveys.

This paper summarizes the current research landscape and discusses potential future research

directions in palmprint recognition.

As depicted in Fig.  2, the structure of this paper is as follows: Section II overviews DL approaches in

palmprint recognition, laying the groundwork for subsequent discussions. Section III highlights

preprocessing techniques to enhance recognition accuracy. Section IV focuses on state-of-the-art feature
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extraction methods and advancements. Section V addresses security and privacy concerns. Section VI

discusses specialized tasks in palmprint recognition with insights and comparisons. Section VII reviews

commonly used datasets. Section VIII evaluates performance metrics and synthesizes experimental

�ndings. Finally, Section IX summarizes contributions and suggests future research directions.

Figure 2. Overall structure of this paper.

II. Background Knowledge for DL in Palmprint Recognition

Since 2006, DL has made breakthrough advances in arti�cial intelligence (AI), driving the prosperity of AI

research and industry[18]. In recent years, there has been a growing trend in conducting palmprint

recognition research using DL, with early attempts demonstrating its potential[19]. This section will

introduce several generic neural networks, and loss functions widely used in the following tasks.

A. Generic Neural Networks

The adoption of DL, initially developed for general computer vision tasks, marked a signi�cant shift in

palmprint recognition beginning around 2015. These methods leveraged generic neural networks such as

simple Convolutional Neural Networks (CNNs)[20], Deep Belief Networks (DBNs)[21], AlexNet[22], CNN-

Fast[23], VGG-16[24], PCANet[25], Inception_ResNet_v1[26], Siamese Networks[27], MobileNet-V2[28],

ResNet[29], Vision Transformers (ViT)[30], and others[31][32]. These networks were adapted to address the

unique challenges of palmprint recognition, such as capturing �ne-grained textural features and

handling variations in acquisition conditions.
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Simple CNNs, characterized by their shallow depth and straightforward architecture, were among the

�rst to be applied in this domain[33]. Their simplicity facilitated quick training and low computational

requirements, making them ideal for early experiments. Building on this, Xin et al.[34]  explored using

DBNs, generative models pro�cient at learning hierarchical feature representations, to extract

meaningful patterns from palmprint images.

AlexNet, a pioneering DL model in large-scale image recognition, marked a turning point with its

adaptation to palmprint recognition by Dian et al.[35]. AlexNet’s robust feature extraction capabilities

enabled signi�cant improvements in accuracy, revealing the potential of DL in capturing the intricate

patterns necessary for reliable biometric systems. Similarly, VGG-16[24]  gained traction in palmprint

recognition for effectively learning hierarchical features, contributing to superior recognition

performance[36][37].

PCANet, a hybrid method incorporating Principal Component Analysis (PCA) for unsupervised feature

extraction, provided a bridge between traditional handcrafted features and deep learning. PCANet

ef�ciently captured discriminative features from palmprint images by combining PCA with convolution

operations, offering an accessible yet powerful alternative[38].

Advanced architectures like Inception_ResNet_v1 and ResNet brought transformative improvements to

palmprint recognition. Inception_ResNet_v1 leveraged multi-scale feature extraction and residual

connections to achieve high accuracy[39]. ResNet, on the other hand, addressed the vanishing gradient

problem in deep networks, allowing researchers to train much deeper models without over�tting,

yielding impressive results[12].

Siamese Networks also emerged as a valuable tool in biometric veri�cation, including palmprint

veri�cation[40]. These networks, consisting of two identical subnetworks, are designed to measure

similarity between input pairs, making them particularly effective for veri�cation tasks.

Innovative adaptations have continued to push the boundaries of palmprint recognition. Xu et al.

[41]  proposed a contactless palmprint recognition algorithm utilizing a Spatial Transformer Network

(STN) for precise alignment, followed by CNN-based learning and classi�cation.

More recently, Grosz et al.[42]  integrated ViT with CNNs to combine complementary local and global

feature extraction, creating Palm-ID, an end-to-end mobile-based palmprint recognition system. This

hybrid approach highlights the growing trend of leveraging transformer-based architectures for

biometric tasks.
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The progressive adaptation of these generic neural networks to palmprint recognition re�ects the

versatility of DL and its capacity to evolve in response to domain-speci�c challenges. Researchers have

signi�cantly advanced the �eld by combining foundational models with innovative strategies.

B. Loss Function

In DL, loss functions are crucial in shaping model optimization, boosting recognition accuracy, and

reinforcing robustness. Tailored to meet speci�c task requirements, these functions are extensively used

across different stages, including feature learning, matching, and classi�cation. Below, we highlight some

of the most widely employed loss functions in optimizing DL models for palmprint recognition.

�. Cross-Entropy Loss[43]: Cross-entropy loss is the most commonly used loss function for

classi�cation tasks, especially when dealing with multi-class classi�cation problems in DL models.

Cross-entropy loss quanti�es the discrepancy between the predicted and true class probability

distributions

where    is the true class distribution (class label) and    is the predicted probability distribution

from the model.

�. Contrastive Loss[44]: Contrastive loss is a widely used loss function in metric learning, particularly

in Siamese networks. Its objective is to minimize the distance between similar samples while

maximizing the distance between dissimilar ones. By leveraging contrastive loss, networks can

learn robust feature representations, ultimately enhancing recognition accuracy

where    is 1 for similar pairs and 0 for dissimilar pairs,    is the Euclidean distance between the

embeddings, and   is the margin.

�. Triplet Loss[45]: Triplet loss is also for metric learning. It trains the network to understand the

relationships among three key samples: an anchor, a positive (from the same class as the anchor),

and a negative (from a different class). The goal is to ensure that similar samples are closer in feature

space than dissimilar ones.

where    is the distance between anchor    and positive sample  ,    is the distance

between anchor   and negative sample  , and   is the margin.

= − log( ),LCE ∑i yi ŷ i (1)

yi ŷ i

= (t ⋅ + (1 − t) ⋅ max(0, m − D ) ,Lcontrastive
1
2

D2 )2 (2)

t D

m

= max(D(a, p) − D(a, n) + α, 0),Ltriplet (3)

D(a, p) a p D(a, n)

a n α
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�. Focal Loss[46]: Focal loss is a specialized function crafted to tackle class imbalance challenges,

particularly in scenarios with a pronounced disparity among identity samples. It prioritizes

dif�cult-to-classify samples by incorporating a modulating factor, ensuring the model pays greater

attention to these challenging instances. In applications such as contactless palmprint

recognition[47], focal loss proves invaluable, bolstering the model’s robustness and overall

performance.

where    is the predicted probability for the class,    is a scaling factor, and    is the focusing

parameter.

�. Margin Loss[48]: Margin loss is widely used in identity veri�cation tasks to create a discriminative

feature embedding space. Reducing the distance between samples of the same identity and

increasing the separation between samples of different identities enhances the network’s ability to

distinguish between biometric data. This loss function is frequently applied in tasks such as

palmprint veri�cation[49].

where    is the distance between anchor    and positive sample  ,    is the distance

between anchor   and negative sample  , and   is the margin.

�. Mean Squared Error (MSE) Loss[50]: MSE is a widely used loss function in regression and generation

tasks. In palmprint recognition methods that utilize Generative Adversarial Networks (GANs) or

autoencoders, the MSE loss is often employed to enhance feature reconstruction and improve

generated output quality[51].

where   is the true value and   is the predicted value.

III. Image Preprocessing

The preprocessing stage in palmprint recognition is crucial. It focuses on extracting the Region of

Interest (ROI) and improving the image quality. These steps are essential, as they directly in�uence the

accuracy and reliability of the subsequent feature extraction process.

