
1 February 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

TrustRAG: Enhancing Robustness and

Trustworthiness in RAG

Huichi Zhou1, Zhonghao Zhan1, Zhenhao Li1, Hamed Haddadi1, Emine Yilmaz2

1. Imperial College London, United Kingdom; 2. University College London, United Kingdom

Retrieval-Augmented Generation (RAG) systems enhance large language models (LLMs) by integrating

external knowledge sources, enabling more accurate and contextually relevant responses tailored to user

queries. However, these systems remain vulnerable to corpus poisoning attacks that can signi�cantly

degrade LLM performance through the injection of malicious content. To address these challenges, we

propose TrustRAG, a robust framework that systematically �lters compromised and irrelevant contents

before they are retrieved for generation. Our approach implements a two-stage defense mechanism: At the

�rst stage, it employs K-means clustering to identify potential attack patterns in retrieved documents using

cosine similarity and ROUGE metrics as guidance, effectively isolating suspicious content. Secondly, it

performs a self-assessment which detects malicious documents and resolves discrepancies between the

model’s internal knowledge and external information. TrustRAG functions as a plug-and-play, training-free

module that integrates seamlessly with any language model, whether open or closed-source. In addition,

TrustRAG maintains high contextual relevance while strengthening defenses against corpus poisoning

attacks. Through extensive experimental validation, we demonstrate that TrustRAG delivers substantial

improvements in retrieval accuracy, ef�ciency, and attack resistance compared to existing approaches

across multiple model architectures and datasets. We have made TrustRAG available as open-source

software at https://github.com/HuichiZhou/TrustRAG.

Corresponding authors: Huichi Zhou, h.zhou24@imperial.ac.uk; Emine Yilmaz, emine.yilmaz@ucl.ac.uk

1. Introduction

Imagine asking an advanced Large Language Model (LLM) who runs OpenAI and receiving a con�dently stated

but incorrect name—”Tim Cook.” While such misinformation might seem concerning, it represents a broader,

more systemic vulnerability in modern AI systems. Retrieval-Augmented Generation (RAG) was developed to

enhance LLMs by dynamically retrieving information from external knowledge databases[1][2][3], providing

more accurate and up-to-date responses. This approach has been widely adopted in prominent applications

Qeios

qeios.com doi.org/10.32388/Z4DWHQ 1

https://github.com/HuichiZhou/TrustRAG
mailto:h.zhou24@imperial.ac.uk
mailto:emine.yilmaz@ucl.ac.uk
https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

including ChatGPT[4], Microsoft Bing Chat[5], Perplexity AI[6], and Google Search AI[7]. However, recent

incidents have exposed critical weaknesses in these systems, from inconsistent Google Search AI results[8] to

dangerous malicious code injections[9], underscoring the real-world consequences of their vulnerabilities.

At the heart of this problem lies a fundamental challenge: while RAG systems aim to enhance accuracy by

connecting LLMs to external knowledge, they remain vulnerable to corpus poisoning attacks that can

compromise this very capability of RAG. A growing body of research[10][11][12][13][14] has documented how

adversaries can exploit these systems by introducing malicious documents designed to hijack the retrieval

process. These attacks are particularly stealthy because they can lead LLMs to generate incorrect or deceptive

information with high con�dence, effectively undermining the core purpose of RAG systems—to provide more

reliable and accurate responses.

This vulnerability of RAG systems is caused by two factors. First, there is a signi�cant amount of noise and

even misinformation in the content available on the Internet, which poses challenges to retriever (e.g. search

engines) in accurately retrieving desirable knowledge. Second, LLMs suffer from unreliable generation

challenges, as they can be misled by incorrect information contained in the context. Recent work has

demonstrated how malicious instructions injected into retrieved documents can override original user

instructions and mislead LLM to generate their expected information[10] or how query-speci�c adversarial

prompts (adversarial pre�x and adversarial suf�x) can be optimized to mislead both retrievers and LLMs[12].

For example, PoisonedRAG[13] injects malicious documents into the knowledge base to induce incorrect RAG

responses. Additionally, there are real-world examples such as the ’glue on pizza’ �asco in Google Search AI[8].

In another case, a retrieval corruption attack led to a loss of $2.5k when ChatGPT generated code that contained

malicious code snippets from a compromised GitHub repository[9]. These RAG failures raise the important

question of how to safeguard an RAG pipeline.

To defend against these attacks, prior works have proposed advanced RAG frameworks[15][16][17] that mitigate

noisy information through majority-vote mechanisms across retrieved documents and carefully engineered

prompts. However, these approaches become ineffective when attackers inject multiple malicious documents

that outnumber clean ones[13]. Even in scenarios with less aggressive poisoning, RAG systems often struggle

with noisy or irrelevant content, which signi�cantly impacts their ability to generate reliable answers[17][1].

To address these vulnerabilities, we propose TrustRAG, the �rst defense framework speci�cally designed to

maintain robust and trustworthy responses in scenarios where multiple malicious documents have

contaminated the retrieval corpus. Our approach operates in two distinct stages, as illustrated in Figure 1. We

reveal that most of attackers[12][13] optimization setup constrains the malicious documents to be tightly

clustered in the embedding space. Because the initial malicious documents for a target query are generated

qeios.com doi.org/10.32388/Z4DWHQ 2

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

using LLM with different temperature settings, leading to inherent semantic similarity. Furthermore, to ensure

that the optimized adversarial examples are imperceptible and natural, their embeddings are constrained to

remain within a small distance of the original malicious documents. As a result, the malicious documents form

a dense and distinct region in the embedding space compared to normal, clean documents, indicating that K-

means clustering can effectively identify the malicious group. However, we observed that using similarity

metrics �lters out some clean documents. To address this, we utilize the ROUGE score[18] to measure the

overlap, which effectively preserves the clean documents.