= −β(1 − log( ),Lfocal p̂)γ p̂ (4)

p̂ β γ

= max(0, D(a, p) − D(a, n) + α),Lmargin (5)

D(a, p) a p D(a, n)

a n α

= ( − ,LMSE
1
N
∑N

i=1 zi ẑ i )2 (6)

zi ẑ i
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A. Region of Interest Extraction

ROI extraction methods are broadly classi�ed into two categories: standard extraction techniques[52] and

advanced DL-based approaches[53].

One commonly used ROI extraction technique is the Tangent-Based method[54], which identi�es valley

points between �ngers by constructing tangent lines across the palmprint gaps. These points establish a

reliable coordinate system. Zhang et al.[55]  extended this method to contactless scenarios using a

specialized acquisition device.

Another standard approach is the Contour Pro�le Distance Distribution-Based method[56]. It uses a

scanner to capture the hand image, identi�es hand boundaries, and determines a reference point at the

wrist’s intersection. Euclidean distances from the reference to boundary pixels form a contour pro�le

curve, with local minima marking the ROI sub-image.

The methods above perform well under controlled environmental conditions but are highly sensitive to

pose variations. DL-based approaches have recently emerged to address these limitations. Bao et al.

[57] introduced a two-stage shallow neural network system: the �rst network classi�es the palm image as

either a left or right hand, while the second network detects the coordinates of three valley points. A

similar approach was proposed by Izadpanahkakhk et al.[58], which outputs the coordinates of a corner

point along with the width and height of the ROI area. However, both methods were evaluated only on

constrained datasets.

Advancing the �eld further, Li et al.[59] proposed the Bimodal Palmprint Fusion Network (BPFNet), which

performs ROI localization, alignment, and bimodal image fusion in an end-to-end manner. BPFNet

employs a detection network to directly regress the rotated bounding box based on the point of view

while predicting image disparity.

Luo et al.[60] developed a model comprising a palm detection module and a key point detection module.

After identifying palm key points, the system establishes a coordinate framework to extract the ROI. An

auxiliary network estimates the palm’s angle to enhance model convergence and accuracy. Additionally,

Liang et al.[61]  introduced the Palm Keypoint Localization Network (PKLNet), which integrates

information from the hand region, palm boundary, and �nger valley edges, achieving robust and precise

keypoint localization for effective ROI extraction.
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Lin et al.[62]  presented a lightweight network-based method for palmprint ROI extraction. It �rst used

YOLOv5-lite for palm detection and initial localization, removing background interference. Then, an

improved UNet model is employed for keypoint detection, reducing parameters and boosting

performance compared to the original UNet.

Most recently, Chai et al.[63]  proposed an automated and �exible ROI extraction method for complex

scenarios based on Finger Valley Points-Free adaptive ROI detection. This method combines cross-

dataset hand shape semantic transfer and the constrained palm inscribed circle search, enabling

excellent hand segmentation and precise ROI extraction.

B. Palmprint Image Quality

The quality of palmprint images is critical in ensuring accurate recognition, spurring the development of

various techniques to enhance low-quality biometric images. Research consistently highlights the

signi�cant impact of image quality on recognition performance, leading to exploring methods like

denoising and image super-resolution (SR) to address these challenges effectively.

Denoising has emerged as a key focus in palmprint recognition research. For instance, Arora et al.

[64]  examined the effects of noise on biometric image quality and proposed a DL-based method

leveraging CNN architectures such as InceptionV3, VGG16, and ResNet50 to classify denoised images. The

proposed approach demonstrated its ef�cacy through rigorous performance evaluations on widely

recognized benchmarks.

While palmprint recognition systems thrive on high-quality images, real-world scenarios often involve

capturing low-quality samples. To address this, image SR techniques have proven effective in enhancing

image quality. Wang et al.[65] introduced the Dense Hybrid Attention (DHA) network, tailored speci�cally

for palmprint image SR. This innovative method begins by generating high-dimensional shallow

representations via a single convolutional layer. Subsequently, it employs parallel CNN and Transformer-

based branches to jointly learn local and global palmprint features, restoring distinctive palmprint-

speci�c attributes.

Another pressing challenge is assessing image quality, especially in practical situations with limited

labeled quality data. Zou et al.[66]  tackled this issue with their Pseudo-Label Generation and Ranking

Guidance (PGRG) framework for unlabeled palmprint image quality assessment (PIQA). This two-stage

method estimates the recognizability of palmprint images to generate pseudo-labels. It then produces
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pseudo-images and assigns quality rankings for pre-training, employing a label-based ranking loss to

help the model discern relative quality relationships among pseudo-labels.

These advancements highlight the importance of improving and evaluating image quality in palmprint

recognition systems. By tackling challenges such as noise reduction, resolution enhancement, and

quality assessment, researchers continue to strengthen the robustness and reliability of these systems.

IV. Feature Extraction

Since the inception of palmprint recognition, researchers have explored a wide range of approaches,

including statistical methods, coding-based techniques, and, more recently, DL-based strategies. The

evolution of these methodologies is illustrated in Fig. 3, showcasing key advancements in the �eld.

Figure 3. The evolution of palmprint feature extraction methodologies.

Statistical-based methods employ statistical transformation techniques to extract meaningful features

from palmprint images. These methods operate directly on the raw palmprint image or leverage

transformed representations, such as coef�cients obtained from Fourier or wavelet transforms, to derive

distinctive feature sets. Prominent approaches include Principal Component Analysis (PCA), which

reduces dimensionality by identifying the directions of maximum variance in the data, effectively

capturing the most critical patterns[67].

On the other hand, Independent Component Analysis (ICA) focuses on separating statistically

independent components, enabling robust feature extraction even in the presence of noise[68].

Additionally, the Scale-Invariant Feature Transform (SIFT) has been widely adopted for its ability to

detect and describe local features invariant to scale, rotation, and minor image distortions[69].
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Encoding-based methods in palmprint recognition can be classi�ed into magnitude and ordering

feature-based methods. Magnitude feature-based methods apply prede�ned coding rules directly to the

extracted features, creating compact and discriminative templates. Notable examples include

Palmcode[9], which leverages Gabor �lters to encode phase information, BOCV[70], which utilizes binary

orientation co-occurrence vectors, and MTCC[71], a recent technique focusing on multi-task coding for

enhanced accuracy.

In contrast, ordering feature-based methods encode information by comparing magnitude responses

along different orientations. Key methods in this category include CompCode[10], which uses competitive

coding to identify dominant orientations; RLOC[72], which emphasizes robust line orientation coding;

DOC[73], which combines dual orientation coding for greater precision, and DRCC[74], which incorporates

discriminative ridge coding for improved distinctiveness.

While these methods have demonstrated commendable performance, their reliance on prede�ned coding

rules and the researchers’ domain knowledge imposes inherent limitations, resulting in moderate

robustness under challenging or less-controlled scenarios.

The advent of DL has revolutionized palmprint recognition, leading to the development of numerous

methods based on deep neural networks that deliver impressive performance. Unlike traditional

approaches, DL-based methods can establish end-to-end frameworks, offering enhanced robustness and

adaptability.

While early generic DL networks were applied to palmprint recognition, their performance often fell

short due to the unique challenges presented by palmprint data.

Generic deep learning models have surpassed traditional handcrafted methods in certain areas, they are

not optimized for the distinctive traits of palmprint images. These challenges include signi�cant intra-

class variations, such as differing hand positions, lighting conditions, skin textures, and pronounced

inter-class similarities, where palmprints from different individuals may appear deceptively alike.

Generic architectures often fail to capture the unique textures and features of palmprints, emphasizing

the need for advanced, specialized DL approaches to enhance recognition accuracy and ef�ciency.

Researchers have introduced specialized neural network architectures tailored speci�cally for palmprint

recognition to overcome these obstacles. These custom designs address the intricacies of palmprint

images, improving feature extraction and enabling more accurate and reliable recognition, even in
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complex and unconstrained scenarios. This tailored approach has propelled DL-based methods to the

forefront of palmprint recognition research.