Figure 1. The TrustRAG framework protects RAG systems from corpus poisoning attacks using a two-stage process.

In Stage 1, it (1) identi�es malicious documents via K-means clustering and (2) �lters malicious content based on

embedding distributions. In Stage 2, it (3) extracts internal knowledge to ensure accurate reasoning, (4) resolves

con�icts by grouping consistent documents and discarding irrelevant or con�icting ones, and (5) generates a

reliable �nal answer based on self-assessment.

After Clean Retrieval stage, since the majority of malicious documents are �ltered out, the original problems

could be simpli�ed to the scenario that the clean documents occupies a large portion of the rest of documents.

[17] claim that roughly 70% retrieved documents do not directly contain true answers, leading to the impeded

performance of LLM with RAG systems. It could be even worse in corpus poisoning attack, because the attacker

may induce malicious documents contain wrong answers for a target query. Inspired by the works of [19][20],

and [17], the internal knowledge of LLM is bene�cial to RAG systems. We leverage LLM itself to combine

consistent information, identify con�icting information, and �lter out malicious or irrelevant information.

Finally, TrustRAG generates answers based on consolidated information and internal knowledge, then self-

assesses to determine which should be used for the �nal response.

qeios.com doi.org/10.32388/Z4DWHQ 3

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

We extensively experimented with three datasets NQ, HotpotQA and MS-MARCO, and three open-source and

close-source LLMs, Llama-3.1-8B[21], Mistral-Nemo-12B[22] and GPT-4o[4]. Our major contributions are as

follows:

We propose the �rst defense framework to effectively defend corpus poisoning attack where the number of

poisoned documents exceeds the number of clean ones.

TrustRAG decreases attack success rate while maintains high response accuracy on different popular RAG

benchmarks and attack settings.

We conduct an extensive evaluation for TrustRAG on multiple knowledge databases and LLMs. Additionally,

we compare TrustRAG with advanced RAG systems and achieve State-of-the-Art performance.

2. Related Work

Retrieval augmented generation. RAG is a framework for improving the trustworthiness and facticity of LLMs

through retrieving relevant information integrated with user query from an external knowledge database and

grounding LLMs on the retrieved knowledge for conditional generations[23]. The work�ow of RAG involves two

steps: retrieval and generation[3][24][25]. With the emergence of LLMs, there is a variety of methods to improve

the ability of RAG, such as query rewriter[26][27], retrieval reranking[28] and document summarization.[29][30].

Vulnerability of RAG. The majority of existing RAG attacks focus on compromising retrieval systems with the

goal of tricking them into retrieving adversarial documents. These attacks can be divided into following

categories: 1) prompt injection attack modi�es the text input fed to the LLM directly to cause the LLM to

generate outputs that satisfy some adversarial objective[31][32], 2) corpus poisoning attack, attacker adds

multiple crafted documents to the database, making the system retrieve adversaries and thus generate

incorrect responses to speci�c queries[12][13][14][33][34][11] and 3) backdoor attack, which introduces optimized

backdoor triggers into the LLM’s long-term memory or RAG knowledge base, ensuring malicious responses are

retrieved when speci�c triggers are found in inputs[35][36]. These attacks require varying levels of access to the

retrievers and/or the LLMs, such as white-box or black-box. However, all of these attacks need access to inject

poisoned data into the underlying data corpus used by the RAG system. Additionally, almost all of them are

targeted attacks, aimed at a particular subset of data, rather than indiscriminately affecting the entire dataset.

In this sense, RAG attacks can essentially be regarded as targeted data poisoning attacks against the retrievers.

Robustness of RAG. To defend against above adversarial attacks on RAG,[15] �rst propose a defense framework,

designing keyword-based and decoding-based algorithms for securely aggregating unstructured text

responses.[14] use perplexity-based detection[37], query paraphrasing[38] and increasing context size to defense

the adversarial attacks. However, these methods fail to notice the nature of adversarial attack on RAG. The

qeios.com doi.org/10.32388/Z4DWHQ 4

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

main problems are that, 1) majority-based voting will not work when the majority of the data is poisoned, 2)

PPL between malicious and clean documents is not signi�cantly different, and 3) query paraphrasing and

increasing context size cannot essentially address the problem of corpus poisoning attacks. To address above

issues, we propose TrustRAG to further enhance the robustness of RAG.

3. TrustRAG: Defense Framework

3.1. Problem Formulation

Defense Objective. Our objective is to defense the malicious attacks of RAG systems, �lter the malicious and

irrelevant documents retrieved by retriever, ultimately producing more accurate and reliable responses from

LLMs. Notably, this defense framework is orthogonal to prior work on improving the retriever, LLMs, or

conducting adaptive retrieval, which are mainly preliminary steps.

Attack Goals. An attacker selects an arbitrary set of questions, denoted as . For each

question , the attacker will set an arbitrary attacker-desired response for it. For instance, the could be

“Who the the CEO of OpenAI?” and the could be “Tim Cook”. In this attack scenario, we formulate corpus

poisoning attacks to RAG systems as a constrained optimization problem. We assume an attacker can inject

 malicious documents for each question into a knowledge database . We use to denote the

 malicious document for the question , where and . Attacker’s goal is to

construct a set of malicious documents such that the LLM in a RAG

system produce the answer for the question when utilizing the documents retrieved from the poisoned

knowledge database as the context. Formally, we have the following optimization problem:

where is the indicator function whose output is 1 if the condition is satis�ed and 0 otherwise,

 is a set of texts retrieved from the corrupted knowledge database for the target question

, and represents the embedding model for the query and text, respectively. The objective function is large

when the answer produced by the LLM based on the retrieved texts for the target question is the target

answer.

3.2. Overview of TrustRAG

TrustRAG is a framework designed to defend against malicious attacks that poison RAG systems. It leverages

K-means clustering and collective knowledge from both the internal knowledge of the LLM and external

M Q = [, , … ,]q1 q2 qM

qi ri qi

ri

N qi D p
j
i

jth qi i = 1, 2, … , M j = 1, 2, … , N

Γ = { i = 1, 2 …, M; j = 1, 2, … , N}p
j
i
∣∣

ri qi k

D ∪ Γ

s.t.,

⋅ I(LLM(;E(;D ∪ Γ)) =),max
Γ

1

M
∑
i=1

M

qi qi ri

E(;D ∪ Γ) = Retrieve(, , ,D ∪ Γ),qi qi fq ft

i = 1, 2, ⋯ , M,

(1)

(2)

(3)

I(⋅)

E(;D ∪ Γ)qi k D ∪ Γ

qi f

k

qeios.com doi.org/10.32388/Z4DWHQ 5

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

documents retrieved to generate more trustworthy and reliable responses. As shown in Figure 1, attackers

optimize malicious documents for a target question and a target answer. The retriever retrieves relevant

documents from the knowledge database, and K-means �lters out malicious documents. The LLM then

generates information about the query from its internal knowledge and compares it with the external

knowledge to remove con�icts and irrelevant documents. Finally, the output is generated based on the most

reliable knowledge.

3.3. Clean Retrieval – Stage 1

In the Clean Retrieval stage, we employ K-means clustering () to differentiate between clean and

potentially malicious documents based on their embedding distributions. Different from the previous work,

they only consider the attack scenario of single injection, TrustRAG is designed to handle both single and

multiple injection attacks.

We formally de�ne the attacker’s optimization objective as:

where represents the similarity score (e.g., cosine similarity), and are the text encoders for the

query and retrieved document respectively. represents the malicious document, attacker’s optimize the

 to maximize the similarity between the query and the malicious document. is the context of target answer

prede�ned by the attacker, causing the LLM to generate incorrect answers. Due to the discrete nature of

language, the attacker uses HotFlip[39] to optimize and .

Here is the second optimization goal for the attacker:

where represents the minimum probability threshold for the LLM to generate the attacker’s desired response

 given the poisoned input.

To ensure the optimized text maintains malicious semantic similarity while still misleading the LLM, the

following constraints must be satis�ed:

where represents the norm and is a small constant controlling the maximum allowed semantic

deviation.

The initial text is generated with different temperature settings to create multiple diverse malicious

documents. These texts inherently share high similarity due to their common generation process, and become

k = 2

S = arg Sim((), (⊕ I)),max
S ′

fq qi ft S ′ (4)

Sim(⋅, ⋅) fq ft

S ⊕ I

S I

S I

= arg P (LLM(, S ⊕) =) ≥ η,I ′ max
I ′

qi I ′ ri (5)

η

ri

≤ ϵ,| (S ⊕) − (S ⊕ I)|ft I ′ ft p (6)

| ⋅ |p Lp ϵ

I

qeios.com doi.org/10.32388/Z4DWHQ 6

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

even more tightly clustered in the embedding space after optimization under the constraint in Eq. 6. To defend

against such attacks, we propose a two-stage framework.

K-means Clustering. In the �rst stage, we apply the K-means clustering algorithm to analyze the distribution of

text embeddings generated by and identify suspicious high-density clusters that may indicate the presence

of malicious documents. In cases of multiple injections, our �rst-stage defense strategy effectively �lters most

malicious groups or pairs due to their high similarity.

N-gram Preservation. In consideration of single injection attacks, we proposed using ROUGE-L score[18] to

compare intra-cluster similarity, aiming to preserve the majority of clean document for Con�ict Removal

information consolidation, which robustly �lter single malicious document. From Figure 3, it was observed that

the ROUGE-L scores signi�cantly differ when comparing pairs of clean documents, pairs of malicious

documents, and pairs of clean and malicious documents. Utilizing this property, we can decide not to �lter

groups containing only one malicious document among clean documents, thereby reducing information loss.

Instead, these groups can proceed to Con�ict Removal, which focuses on identifying and removing single

injection attacks.

3.4 Con�ict Removal – Stage 2

In the Remove Con�ict stage, we leverage the internal knowledge of the LLM, which re�ects the consensus

from extensive pre-training and instruction-tuning data. This internal knowledge can supplement any missing

information from the limited set of retrieved documents and even rebut malicious documents, enabling mutual

con�rmation between internal and external knowledge.

Internal Knowledge Extract. After the Clean Retrieval stage, where most of the malicious documents have been

�ltered out, we further enhance the trustworthiness of the RAG system. First, we prompt the LLM to generate

internal knowledge (see Appendix D.1), following the work of [40], which emphasizes the importance of

reliability and trustworthiness in generated documents. To achieve this goal, we enhance the original method

with constitutional principles[40]. However, unlike the works[19][20][17], which generate multiple diverse

documents using different temperature settings and may lead to hallucination or incorrectness, we only

perform a single LLM inference. This approach is not only more reliable but also cost-ef�cient.

Knowledge Consolidation. We employ the LLM to explicitly consolidate information from both documents

generated from its internal knowledge and documents retrieved from external sources. Initially, we combine

document from both internal and external knowledge sources . To �lter the

con�ict between clean and malicious documents, we prompt the LLM using prompt (See Appendix D.2) to

identify consistent information across different documents, detect malicious information. This step would

ft

= ∪ ∪ ΓD0 Dexternal Iinternal

qeios.com doi.org/10.32388/Z4DWHQ 7

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

regroup the unreliable knowledge in input documents into fewer re�ned documents. The regrouped

documents will also attribute their source to the corresponding input documents.