Unlike traditional palmprint feature extraction methods, which primarily emphasize enrollment

followed by testing (veri�cation or identi�cation), DL-based techniques incorporate an additional phase:

model training. This inclusion creates two distinct scenarios:

Closed-Set Palmprint Recognition: In closed-set palmprint recognition, both the enrolled and testing

identities are fully prede�ned and included in the training set. This approach focuses on achieving

highly accurate recognition within a controlled group of known individuals. Since all identities are

accounted for during training, the task becomes one of matching palmprints to a speci�c identity

within the predetermined group.

Open-Set Palmprint Recognition: Open-set palmprint recognition presents a more intricate and

practical challenge than its closed-set counterpart. The enrolled and testing identities are entirely

separate from the training set in this scenario. As a result, the system must process palmprints from

individuals it has never seen before, making the task signi�cantly more challenging. This setting

mirrors real-world scenarios, where recognition systems must adapt to dynamic environments and

handle unseen users seamlessly. In the palmprint research community, this open-set paradigm is

often called cross-dataset recognition[75] or cross-id recognition[76]. The distinctions between the two

scenarios are illustrated in Fig. 4.
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Figure 4. The illustration of closed-set and open-set palmprint recognition scenario.

A. Closed-Set Palmprint Recognition

One of the early contributions under this category came from Kumar et al.[77] took a novel approach by

exploring cross-hand palmprint matching between right and left images. Employing CNNs, they

achieved commendable results. Samai et al.[78]  proposed a dual-dimensional model for 2D and 3D
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palmprint recognition. By converting 3D palmprint data into grayscale images using Mean Curvature

(MC) and Gauss Curvature (GC), they extracted features using a Discrete Cosine Transform Network (DCT

Net). This innovative method leveraged matching score-level fusion for ef�cient biometric identi�cation.

A signi�cant breakthrough came with the work of Zhong et al.[40], who introduced a palmprint

recognition algorithm based on the Siamese network. Utilizing two VGG-16 networks with shared

parameters, their model extracted features from input palmprints and determined their similarity based

on convolutional features. Izadpanahkakhk et al.[58]  employed transfer learning for palmprint

veri�cation, extracting ROI and features jointly. They combined a pre-trained CNN with an SVM

classi�er, delivering strong ROI segmentation and recognition performance.

In another direction, Xie et al.[79] applied CNNs for gender classi�cation using palmprint images. By �ne-

tuning a pre-trained VGGNet on palmprint datasets, they demonstrated excellent results in this novel

application of palmprint data. Shao and Zhong[80]  presented a few-shot palmprint recognition model

using graph neural networks (GNNs). In their framework, CNN-extracted palmprint features were treated

as nodes in the GNN, with edges representing similarities between nodes, enabling ef�cient recognition

with limited training samples.

Further innovation came from Shao et al.[81], who proposed a deep recognition approach integrating hash

coding and knowledge distillation. By extending Deep Hash Networks (DHN) to binary code generation,

their method optimized storage and accelerated matching processes. Zhao et al.[82] proposed a joint deep

convolutional feature representation in hyperspectral palmprint recognition. Their CNN stack effectively

processed 53 spectral bands, achieving promising performance.

Genovese et al.[83] introduced PalmNet, a deep recognition algorithm incorporating Gabor responses and

PCA. This multi-stream CNN captured diverse features through attention mechanisms, including

textures and unique details. Hussein et al.[84]  developed a texture-based recognition approach using a

statistical gray-level co-occurrence matrix (GLCM). This was paired with a probabilistic neural network

(PNN) to measure system performance, enhancing identi�cation accuracy. Expanding on periodic feature

sampling, Zhao et al.[85]  utilized CNNs for extracting discriminative convolutional features across

palmprint images’ local regions.

In recent advancements, Liang et al.[86]  proposed a Competitive Convolutional Neural Network

(CompNet), a contactless recognition model resilient to illumination and scale variations. CompNet

ef�ciently captured rich directional information utilizing multi-scale competitive blocks, proving highly
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effective on small-scale datasets. Most recently, Yang et al.[87]  introduced CO3Net, which employed

multiscale learnable Gabor �lters to enhance feature representation and discrimination. Additionally,

Yang et al.[76]  developed CCNet, integrating spatial and channel competition mechanisms for ef�cient

end-to-end palmprint information capture, setting a new benchmark in palmprint recognition.

B. Open-Set Palmprint Recognition

Palmprint recognition algorithms were traditionally tailored for closed-set scenarios. Adding new users

demanded substantial time and effort to update the models. This challenge highlighted the need for

methods that could effortlessly integrate new users without extensive retraining, leading to the

development of open-set palmprint recognition.

Leveraging the shift toward open-set recognition, Zhong et al.[49]  proposed Centralized Large Margin

Cosine Loss (C-LMCL) to enhance class separation and improve open-set recognition. Shao et al.

[88]  introduced Deep Ensemble Hashing (DEH), combining weak feature extractors through online

gradient boosting to boost recognition performance.

Li et al.[89] introduced Row-wise Sparse Binary Feature Learning (RsBFL), which extracts binary features

directly from image pixels, demonstrating strong generalization in open-set palmprint recognition. This

approach was later extended to Row-Sparsity Binary Feature Learning for Multi-View Representation

(RsBFL_Mv)[90], which harnesses intra-class and inter-class information across multiple views to

enhance feature learning, providing a robust solution for open-set recognition.

Building on advancements in open-set palmprint recognition, Shao et al.[91]  introduced the Weighted-

based Meta Metric Learning (W2ML) framework, which uses meta-learning to enhance generalization

and extract highly discriminative features through an end-to-end process. Complementing this, Shao et

al.[92]  proposed the Joint Pixel and Feature Alignment (JPFA) framework. This two-stage approach

reduces pixel-level dataset gaps with deep style transfer and aligns feature distributions using domain

adaptation.

Continuing this progression, Shao et al.[93] developed the Distilling from Multi-Teacher (DFMT) method.

DFMT integrates knowledge distillation and domain adaptation by pairing source datasets with multiple

targets and employing teacher feature extractors for adaptive knowledge capture. A student feature

extractor then learns this knowledge through multilevel distillation losses, facilitating effective

knowledge transfer across diverse datasets.
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Shao et al.[75] recently introduced the Palmprint Data and Feature Generation (PDFG) method for Cross-

Dataset Palmprint Recognition with Unseen Targets (CDPR-UT). This approach boosts model

adaptability to unseen datasets by using a Fourier-based data augmentation technique to create diverse

training data and employing feature-level losses to reduce shifts between source and augmented

datasets, ensuring adaptive feature extraction.

V. Security and Privacy of Palmprint Recognition

The practical deployment of biometric systems demands careful attention to their performance, user

acceptability, and resistance to circumvention. The rapid advancement of digital connectivity further

ampli�es the importance of robust privacy protection, especially for sensitive biometric information.

This section explores the privacy concerns associated with palmprints from two key perspectives: the

challenges posed by potential attacks and the countermeasures.

A. Attacks on Palmprint Recognition Systems

1. Palmprint Template Correlation Attacks

Palmprint template correlation attacks exploit inherent statistical correlations within palmprint

templates to compromise palmprint recognition systems. Researchers have developed various attack

strategies to assess and enhance the security of palmprint recognition systems.

Leng et al.[94] �rst revealed the statistical correlation inherent in coding-based palmprints and devised a

cross-dataset attack algorithm to evaluate the security vulnerabilities of such systems. Building upon

this, Zhu  et al.[95]  introduced a joint attack and defense framework for multi-spectral palmprints. By

leveraging information from diverse sources, their approach effectively reduced the correlation between

projected features, disrupting the discriminative capabilities of palmprint models and limiting their

representation and classi�cation effectiveness.