Self-Assessment of Retrieval Correctness. In its �nal step, TrustRAG prompts the LLM to perform a self-

assessment by evaluating its internal knowledge against the retrieved external documents (See Appendix D.3).

This process identi�es con�icts, consolidates consistent information, and determines the most credible

sources, ensuring that the �nal answer is both accurate and trustworthy. This self-assessment mechanism is

key to enhancing the robustness of TrustRAG, enabling it to maintain high accuracy.

4. Experiment

4.1. Setup

In this section, we discuss our experiment setup. All of our inference architectures are implemented by

LMDeploy1.

Datasets. We use three benchmark question-answering datasets in our defense framework: Natural Questions

(NQ)[41], HotpotQA[42], and MS-MARCO[43], where each dataset has a knowledge database. The knowledge

databases of NQ and HotpotQA are collected from Wikipedia, which contains 2.6M and 5.2M documents,

respectively. The knowledge database of MS-MARCO is collected from web documents using the MicroSoft

Bing search engine, which contains 8.8M documents.

Attackers. We introduce two kinds of popular RAG attacks to verify the robustness of our defense framework.

(1) Corpus Poisoning Attack: PoisonedRAG[13] create poisoned documents by directly appending poisoned text

to the adversarial queries. (2) Prompt Injection Attack: PIA[11][10] propose a attack, in which a malicious user

generates a small number of adversarial passages by perturbing discrete tokens to maximize similarity with a

provided set of training queries.

Evaluation Metrics. Following previous work, we adopt several metrics to evaluate the performance of

TrustRAG: (1) Accuracy () represents the response accuracy of RAG system. (2) Attack Successful Rate (

) is the number of incorrect answer generated by the RAG system when misled by attackers.

4.2. Results

We conduct comprehensive experiments compared with different defense frameworks and RAG systems under

PIA[11] and PoisonedRAG[13] and evaluate the performance across three LLMs. The more detailed results of

PoisonedRAG in different poison rate can be found in the Appendix A (Table 4, Table 5, and Table 6).

ACC

ASR

qeios.com doi.org/10.32388/Z4DWHQ 8

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Models Defense

HotpotQA[42] NQ[41] MS-MARCO[43]

PIA PoisonedRAG Clean PIA PoisonedRAG Clean PIA PoisonedRAG Clean

ACC

/ ASR

ACC

/ ASR
ACC

ACC

/ ASR

ACC

/ ASR
ACC

ACC

/ ASR

ACC

/ ASR
ACC

Mistral

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE

RAG

TrustRAG

TrustRAG

Llama

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE

RAG

TrustRAG

TrustRAG

GPT Vanilla RAG

RobustRAG

↑

↓

↑

↓
↑

↑

↓

↑

↓
↑

↑

↓

↑

↓
↑

Nemo-12B

43.0
/49.0

1.0/97.0 78.0 45.0
/50.0

10.0/88.0 69.0 47.0
/49.0

6.0/93.0 82.0

Keyword

55.0
/25.0

26.0/70.0 54.0 55.0
/4.0

28.0/60.0 57.0 75.0
/6.0

37.0/53.0 72.0

ICL

31.0
/64.0

9.0/89.0 73.0 53.0
/41.0

11.0/88.0 65.0 57.0
/37.0

13.0/84.0 83.0

59.0
/28.0

30.0/61.0 76.0 62.0
/19.0

44.0/46.0 72.0 72.0
/24.0

37.0/59.0 84.0

stage 1

37.0
/51.0

69.0/8.0 74.0 45.0
/43.0

57.0/3.0 66.0 42.0
/54.0

75.0/6.0 79.0

stage 2

77.0

/9.0
70.0/4.0 77.0 66.0

/8.0
64.0/1.0 66.0 81.0

/9.0
79.0/7.0 81.0

3.1-8B

3.0/95.0 1.0/99.0 71.0 4.0/93.0 2.0/98.0 71.0 2.0/98.0 3.0/97.0 79.0

Keyword

55.0
/4.0

3.0/93.0 52.0 44.0
/11.0

1.0/68.0 45.0 69.0
/15.0

3.0/95.0 72.0

ICL

64.0
/27.0

26.0/73.0 83.0 55.0
/19.0

27.0/69.0 68.0 57.0
/19.0

44.0/54.0 89.0

51.0
/28.0

48.0/41.0 65.0 70.0
/14.0

61.0/29.0 75.0 71.0
/25.0

26.0/73.0 83.0

stage 1

28.0
/61.0

54.0/6.0 70.0 40.0
/52.0

67.0/6.0 65.0 31.0
/67.0

77.0/7.0 81.0

stage 2

73.0

/3.0
59.0/6.0 71.0 83.0

/2.0
81.0/2.0 81.0 86.0

/7.0
87.0/3.0 88.0

4o 60.0
/37.0

8.0/92.0 82.0 52.0
/41.0

20.0/80.0 76.0 67.0
/28.0

29.0/66.0 81.0

Keyword

60.0
/8.0

5.0/76.0 54.0 40.0
/38.0

1.0/61.0 45.0 48.0
/29.0

2.0/63.0 56.0

qeios.com doi.org/10.32388/Z4DWHQ 9

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Models Defense

HotpotQA[42] NQ[41] MS-MARCO[43]

PIA PoisonedRAG Clean PIA PoisonedRAG Clean PIA PoisonedRAG Clean

ACC

/ ASR

ACC

/ ASR
ACC

ACC

/ ASR

ACC

/ ASR
ACC

ACC

/ ASR

ACC

/ ASR
ACC

InstructRAG

ASTUTE

RAG

TrustRAG

TrustRAG

Table 1. Main Results show that different defense frameworks and RAG systems defend against two kinds of attack

methods based on three kinds of large language models.

As shown in Table 1, all the previous methods fail to effectively handle the scenario of multiple malicious

documents injected into the knowledge database, under PoisonedRAG attack, the can range from 24% to

97% and the can range from 1% to 76%. It is worth noticing that RobustRAG, which defense framework

using aggregating and voting strategies. It fails the number of malicious documents exceed the number of

benign one, they failed. However, bene�ting from the K-means �ltering strategy, TrustRAG signi�cantly

reduces malicious documents during retrieval, and only a small portion of malicious documents are used in

Con�ict Removal stage. After Con�ict Removal, TrustRAG can integrate with internal knowledge, use the

information of consistent groups, and self-assess the whether to use the information from the RAG. The results

show that TrustRAG can effectively enhance the robustness of RAG systems.

Regarding PIA attack, which will use the strongly induced document to mislead the LLM to generate incorrect

answer. We consider this situation as equivalent to the scenario where the number of poisonings is set to . Our

method can also effectively defense this attack using Con�ict Removal, outperforming previous work by a large

margin.

↑

↓

↑

↓
↑

↑

↓

↑

↓
↑

↑

↓

↑

↓
↑

ICL

58.0
/41.0

1.0/98.0 86.0 63.0
/34.0

13.0/83.0 79.0 69.0
/28.0

15.0/81.0 81.0

74.0
/16.0

66.0/35.0 80.0 81.0
/4.0

76.0/24.0 81.0 86.0
/11.0

67.0/24.0 85.0

stage 1

56.0
/37.0

82.0/5.0 76.0 49.0
/41.0

79.0/6.0 76.0 63.0
/35.0

88.0/4.0 77.0

stage 2

83.0

/3.0
81.0/3.0 84.0 83.0

/1.0
81.0/1.0 84.0 91.0

/1.0
90.0/2.0 89.0

ASR

ACC

1

qeios.com doi.org/10.32388/Z4DWHQ 10

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

5. Detailed Analysis of TrustRAG

Dataset
Embedding

Model

Poison-

(100%)

Poison-

(80%)

Poison-

(60%)

Poison-

(40%)

Poison-

(20%)

Poison-

(0%)

F1 F1

/ CRR

F1

/ CRR

F1

/ CRR

F1

/ CRR

CRR

NQ

SimCSE

SimCSE

Bert

Bert

BGE

BGE

MS-

MARCO

SimCSE

SimCSE

Bert

Bert

BGE

BGE

HotpotQA

SimCSE

SimCSE

Bert

Bert

BGE

BGE

Table 2. Results on various datasets with different Poisoning levels and embedding models. F1 score measures the

performance of detecting poisoned samples, while Clean Retention Rate (CRR) evaluates the proportion of clean

samples retained after �ltering.

↑ ↑

↑

↑

↑

↑

↑

↑

↑

↑

97.5 92.6/92.0 94.3/91.5 84.9/89.0 3.1/86.2 85.0

w/o ROUGE 91.3 83.9/93.0 72.0/69.0 64.4/68.3 35.8/54.8 52.6

97.2 84.7/84.0 87.4/89.0 77.8/82.0 5.6/78.5 74.2

w/o ROUGE 52.0 73.2/80.0 63.4/61.0 51.7/58.0 35.5/55.8 52.0

98.1 90.8/92.0 96.9/93.0 89.5/91.0 3.0/86.3 87.6

w/o ROUGE 93.8 85.0/93.0 86.7/83.0 79.9/80.7 27.5/51.5 51.4

95.6 84.7/88.0 84.0/80.0 71.7/73.0 4.6/72.0 70.6

w/o ROUGE 89.4 77.3/84.0 69.6/60.5 58.1/61.7 17.0/47.5 52.4

95.2 83.0/85.0 77.8/73.0 66.8/71.7 5.8/70.0 70.4

w/o ROUGE 87.4 75.4/74.0 67.3/58.5 48.9/53.7 24.6/48.0 51.8

94.2 87.2/88.0 84.1/73.0 73.4/69.3 5.0/66.0 66.8

w/o ROUGE 91.4 81.5/78.0 73.2/59.0 64.9/66.3 17.9/46.5 47.8

99.2 95.6/91.0 95.2/84.0 90.0/80.6 6.5/80.0 81.8

w/o ROUGE 94.9 85.1/94.0 1.0/77.0 72.5/73.3 21.3/47.5 49.0

99.2 89.7/88.0 85.5/75.5 83.7/79.7 2.4/78.0 76.2

w/o ROUGE 88.5 79.4/88.0 64.1/61.0 48.1/55.3 25.8/49.5 49.0

99.6 91.9/90.0 95.6/84.0 90.2/82.3 9.7/80.5 81.0

w/o ROUGE 94.7 87.4/91.0 82.5/81.0 74.7/76.3 16.5/44.3 49.6

qeios.com doi.org/10.32388/Z4DWHQ 11

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Figure 2. (1) The perplexity distribution density plot between clean and malicious documents. And the lines of

dashes represent the average perplexity values. (2) The bar plot of ablation study on accuracy in NQ dataset based on

the Llama . (3) The bar plot of ablation study on attack success rate in NQ dataset based on the Llama .

API Call MS-MARCO NQ HotpotQA

Vanilla RAG

InstructRAG

RobustRAG

ASTUTE RAG

TrustRAG

TrustRAG

Table 3. TrustRAG runtime analysis based on Llama for 100 queries in three different datasets.