Further exploring attack strategies, Yang  et al.[96]  proposed two style transfer methods to reconstruct

palmprints. Their approach utilized the strong correlation between templates and their original texture

information to enable online attacks.
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2. Palmprint Reconstruction Attacks

Palmprint reconstruction attacks involve generating synthetic palmprint images from stored biometric

templates to gain unauthorized access to recognition systems. By exploiting the information within

these templates, attackers can reconstruct images that closely resemble the original palmprints, posing a

signi�cant security threat.

Yue et al.[97]  introduce two palmprint reconstruction attack techniques: Modi�cation Constraint within

Neighborhood (MCwN) and Batch Member Selection (BMS). These methods improve existing attacks by

enhancing reconstructed palmprint images’ naturalness, visual quality, and completeness. The

techniques iteratively modify easily obtainable palmprint images using deep reinforcement learning to

reduce matching distance while maintaining image quality.

Wang et al.[98]  demonstrated a brute-force approach, using DCGAN to generate multiple palmprint

images and verifying them sequentially until a match was found, showcasing the ability to quickly and

effectively reconstruct high-quality images. Building on this, Yan et al.[99]  introduced a more advanced

black-box attack method, leveraging Progressive GAN (ProGAN) to generate highly realistic palmprint

images from a single template.

3. Spoo�ng attacks in Palmprint Recognition Systems

Spoo�ng attacks, also known as presentation attacks, involve presenting counterfeit palmprint images to

the system’s sensor, aiming to deceive the biometric system into granting unauthorized access. These

attacks exploit the system’s reliance on authentic palmprint features, presenting fabricated or altered

images that mimic genuine palmprints.

Kanhangad et al.[100] investigated spoof attacks on palmprint veri�cation systems, focusing on display-

based and print-based methods. Their research highlights the vulnerabilities of palmprint recognition

systems to various spoo�ng techniques.

Sun and Wang[101] created six palmprint presentation attack datasets, employing physical display carriers

such as photos and monitors, to assess the effectiveness of these attacks. Their experiments on texture

coding-based and DL-based recognition methods revealed that spoo�ng attacks using stolen original

palmprint images pose a signi�cant threat due to their high success rates.

These diverse attacks underscore the evolving landscape of palmprint security challenges and highlight

the need for robust defenses to mitigate these sophisticated attack strategies.
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B. Countermeasures

In response to the growing threats to palmprint recognition systems, researchers have developed

countermeasures to enhance palmprint recognition systems security.

1. Privacy-Preserving Palmprint Recognition Systems

Privacy-preserving palmprint recognition systems ensure the secure handling of biometric data,

shielding it from breaches or misuse during the recognition process. By leveraging advanced techniques

such as homomorphic encryption, federated learning, watermarking, and synthetic palmprint

generation, these systems safeguard privacy and strengthen the overall security of palmprint recognition

technology.

Guo et al.[102]  introduced a homomorphic encryption framework that encrypts palmprint recognition

networks layer by layer, ensuring secure processing of images and network keys throughout the

recognition process. Similarly, Tao et al.[103] developed an encryption system combining biometric keys,

Singular Value Decomposition (SVD), and Fresnel transforms to protect palmprint images effectively.

To address privacy concerns during training, federated learning has emerged as a decentralized solution

that enables local training without sharing sensitive palmprint data. Shao et al.[104] proposed Federated

Metric Learning (FedML), which allows collaborative model training across multiple clients while

ensuring data privacy and isolation. Complementing this, Yang et al.[105]  introduced a spectral

consistency loss function to align local and global model parameters, preventing model drift and

maintaining global consistency.

Liu et al.[106]  developed the Dynamic Random Invisible Watermark Embedding (DRIWE) model, which

embeds watermarks into palmprint images’ regions of interest. This approach safeguards data during

storage and transmission while ensuring accurate recognition by extracting the watermark before

processing.

On a different front, synthetic palmprint data offers a promising solution for privacy preservation by

mimicking the statistical properties of real data, thereby eliminating the need for actual samples and

reducing the risk of breaches or misuse. This innovative approach safeguards privacy and facilitates

palmprint biometric system development, testing, and training. Shen et al.[107]  introduced RPG-Palm, a

model synthesizing palmprints across multiple identities. It enhances intra-class diversity through a

conditional modulation generator while maintaining identity consistency with identity-aware loss.
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Similarly, Jin et al.[108] proposed the Palm Crease Energy (PCE) domain, which bridges Bézier curves and

palmprints using a two-stage model. The �rst stage generates PCE images (creases) from Bézier curves,

and the second stage produces palmprints (textures) from these PCE images.

These privacy-preserving innovations collectively enhance the security and reliability of palmprint

recognition systems, addressing critical vulnerabilities across various stages of data processing.

2. Cancelable Palmprint Recognition System

Cancelable palmprint technology, a biometric template protection (BTP) method, adheres to the ISO/IEC

30136 standard[109]  by ful�lling key criteria: cancelability for replacing compromised templates,

unlinkability for generating unique and non-correlatable templates, irreversibility to protect user privacy,

and high accuracy performance to preserve recognition precision.

Unlike traditional systems, cancelable approaches utilize user-speci�c tokens to apply non-invertible

transformations to palmprint features, enabling secure template replacement and unlinkability. This

approach effectively mitigates risks such as correlation and template reconstruction attacks, reinforcing

the security and integrity of biometric systems.

An early instance is PalmHashing, introduced by Connie et al.[110], provided revocable palmprint

templates, allowing users to replace compromised data. Building on this, Yang et al.[111] proposed a dual-

level framework combining competition hashing for tokenized template generation with a negative

dataset (NDB) for enhanced protection, reducing data leakage by eliminating the need to store templates

identical to those used for veri�cation.

Other approaches focus on ef�ciency and hybrid security. Siddhad et al.[112]  utilized autoencoders to

create low-dimensional templates, reducing storage size to 25% of the original while maintaining

performance. Sardar et al.[113]  introduced a hybrid scheme combining cancelable biometrics with bio-

cryptography techniques, enhancing data security and privacy. Similarly, Khan et al.[114]  proposed a

method incorporating a deep attention network and randomized hashing, dynamically generating

diverse templates through improved matrix multiplication using the LTTS random key and palmprint

features.

These diverse methods illustrate the evolution of cancelable palmprint technology, showcasing

advancements in privacy, security, and ef�ciency for palmprint recognition systems.
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3. Anti-Spoo�ng and Liveliness Detection

With the rise of spoo�ng techniques, palmprint veri�cation systems require innovative solutions to

maintain security and reliability. Researchers have explored diverse strategies, from leveraging surface

properties to incorporating multispectral imaging, each contributing unique strengths to combat

presentation attacks.

Kanhangad et al.[100]  laid the groundwork by focusing on surface re�ectance to counter display and

print-based spoo�ng. By analyzing hand images through statistical features derived from pixel

intensities and wavelet coef�cients, their method introduced a foundational approach to detecting fake

palmprints.

Building on this, Aishwarya et al.[115]  enhanced the �eld by integrating biometric trait veri�cation and

Weber’s local descriptor for feature re�nement. This method complemented spoof detection with

Euclidean distance-based authentication, though its liveness detection details remained unspeci�ed,

leaving room for further innovation. Expanding on vulnerability insights, Bhilare et al.[116] delved deeper

into presentation attacks. Their robust anti-spoo�ng solution advanced Kanhangad’s re�ectance-based

ideas, incorporating re�ned statistical analysis to accurately distinguish genuine from fake palmprints.

Sugimoto et al.[117] then focused on the unique challenges of printed and displayed palms. By examining

artifacts like resolution degradation caused by ink bleeding and moiré patterns, their approach

introduced a novel way of detecting forgery through visual and structural anomalies.