3.1-8B 3.1-8B

1 8.9/1× 9.2/1× 9.6/1×

ICL 1 12.6/1.4× 13.1/1.4× 32.7/3.4×

Keyword 11 107.9/12.1× 107.7
/11.7×

107.9/11.2×

3 17.5/2.0× 17.3/1.9× 16.7/1.7×

K-means 1 12.3/1.4× 12.6/1.4× 12.5/1.3×

Conflict 3 18.4/2.1× 19.9/2.2× 21.7/2.3×

3.1-8B

qeios.com doi.org/10.32388/Z4DWHQ 12

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Figure 3. (1) The density plot of cosine similarity between three different groups. (2) The box plot of ROUGE Score

between three different groups.

Figure 4. (1) The line plot of accuracy between TrustRAG and Vanilla RAG on clean scenario. (2) The line plot of

accuracy between TrustRAG and Vanilla RAG on malicious scenario. (3) The line plot of attack successful rate

between TrustRAG and Vanilla RAG on malicious scenario. All the context windows set from to and the

malicious scenario includes malicious documents.

5.1. Effectiveness of K-means Filtering Strategy

Distribution of Poisoned Documents. As shown in Appendix Figure 5, we plot a case in which samples from

the NQ data set are used in different numbers of poisoned documents, we can see that in the scenario of

multiple malicious documents, the malicious documents are close to each other. By contrast, for a single

poisoned document, it will be mixed in the clean documents. Therefore, it is important to use the n-gram

preservation to preserve the clean documents.

N-gram preservation. As shown in Table 2, we conduct an ablation study on n-gram preservation, we can see

that When poinsoning rate exceeds 20%, the F1 score is higher after applying n-gram preservation in the clean

retrieval stage. However, when poisoning rate at 20%, without n-gram preservation, the K-means �ltering

5 20

5

qeios.com doi.org/10.32388/Z4DWHQ 13

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

strategy will randomly remove the group which has higher similarity, but it will lead the bad effect of

decreasing the CRR. The clean documents can thus be �ltered by mistake. Therefore, using n-gram

preservation will not only preserve the clean documents but increase the F1 score of detecting the malicious

documents.

Embedding Models. Choosing the right embedding model is crucial for effectively cluster the retrieved

documents. As shown in Table 2, we compare different embedding models: SimCSE[44], Bert[45] and BGE[46],

and the results show that our proposed K-means �ltering strategy is robust and effective for all three

embedding models. In addition, we notice that more �ne-grained embedding model (e.g. SimCSE) can achieve

better performance and be more robust in different poisoning rates and datasets.

5.2. Runtime Analysis

In Table 3, we present a detailed runtime analysis for various methods across three datasets. The analysis

reveals that TrustRAG spends approximately twice inference time as compared to Vanilla RAG, which is a

reasonable trade-off considering the signi�cant improvements in robustness and reliability offered by

TrustRAG.

5.3. Effectiveness of Perplexity-based Detection

Since attackers will generate unnatural looking patterns to attack LLMs, PPL detection has been suggested as a

defense[47][38] and [14] claim that the distribution of perplexity values differ signi�cantly between clean and

malicious documents and PPL can be an effective defense. We test the effectiveness of PPL defense and follow

the setting in in the work[14]. Text perplexity[37] is used to evaluate the naturalness and quality of text.

As shown in Figure 2(1), the PPL values for clean and adversarial texts overlap signi�cantly. While [14] argue that

these distributions differ substantially, our �ndings challenge this claim. Although some adversarial examples

exhibit higher PPL values, many fall within the range of clean texts. This overlap highlights the limitations of

relying solely on PPL as a detection metric, as it risks false negatives (misclassifying adversarial texts as clean)

and false positives (�agging clean texts as adversarial).

5.4. Ablation Study

We conducted an ablation study on Llama and analyzed the impact of four key components. The detailed

experiments are in Appendix Table 8.

Impact of K-means Clustering. As shown in Figure 2 (2) and (3), K-means �ltering effectively defends against

attacks while maintaining high response accuracy when the poisoning rate exceeds 20%. Even at a poisoning

3.1-8B

qeios.com doi.org/10.32388/Z4DWHQ 14

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

rate of 20% (with only a single poisoned document), it still successfully preserves successfully preserves the

integrity of clean documents.

Impact of Internal Knowledge. Comparing TrustRAG w/ and w/o providing internal knowledge inferred from

the LLM, from Figure 2, we observe notable improvements in both ACC and ASR from utilizing the LLM

internal knowledge. Particularly at the poisoned rate of 20%, internal knowledge effectively addresses con�icts

between malicious and clean documents, contributing signi�cantly to improved robustness.

Impact of Con�ict Removal. While K-means clustering and internal knowledge signi�cantly reduce the ASR,

the con�ict removal component also plays a crucial role in the defense framework. By leveraging knowledge

consolidation and rationale outputs, TrustRAG further enhances the robustness of RAG systems across all

scenarios under different poison percentage.

Impact of Self-Assessment. The self-assessment mechanism can further enhance the performance of

TrustRAG in all settings, particularly at a poisoned rate of 20%. This suggests that the LLM can effectively

distinguish between inductive or malicious information and the internal and external knowledge.

5.5. Impact of Top-K Context Window

Furthermore, RAG systems may face another two critical types of non-adversarial noise beyond intentional

poisoning attacks: retrieval-based noise from imperfect retrievers returning irrelevant documents, and corpus-

based noise from inherent inaccuracies in the knowledge base itself[16]. To rigorously assess TrustRAG’s

robustness, we conducted extensive experiments on the NQ dataset using Llama under two key scenarios:

(1) a clean setting with context windows ranging from 1 to 20 documents, and (2) a poisoned setting with 5

malicious documents and varying context windows. The results reveal TrustRAG’s superior performance in

both scenarios. In clean settings, TrustRAG’s accuracy improves steadily with larger context windows (

 documents), consistently outperforming vanilla RAG. More importantly, in poisoned scenarios,

TrustRAG maintains approximately accuracy while keeping attack success rates (ASR) around . This

contrasts markedly with vanilla RAG, which achieves only accuracy in relation to ASR levels of

.