Wang et al.[118]  broadened the scope with a cutting-edge dual-wavelength system. Their solution

captured a more comprehensive range of palm features by integrating static and dynamic biometrics

through multispectral imaging. Yao et al.[119]  introduced domain generalization into palmprint anti-

spoo�ng research and constructed a novel, large-scale palmprint attack dataset. This dataset serves as a

valuable resource for training and evaluating anti-spoo�ng algorithms.

Lately, Datwase et al.[120]  proposed a DL-based approach utilizing a multispectral database to identify

spoofed palmprint images. This method leverages the rich information from multiple spectral bands to

enhance detection accuracy. Building upon this, Liu et al.[121] introduced a domain-adaptive algorithm for

cross-domain palmprint anti-spoo�ng scenarios. By adapting to variations across different domains, this

algorithm improves the robustness of spoof detection in diverse environments.
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VI. Other Palmprint Recognition Tasks

A. Cross-Domain Palmprint Recognition

Cross-domain palmprint recognition tackles the challenge of identifying palmprints accurately across

diverse datasets or environments, where variations in factors like lighting, resolution, and imaging

devices introduce domain shifts. This �eld ensures robust and precise recognition by addressing these

discrepancies between the enrolled and query palmprint images. Cross-spectral palmprint recognition is

a subset of this domain, which focuses on matching images captured under different spectral conditions,

such as near-infrared (NIR) and visible light.

Ruan et al.[122] proposed the Light Style and Feature Matching (LSFM) method, designed to align features

across task-speci�c layers within a high-dimensional space. This alignment signi�cantly reduces

domain discrepancies, thereby enhancing recognition accuracy. Similarly, Shao et al.[123]  introduced

PalmGAN, which leverages CycleGAN to generate synthetic images mimicking the target domain,

enabling unsupervised recognition through a supervised deep hashing network. Both methods aim to

mitigate the challenges posed by domain shifts due to variations in lighting, device differences, and

environmental factors. Expanding on these advancements, Shao et al.[124]  developed a framework

leveraging transfer convolutional autoencoders. This method extracts low-dimensional features and

iteratively re�nes feature distributions using a discriminator, effectively bridging domain gaps.

In the speci�c realm of cross-spectral recognition, Ma et al.[125]  introduced the palmprint translation

convolutional neural network (PT-net), which translates NIR images into blue spectrum images to

address spectral variance. Similarly, Fei et al.[126]  proposed a joint learning approach for multispectral

palmprint feature extraction. Their method derives spectral-invariant representations, ensuring

consistent performance when gallery and probe samples are captured under different spectral

conditions.

Zhu et al.[127] addressed cross-spectral domain adaptation by employing low-rank canonical correlation

analysis (LRCCA). This technique identi�es shared subspaces to capture similarities across spectral data

and has demonstrated ef�cacy in experiments involving 12 cross-spectral recognition tasks. Further

contributing to this �eld, Shao et al.[128]  investigated cross-dataset palmprint recognition, tackling

dataset-speci�c variations and broadening the applications of cross-domain recognition.
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These collective efforts highlight the importance of addressing domain-speci�c challenges in palmprint

recognition, paving the way for developing robust and adaptable palmprint biometric systems.

B. Palm-based Multi-Modality Recognition

Palmprint recognition methods are often limited to matching within a single modality. However, palm

images-including palmprints and palm veins-can be captured using various acquisition devices and

under diverse lighting conditions, spanning visible light to near-infrared and far-infrared sources[32].

The heterogeneous nature of features between palmprint and palm vein images presents signi�cant

challenges for their effective integration in identity recognition.

Recognition methods leveraging these modalities can be broadly classi�ed into multi-modality fusion,

which combines features from multiple modalities, and cross-modal recognition, which focuses on

matching between different modalities.

1. Multi-modality Fusion Recognition

When identity is established using a single biometric modality, the system is categorized as an unimodal

biometric recognition system. While such systems are straightforward and ef�cient, they are inherently

limited by vulnerabilities, such as susceptibility to forgery and fabricated identities. Palm-based multi-

modality fusion systems have emerged as a robust alternative to address these challenges. These systems

leverage the complementary features of palmprint and palm vein images—captured and stored during

the enrollment phase. During recognition, new inputs are compared against the stored data, enhancing

security and reliability through integrating diverse biometric traits.

Several studies have advanced the palm-based multi-modality fusion, particularly in the fusion of

palmprint and palm vein modalities. Wang et al.[129]  proposed an identity recognition algorithm that

combines palmprint and palm vein images using Mallat’s wavelet as a fusion rule, thereby enriching

discriminative information. Similarly, Zhang et al.[130]  developed a device capable of real-time

simultaneous capture of palmprint and palm vein images. Their approach introduced dynamic fusion for

adaptive image quality and incorporated a liveness detection algorithm based on image brightness and

texture analysis.

Further innovations include Lin et al.[131], who introduced a method for combined recognition by

representing palmprint and palm vein images as grayscale surfaces in three-dimensional space. They

achieved accurate identity authentication by calculating the standard deviation of surface differences.
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Ajay et al.[132] took a different approach, using Harris corner detection to extract regions of interest (ROI)

and employing grayscale and Gabor �lters for feature extraction. Their system veri�ed identities by

computing the Euclidean distance between input images.

Recent advancements have leveraged DL and multispectral imaging for enhanced performance. Zhao et

al.[82]  introduced the Joint Deep Convolutional Feature Representation (JDCFR) for hyperspectral

palmprint recognition, using a CNN stack to extract features across 53 spectral bands. Wu et al.

[133]  proposed a deep hash network for palmprint-palm vein fusion recognition, utilizing spatial and

channel-level cascades to improve accuracy.

Building on these efforts, Wang et al.[134] developed a multispectral recognition framework, integrating

features from palmprint and palm vein images through feature-level fusion. Their enhanced CNN model

demonstrated superior multimodal recognition capabilities. Most recently, Wu et al.[135]  presented a

feature-level joint learning method for modality correlation. They achieved effective feature extraction

and modality fusion for reliable identity recognition by combining sparse unsupervised projection and

partial least squares algorithms.

2. Cross-Modality Recognition

In practical applications, palmprint samples in gallery and probe sets may be captured under varying

environmental and lighting conditions, leading to feature inconsistencies. To address these challenges,

recent years have witnessed the development of several methods aimed at improving cross-modal

palmprint recognition.

Cho et al.[136] pioneered this area, proposing an RGB-NIR cross-spectral matching system for palmprint

and palm vein veri�cation. Their approach matches NIR palm images, containing palmprint and palm

vein features, with registered RGB palm images with corresponding features within the system.

Further advancing the �eld, Su et al.[137]  introduced the Modality-Invariant Binary Feature Learning

(MIBFL) method for palmprint-to-palm-vein recognition. This approach projects multimodal palmprint

and palm vein images into a high-dimensional space, extracting discriminative features from aligned

high-dimensional representations.

Gao et al.[138] took a novel approach with their cross-chirality palmprint veri�cation (CCPV) framework.

This method allows veri�cation using either hand, requiring only a single stored palmprint template.
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They also introduced a cross-hand loss function to construct a discriminative and robust feature space

for cross-hand matching.

Palm-based multi-modality recognition enhances biometric systems by combining diverse features such

as palmprints and palm veins, improving security and reliability beyond unimodal systems. Recent

advancements in multi-modality fusion and cross-modality recognition address challenges from varying

environmental conditions and feature inconsistencies. Techniques like feature-level fusion and deep

learning have signi�cantly improved recognition accuracy and robustness, highlighting the potential for

high-security identity veri�cation in palm-based systems.

C. Lightweight Palmprint Recognition

Existing DL-based methods for palmprint recognition often rely on large models. While these models

achieve high recognition accuracy, they come with drawbacks such as prolonged computation times and

substantial wastage of computational resources. This issue is particularly pronounced in mobile or edge

devices, where resource ef�ciency is crucial. Researchers have developed lightweight network

architectures to address these challenges to reduce computation time and resource consumption[41].

CNN-Fast, for instance, is designed to accelerate training and inference, making it ideal for real-time

applications without compromising performance[139]. Similarly, MobileNet-V2, optimized for mobile and

embedded devices, offers an ef�cient solution where computational resources are limited[140].

Zhou et al.[141]  introduced an improved lightweight CNN for palmprint recognition based on

MobileNetV3. This approach re�nes the compression factor of the channel attention module, replaces the

single-layer activation structure in this module with a multi-layer activation structure, and enhances the

functionality of the fully connected layer. These improvements collectively bolster the performance of

palmprint recognition systems.

Similarly, Jia et al.[142] developed EEPNet, a lightweight Enhanced Ef�cient Palmprint Network. Based on

MobileNetV3, this hybrid architecture combines ef�cient convolutional layers with attention

mechanisms to optimize feature extraction from palmprint images. Designed for embedded systems,

EEPNet is particularly for real-time applications on mobile and IoT devices.

Furthermore, Lin et al.[62] proposed a ROI extraction method leveraging a lightweight network. Initially,

the YOLOv5-lite network is used for hand detection and preliminary localization. Subsequently, an

enhanced version of the lightweight UNet network identi�es key points at the valleys between speci�c
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�ngers. These key points are then used to establish a coordinate system, enabling precise extraction of

the �nal palm ROI.

Together, these innovative approaches highlight the growing emphasis on lightweight and ef�cient

methods for palmprint recognition, particularly for resource-constrained environments.

VII. Palmprint Datasets

Over the past decade, the establishment of numerous palmprint recognition datasets has signi�cantly

advanced the accuracy and reliability of palmprint recognition systems. These datasets are broadly

categorized based on the image acquisition methodologies, falling into two primary types: constrained

and unconstrained datasets. The constrained category is divided into contact-based and contactless-

based datasets, each offering unique characteristics and applications.

Within the contact-based datasets, images are classi�ed as either high-resolution or low-resolution.

High-resolution images, de�ned as having a resolution exceeding 400 pixels per inch[143], provide

detailed visibility of palmar friction ridges and creases, which are crucial for precise recognition. The

acquisition of these datasets typically necessitates direct physical interaction between the hand and the

capturing device, ensuring a stable and consistent environment[144]. Additionally, the acquisition

protocols for constrained datasets mandate a �xed hand position, with subjects required to display their

hands in a speci�c pose—�ngers straight and separated.

In contrast, contactless datasets eliminate the need for physical interaction, capturing images with the

hand positioned at a distance from the device[145]. This approach enhances user convenience and

minimizes hygiene concerns, making it increasingly relevant for modern applications. On the other

hand, Unconstrained datasets embrace a more �exible acquisition protocol. These datasets allow subjects

to assume any hand pose during the image capture, catering to practical, user-friendly system

deployments[146]. Such �exibility re�ects real-world scenarios where strict hand positioning is often

impractical or unnecessary.

Table II provides a detailed overview of the acquisition protocols for various palmprint datasets,

highlighting the distinctions between constrained and unconstrained methodologies. These datasets

collectively underpin the development of robust palmprint recognition systems, driving innovation and

enabling broader adoption in diverse applications.
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Dataset Type Resolution Participants
Images per

Participant

Acquisition

Method
Reference

THUPALMLAB Contact
500 dpi

(2040x2040)
80 8 images per hand FHP [147]

LPIDB v1.0 Contact 500 dpi (varies) 51
2 (left and right

hands)
FHP [148]

Bosphorus Contact 120 dpi (varies) 642 3 images per hand FHP [149]

PolyU Contact 72 dpi (128x128) 193
11-27 images per

palm
FHP [9]

Multi-Spectral Contact
2500-3000 dpi

(varies)
250 12 images per palm FHP [150]

PV_790 Contact
790 nm NIR

(varies)
209

5 samples per

session
FHP [151]

BJTU (V1.0) Contact 72 dpi (292x413) 173 10 samples per palm FHP [152]

CASIA Contactless
300-600 dpi

(varies)
312

8-17 images per

hand
FBHP [153]

UST Contactless 1280x960 pixels 287
10 images per

participant
FBHP [154]

IITD Contactless 256 dpi (varies) 230 5-6 images per palm FBHP [155]

GPDS Contactless
120 dpi (256

grayscales)
100

10 right-hand

images per

participant

FBHP [156]

NTU-CP-v1 Contactless
420x420 to

1977x1977 pixels
328

7-10 images per

palm
FBHP [37]

Tongji Contactless
1280x960 pixels

(varies)
300 10 images per palm FBHP [55]

NTU-PI-v1 Contactless
1280x960 pixels

(varies)
1093

7 samples per

participant
FBHP [37]

REST Contactless 72 dpi (536 × 1250) 150 1945 images FBHP [157]
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Dataset Type Resolution Participants
Images per

Participant

Acquisition

Method
Reference

XJTU-UP Contactless
Smartphone

camera (varies)
200 30,000 images FBHP [81]

NUIG_Palm1 Contactless
Smartphone

camera (varies)
81

20 images per

participant
FBHP [158]

Table II. Comparison of Palmprint Datasets with References (FHP: �xed hand pose, FBHP: �exible hand pose)

In this section, we introduce some typical palmprint datasets based on categories of contact-based and

contactless-based approaches, respectively.

A. Contact-Based Palmprint Datasets

Among contact-based datasets, two high-resolution datasets are particularly noteworthy. The �rst is

THUPALMLAB[147], which includes 1280 high-resolution palmprint images collected from 80 subjects,

with eight images per hand for each individual. These images are in grayscale, with dimensions of 2040 

 2040 pixels and 500 dpi resolution.

The second dataset LPIDB v1.0[148] consists of 102 palmprint images from 51 volunteers (28 males and 23

females) and 380 latent palmprint images obtained from various surfaces. These images were scanned at

500 dpi with 8-bit depth. Other typical low-resolution contact-based datasets include:

Bosphorus Hand dataset (Bosphorus)[149], containing 1926 images from 642 individuals. Left-hand

images were captured using a commercial scanner with hands placed �at on the glass platen. Three

images were obtained per individual, ensuring �ngers were spaced apart.

Hong Kong Polytechnic University Palmprint dataset (PolyU)[9], which contains 7752 palmprint

images from 386 palms of 193 individuals (131 males and 62 females), with each palm contributing 11

to 27 samples. The dataset also includes an ROI at 128   128 pixels.

Multispectral Palmprint dataset (Multi-Spectral)[150], which consists of four spectral datasets (red,

green, blue, and near-infrared) from 250 volunteers (195 males and 55 females). Each individual

>

×

×
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contributed 12 images per palmprint, totaling 6000 images from 500 unique palms, with participants

aged 20 to 60 years.

Beijing Jiaotong University Palmprint Dataset (BJTU (V1.0))[152], comprising 3460 grayscale images

in BMP format from 173 volunteers. These images, with dimensions of 292    413 pixels and a

resolution of 72 dpi, were captured using a Fujitsu �-60F high-speed scanner. Each individual

contributed 10 samples from both left and right palms.

B. Contactless Palmprint Datasets

For contactless datasets, several signi�cant collections have been established:

CASIA Palmprint Image dataset (CASIA)[153], consisting of 5500 samples from 312 participants, with 8

to 17 images per hand.

UST Hand Image Dataset (UST)[154], developed by the Hong Kong University of Science and

Technology, includes 10 images of both hands from 287 individuals. The images were captured using

an Olympus C-3020 digital camera (1280   960 pixels) without special lighting.