5.6. Evaluation in Real-World Adversarial Conditions

To assess TrustRAG’s performance under real-world adversarial conditions, we utilize the RedditQA dataset

from [48], which comprises Reddit posts with real-world factual errors that result in incorrect answers to

corresponding questions. We evaluate our method on this dataset using Llama . The vanilla RAG with the

retrieved documents achieve the response accuracy of with an attack success rate of . In contrast,

3.1-8B

5 − 20

80% 1%

10 − 40%

60 − 90%

3.1-8B

27.3% 43.8%

qeios.com doi.org/10.32388/Z4DWHQ 15

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

TrustRAG achieves a response accuracy of with an attack success rate of , demonstrating its

robustness in real-world adversarial conditions.

6. Conclusion

RAG systems, despite their potential to enhance language models’ capabilities, remain vulnerable to corpus

poisoning attacks which is a critical security concern that is still insuf�ciently addressed. In this work, we

introduce TrustRAG, the �rst RAG defense framework designed to counter attacks involving multiple

maliciously injected documents. TrustRAG employs K-means �ltering to reduce the presence of malicious

documents and incorporates both internal and external knowledge sources to resolve con�icts and mitigate the

impact of these attacks. Our comprehensive evaluation across benchmark datasets demonstrates that

TrustRAG outperforms existing defenses, maintaining high accuracy even under aggressive poisoning

scenarios where traditional approaches fail.

Appendix A. Details of Experiments

A.1. NQ results

As shown in Table 4, the experimental results highlight the robustness of various RAG defenses against corpus

poisoning attacks across different poisoning levels, evaluated on three language models: MistralNemo-12B,

Llama3.1-8B, and GPT4o. For the MistralNemo-12B, the TrustRAGstage 2 defense achieved a notable accuracy of

 with a minimal ASR of at a poisoning rate, maintaining superior performance even under

extreme adversarial scenarios. Similarly, at a lower poisoning rate of , TrustRAGstage 2 continued to lead

with accuracy and an ASR of only .

For the Llama3.1-8B, TrustRAGstage 2 showcased impressive resilience, achieving accuracy and an ASR of

just under a poisoning rate. At a moderate poisoning rate of , the accuracy remained high at

 with an ASR of , signi�cantly outperforming alternative defenses such as ASTUTE RAG and

RobustRAGKeyword.

The GPT4o model further validated the effectiveness of TrustRAGstage 2, achieving an accuracy of and a

near-zero ASR of at poisoning. Even under a poisoning rate, the method maintained robust

performance with accuracy and an ASR of , demonstrating its ability to consistently suppress

adversarial effects while preserving response reliability across diverse settings and language models. These

results con�rm TrustRAG’s state-of-the-art capability in defending against both high and low-intensity

poisoning attacks.

72.2% 11.9%

64.0% 1.0% 100%

20%

67.0% 11.0%

83.0%

2.0% 100% 40%

83.0% 1.0%

81.0%

1.0% 100% 60%

80.0% 1.0%

qeios.com doi.org/10.32388/Z4DWHQ 16

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Dataset Defense

Poison-

(100%)

Poison-

(80%)

Poison-

(60%)

Poison-

(40%)

Poison-

(20%)

Poison-

(0%)

ACC / ASR
ACC / ASR ACC / ASR ACC / ASR ACC / ASR ACC

Mistral

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

Llama

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

GPT

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

Table 4. NQ Result

↑ ↓
↑

↓

↑

↓

↑

↓

↑

↓

↑

Nemo-12B

10.0/88.0 15.0/84.0 18.0/79.0 34.0/62.0 42.0/51.0 69.0

Keyword

28.0/60.0 30.0/59.0 35.0/54.0 39.0/45.0 54.0/9.0 57.0

ICL 11.0/88.0 21.0/77.0 25.0/70.0 33.0/59.0 48.0/40.0 65.0

44.0/46.0 56.0/32.0 63.0/24.0 65.0/19.0 69.0/10.0 72.0

stage 1 57.0/3.0 51.0/18.0 65.0/2.0 62.0/2.0 46.0/40.0 66.0

stage 2 64.0/1.0 64.0/2.0 63.0/2.0 65.0/1.0 67.0/11.0 69.0

3.1-8B

2.0/98.0 2.0/98.0 3.0/97.0 4.0/93.0 26.0/73.0 71.0

Keyword

11.0/83.0 15.0/75.0 23.0/63.0 37.0/46.0 51.0/27.0 61.0

ICL 27.0/69.0 38.0/56.0 40.0/56.0 51.0/45.0 58.0/37.0 68.0

61.0/29.0 64.0/24.0 68.0/19.0 69.0/18.0 77.0/11.0 75.0

stage 1 67.0/6.0 51.0/19.0 56.0/3.0 62.0/2.0 43.0/50.0 65.0

stage 2 83.0/2.0 85.0/1.0 84.0/1.0 83.0/1.0 82.0/9.0 82.0

4o

20.0/80.0 32.0/69.0 37.0/60.0 49.0/49.0 56.0/39.0 76.0

Keyword

1.0/61.0 8.0/57.0 20.0/58.0 32.0/36.0 39.0/28.0 45.0

ICL 13.0/83.0 21.0/74.0 27.0/65.0 37.0/55.0 53.0/39.0 79.0

76.0/24.0 76.0/21.0 76.0/20.0 78.0/16.0 82.0/6.0 81.0

stage 1 79.0/6.0 65.0/15.0 75.0/3.0 73.0/3.0 57.0/35.0 76.0

stage 2 81.0/1.0 82.0/3.0 80.0/1.0 84.0/1.0 83.0/4.0 84.0

qeios.com doi.org/10.32388/Z4DWHQ 17

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

A.2. MS-MARCO results

The results presented in Table 5 evaluate the robustness of different RAG defenses against corpus poisoning

attacks on the MS-MARCO dataset using three language models: MistralNemo-12B, Llama3.1-8B, and GPT4o.