IIT Delhi Touchless Palmprint Dataset (IITD)[155], comprising 2600 samples from 230 individuals,

with each individual contributing 5 to 6 samples per palm.

GPDS Hand Dataset (GPDS)[156], featuring ten right-hand images from 100 users, captured using a

desk scanner with 256 grayscale levels and 120 dpi.

Tongji Palmprint dataset (Tongji)[55], which includes 12000 images from 300 individuals over two

sessions spaced two months apart. Each session contributed 10 samples per individual.

NTU Palmprints from the Internet (NTU-PI-V1)[37], containing 7781 images from 2035 palms of 1093

participants. This dataset was established by collecting contactless palmprint images online.

NTU Contactless Palmprint (NTU-CP-V1)[37], comprising 2478 images from 328 participants

(predominantly Asian, with some Caucasians and Eurasians). Image dimensions range from 420 

 420 to 1977   1977 pixels, with a median size of 1373   1373 pixels.

REgim Sfax Tunisian Hand dataset (REST)[157], containing RGB images of both hands from 150

subjects aged 6 to 70 years. These images were captured using a low-cost digital camera with

dimensions of 1536   1250 pixels at 72 dpi.

Xian Jiaotong University Unconstrained Palmprint dataset (XJTU-UP)[81], comprising over 30,000

images (200 palms) captured using �ve different smartphones, making it the largest palmprint

×

×

× × ×

×
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dataset available using smartphone cameras.

NUIG_Palm1[158], including 1616 images from 81 participants aged 19 to 55. Each individual contributed

20 images using �ve smartphones.

These datasets are a foundation for advancing palmprint recognition research and development, offering

diverse resolutions, capture conditions, and demographic representations.

VIII. Evaluation

A. Evaluation Metrics for Palmprint Recognition

Accuracy  (ACC)  [159]  and Equal Error Rate (EER)  [36]  are widely recognized as the primary metrics for

evaluating the performance of palmprint recognition systems. These measures play a crucial role in

determining system effectiveness and are frequently adopted across the �eld of biometric research.

ACC re�ects the overall precision of a system in authenticating users, indicating its ability to identify

legitimate individuals correctly. This metric is the percentage of genuine instances or positive matches

the system veri�es.

On the other hand, EER is a benchmark for assessing veri�cation (one-to-one matching) performance. It

represents the exact operational point where the false acceptance rate (FAR) and false rejection rate (FRR)

are equal[160]. This equilibrium offers a balanced evaluation of the system, providing insight into its

reliability under optimal conditions.

The equation for calculating ACC is as follows:

where True Positive (TP) refers to correctly identi�ed positive samples, True Negative (TN) is used to

classify negative samples accurately, and False Positive (FP) is used to classify negative samples

incorrectly as positive.

While EER and accuracy offer quick, single-point evaluations, they lack the depth needed to analyze

biometric system performance comprehensively. Instead, Detection Error Tradeoff (DET)  [161]  and

ACC = × 100,
TP+TN

TP+FN+FP+TN
(7)

FAR = × 100,
FP

FP+TN
(8)

FRR = × 100,
FN

TP+FN
(9)
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Receiver Operating Characteristic  (ROC)  [162]  curves provide richer insights by capturing the trade-offs

and operational �exibility required in diverse real-world scenarios.

The DET curve shows how the FRR and FAR change as the threshold varies. The horizontal axis

represents the FAR, while the vertical axis represents the FRR. The closer the curve is to the bottom-left

corner, the better the classi�cation performance. By �ipping the DET curve vertically, we can obtain the

ROC curve, where the axes are reversed compared to the DET curve. The closer the curve is to the top-left

corner, the better the classi�cation performance.

The Cumulative Match Characteristic (CMC) curve is a widely used performance evaluation metric in

identi�cation (one-to-many matching) tasks. It plots the rank    on the X-axis and the top-   accuracy 

  on the Y-axis. For a given threshold  ,    values are calculated by varying the rank 

 from small to large. These points,  , are then connected to generate the CMC curve. A CMC

curve closer to   indicates better identi�cation performance of the algorithm.

B. Performance Comparisons

To comprehensively explore recent advancements in palmprint recognition, this paper systematically

reviews notable deep learning-based methods, as summarized in Table III.

k k

top(T , k) T top(T , k)

k (k, top(T , k))

y = 1
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Method Year Datasets Architecture
Closed-Set

Performance (%)

Open-Set

Performance (%)

PalmNet[83] 2019
Tongji, IITD,

REST, CASIA

Gabor responses and PCA-based

unsupervised method

ACC = 99.83, EER =

0.16 (Tongji)

ACC = 99.37, EER =

0.52 (IITD)

ACC = 97.16, EER =

4.50 (REST)

ACC = 99.77, EER =

0.72 (CASIA)

-

CompNet[86] 2021
Tongji, IITD,

REST, XJTU-UP

Constrained learnable Gabor

�lters-based method

(containing multisize

competitive blocks)

ACC = 100, EER =

0.018 (Tongji)

EER = 0.628 (IITD)

EER = 3.211 (REST)

EER = 0.170 (XJTU-

UP)

-

EEPNet[142] 2022

PolyU, Tongji,

Multi-Spectral,

NTU-PI-v1,

NTU-CP-v1

MobileNet-V3-based method

ACC = 99.95, EER =

0.0002 (PolyU)

ACC = 100, EER =

0.0025 (Tongji)

ACC = 100, EER =

0.0010 (Multi-

Spectral)

ACC = 24.26, EER =

22.9057 (NTU-PI-

v1)

ACC = 94.56, EER =

4.6230 (NTU-CP-

v1)

-

Rs-BFL[89] 2022 IITD, CASIA

Binary feature learning-based

method with l2,1 norm to make

the projection matrix more

discriminative

ACC = 99.6957

0.1604 (IITD)

ACC = 97.9538

1.8095 (CASIA)

ACC = 98.8043

0.6276 (IITD)

±

±

±
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Method Year Datasets Architecture
Closed-Set

Performance (%)

Open-Set

Performance (%)

DC_MDPR[163] 2022

Multi-Spectral,

Tongji, IITD,

GPDS, CASIA

multiview palmprint

representation (with double-

cohesion strategy)

ACC = 100 (Multi-

Spectral)

ACC = 99.44 0.12

(Tongji)

ACC = 98.43 0.22

(IITD)

ACC = 98.93 0.58

(GPDS)

ACC = 99.11 0.90

(CASIA)

-

BEST[164] 2023
IITD, CASIA,

PolyU

Approximate nearest neighbor-

based method

ACC = 98.09, EER =

1.38 (IITD)

EER = 0.25 (CASIA)

ACC = 98.48, EER

= 0.69 (PolyU)

AMGNet[165] 2023

PolyU, IITD,

CASIA, NTU-

CP-v1

Multilevel Gabor �lter-based

method (including principal line

and wrinkle Gabor convolution

modules)

ACC = 99.713, EER =

0.2865 (PolyU)

ACC = 99.754, EER =

0.1638 (IITD)

ACC = 99.206, EER

= 0.7613 (CASIA)

ACC = 95.959, EER =

2.6655 (NTU-CP-v1)

-

CCNet[76] 2023 PolyU, Tongji,

IITD, Multi-

Spectral

Learnable Gaber �lter-based

method (including three

branches and the

comprehensive competition

mechanism)

ACC = 100, EER =

0.00006 (PolyU)

ACC = 100, EER =

0.00004 (Tongji)

ACC = 100, EER =

0.18 (IITD)

ACC = 100, EER = 0

(Multi-Spectral)

ACC = 99.76, EER

= 1.58 (Tongji-

>PolyU)

ACC = 99.63, EER

= 2.01 (IITD-

>PolyU)

ACC = 98.48, EER

= 2.22 (PolyU-

>Tongji)

ACC = 98.35, EER

±

±

±

±
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Method Year Datasets Architecture
Closed-Set

Performance (%)

Open-Set

Performance (%)

= 3.22 (IITD-

>Tongji)

FFLNet[166] 2024
Multi-Spectral,

CASIA

Fourier-based feature learning

network (with frequency-aware

feature learning module)

ACC (Multi-

Spectral):

99.63 0.06 (Blue-

NIR), 99.45 0.09

(NIR-Blue),

99.70 0.06 (Green-

NIR), 99.47 0.14

(NIR-Green),

99.98 0.07 (Red-

NIR), 99.94

0.01(NIR-Red)

ACC (CASIA):

86.13 0.53 (460-

850nn), 80.96 0.54

(850-460nn),

94.03 0.60 (630-

850nn), 93.66 0.34

(850-630nn),

93.46 0.90 (700-

940nn), 93.50

0.49(940-700nn)

ACC (CASIA):

57.00 3.50 (460-

850nn),

57.20 3.39 (850-

460nn),

80.00 1.36 (630-

850nn),

79.50 1.87 (850-

630nn),

82.25 2.78 (700-

940nn),

80.75 2.44(940-

700nn)

PDFG[75] 2024 XJTU-UP, CASIA

Fourier-based data

augmentation method (with

data-level and feature-level

generalization)

-

ACC = 88.95, EER

= 2.97 (XJTU-UP)

ACC = 92.82, EER

= 4.07 (CASIA)

Table III. The performance of different methods.

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±
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The analysis reveals a dichotomy in performance: while many methods achieve near-perfect results in

closed-set settings, their effectiveness in open-set scenarios remains a signi�cant challenge. For

instance, CCNet and AMGNet report exceptional closed-set performance, with ACC reaching 100% on

multiple datasets, such as Tongji and PolyU. Yet, their open-set metrics highlight room for improvement,

with EERs of 1.58% and 1.68%, respectively. Similarly, Rs-BFL[89]  demonstrates competitive closed-set

accuracy on ITTD and CASIA but encounters dif�culty generalizing to unseen users, as evidenced by its

open-set ACC of 98.80% on ITTD.

The trend also underscores the growing adoption of specialized architectures, including learnable Gabor

�lters (e.g., AMGNet[165]  and CCNet[76]) and feature-learning techniques like Rs-BFL, which integrate

discriminative projection matrices. These innovations enable robust closed-set recognition but struggle

with cross-dataset variability, a hallmark of open-set recognition challenges. Furthermore, emerging

approaches, such as Fourier-based methods (e.g., PDFG[75]), highlight promising directions for feature-

level generalization, with EERs as low as 2.97% on XJTU-UP.

IX. Challenges and Outlook

Palmprint recognition has achieved signi�cant advancements in recent years. However, several

challenges persist:

1. Beyond Closed-Set Recognition

While signi�cant progress has been made in closed-set recognition, achieving robust generalization in

open-set and cross-domain scenarios remains a critical challenge. Bridging this gap will demand

innovative strategies emphasizing cross-dataset consistency, domain adaptability, and user-independent

performance.

A promising avenue lies in leveraging domain adaptation and generalization techniques[167]. These

methods equip models to handle domain shifts and perform effectively in previously unseen scenarios.

Complementarily, self-supervised learning[168]  offers a powerful approach to extracting meaningful

representations from unannotated or cross-domain data, facilitating adaptation to new datasets without

requiring extensive manual labeling.
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The establishment of cross-dataset benchmarks is equally important. Standardized evaluations can

illuminate generalization shortcomings, offering insights to enhance model robustness against

variations in demographics, sensors, and environmental conditions.

Techniques like few-shot and zero-shot learning[169]  also present exciting possibilities, enabling the

recognition of unseen palmprints with minimal or no additional data. Together, these strategies promise

to advance the �eld toward more adaptable and inclusive recognition systems.

2. Data Caveats

Although numerous palmprint benchmark datasets exist for evaluation and comparison, they fall short

compared to the extensive resources available for more mature biometrics like face, iris, and �ngerprint

recognition. These datasets’ limited scale and diversity hinder models from generalizing effectively

across varied demographics, environments, and imaging conditions—key requirements for robust open-

set and cross-domain recognition. Furthermore, the absence of detailed metadata in many datasets

restricts opportunities to enhance model performance and interoperability.

Creating comprehensive palmprint datasets requires addressing critical biases to ensure fairness and

accuracy. Demographic imbalances—such as underrepresenting certain age groups, genders, or

ethnicities—can reduce performance for marginalized groups. Environmental factors, including lighting

conditions, scanner angles, and device-speci�c sensor characteristics, can introduce inconsistencies.

Additionally, limited variability in hand poses, orientations, and age-related palmprint changes

diminishes model robustness.

Temporal biases and annotation errors further compound these challenges. To overcome these issues,

datasets must encompass diverse demographics, environmental settings, device types, poses, and time

intervals. Balanced sampling and meticulous labeling are essential for building reliable, generalizable

systems.

An increasingly promising solution is synthetic data generation using generative models[170]. These

models can simulate various conditions, such as varying hand poses, environmental factors, and sensor

characteristics. By augmenting training data, synthetic generation enhances model robustness and

adaptability, paving the way for more comprehensive and effective palmprint recognition systems.
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3. Security and Privacy Frontier

Like other biometric systems, palmprint recognition is exposed to various security risks, including

spoo�ng, template compromise, and unauthorized access to sensitive data. The advent of DL-based

systems, while enhancing recognition accuracy, introduces new vulnerabilities. For instance, DL models

are susceptible to template reconstruction attacks, where adversaries exploit stored biometric templates

to reverse-engineer and recreate palmprint images. This poses a signi�cant threat, as reconstructed

images can be used for unauthorized access.

Moreover, DL models face adversarial attacks, where imperceptible perturbations added to input images

can signi�cantly degrade the system’s recognition performance or even manipulate the model’s

output[171]. These attacks exploit the sensitivity of DL models to small input variations, highlighting a

critical security gap in palmprint recognition systems.

Addressing these risks requires robust measures such as encryption techniques like homomorphic

encryption for secure data handling, template protection strategies like cancelable biometrics to prevent

reconstruction and enable revocation, and advanced anti-spoo�ng methods incorporating multispectral

imaging and domain adaptation.

4. LLMs in Biometrics

An emerging direction is the adaptation of large language models (LLMs) through multimodal fusion and

novel feature representation techniques[172]. While LLMs are traditionally designed for natural language

processing, their potential to interpret and augment biometric data, including palmprints, is a promising

research frontier. Integrating LLMs with image-based models makes it possible to explore multimodal

approaches where textual data—such as metadata or contextual information—could be combined with

palmprint images to improve recognition accuracy and adaptability.

This fusion could also lead to innovative ways of representing palmprint features, allowing for richer,

more nuanced representations that capture complex patterns and relationships in the data. Integrating

LLMs with palmprint recognition systems could open up new pathways for achieving higher accuracy,

ef�ciency, and scalability in biometric security applications.
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X. Conclusion

Palmprint recognition has established itself as a highly promising biometric modality, propelled by

innovations in both traditional methods and deep learning (DL)-based approaches. This survey

spotlights the strides made in preprocessing, feature extraction, and tackling security and privacy

challenges while showcasing DL’s transformative role in enhancing accuracy, adaptability, and scalability.

However, critical challenges persist, including open-set and cross-domain recognition, safeguarding

security and privacy, and addressing dataset limitations. Palmprint recognition is poised to remain a

cornerstone of advancing biometric technologies by overcoming these hurdles through innovative

solutions.
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