Across various poisoning rates, TrustRAGstage 2 consistently demonstrates superior performance in

maintaining high accuracy and suppressing ASR.

For the MistralNemo-12B, TrustRAGstage 2 achieves an accuracy of and an ASR of just at a

 poisoning rate. Even as the poisoning rate decreases to , TrustRAGstage 2 maintains robust

performance with accuracy and an ASR of . At the poisoning level, accuracy remains high at

 with a moderate ASR of .

For the Llama3.1-8B, TrustRAGstage 2 delivers excellent robustness under all conditions. At a poisoning

rate, it achieves an accuracy of with a low ASR of . At lower poisoning rates, such as and ,

TrustRAGstage 2 achieves 85.0% and accuracy, respectively, while maintaining ASR levels at or below

.

For the GPT4o model, TrustRAGstage 2 again leads in robustness. At a poisoning rate, it reaches an

impressive accuracy with an ASR of only . Even with lower poisoning rates, such as and ,

the method maintains high accuracy of and , respectively, and keeps ASR at minimal levels (

 and , respectively).

85.0% 4.0%

100% 60%

83.0% 5.0% 20%

84.0% 12.0%

100%

87.0% 5.0% 40% 20%

83.0%

11.0%

100%

90.0% 2.0% 60% 40%

90.0% 87.0%

2.0% 4.0%

qeios.com doi.org/10.32388/Z4DWHQ 18

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Dataset Defense

Poison-

(100%)

Poison-

(80%)

Poison-

(60%)

Poison-

(40%)

Poison-

(20%)

Poison-

(0%)

ACC / ASR
ACC / ASR ACC / ASR ACC / ASR ACC / ASR ACC

Mistral

Vanilla RAG 6.0 / 93.0 10.0 / 88.0 21.0 / 74.0 33.0 / 62.0 52.0 / 43.0

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

Llama

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

GPT

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

Table 5. MS-MARCO Result

↑ ↓
↑

↓

↑

↓

↑

↓

↑

↓

↑

Nemo-12B

82.0

Keyword

37.0/53.0 40.0/50.0 50.0/38.0 62.0/21.0 72.0/9.0 72.0

13.0/84.0 22.0/72.0 31.0/62.0 40.0/54.0 57.0/36.0 83.0

37.0/59.0 43.0/52.0 55.0/41.0 68.0/28.0 77.0/16.0 84.0

stage 1 75.0/6.0 67.0/18.0 75.0/7.0 79.0/7.0 50.0/44.0 79.0

stage 2 85.0/4.0 84.0/6.0 83.0/5.0 82.0/6.0 84.0/12.0 82.0

3.1-8B

3.0/97.0 3.0/96.0 5.0/94.0 7.0/93.0 28.0/70.0 79.0

Keyword

25.0/68.0 28.0/66.0 37.0/54.0 57.0/34.0 67.0/19.0 73.0

44.0/54.0 47.0/51.0 49.0/45.0 60.0/36.0 63.0/33.0 89.0

26.0/73.0 40.0/57.0 50.0/47.0 52.0/44.0 54.0/41.0 83.0

stage 1 77.0/7.0 64.0/18.0 72.0/7.0 78.0/6.0 45.0/47.0 81.0

stage 2 87.0/5.0 84.0/8.0 85.0/7.0 85.0/7.0 83.0/11.0 85.0

4o

29.0/66.0 43.0/49.0 51.0/40.0 59.0/35.0 67.0/24.0 81.0

Keyword

2.0/63.0 17.0/52.0 23.0/48.0 41.0/33.0 50.0/22.0 56.0

15.0/81.0 31.0/64.0 39.0/54.0 47.0/45.0 59.0/35.0 81.0

67.0/24.0 67.0/21.0 72.0/17.0 74.0/16.0 77.0/13.0 85.0

stage 1 88.0/4.0 76.0/11.0 84.0/2.0 84.0/4.0 62.0/24.0 77.0

stage 2 90.0/2.0 90.0/2.0 90.0/5.0 87.0/4.0 86.0/8.0 89.0

qeios.com doi.org/10.32388/Z4DWHQ 19

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

A.3. HotpotQA results

The results in Table 6 evaluate the robustness of various RAG defenses against corpus poisoning attacks on the

HotpotQA dataset using three language models: MistralNemo-12B, Llama3.1-8B, and GPT4o. The defenses

compared include Vanilla RAG, RobustRAGKeyword, InstructRAGICL, ASTUTE RAG, TrustRAGstage 1, and

TrustRAGstage 2. TrustRAGstage 2 consistently exhibits superior performance, maintaining high ACC while

minimizing the ASR under all poisoning levels.

For the MistralNemo-12B model, TrustRAGstage 2 achieves an impressive accuracy and ASR at a

 poisoning rate, signi�cantly outperforming other defenses. Even as the poisoning rate decreases to ,

TrustRAGstage 2 maintains a high accuracy of with a reduced ASR of , showcasing its robustness

under various poisoning intensities.

For the Llama3.1-8B, TrustRAGstage 2 demonstrates strong resilience with accuracy and ASR at a

 poisoning rate. As the poisoning rate decreases to , accuracy improves to , with the ASR

remaining low at , underscoring its reliability and effectiveness in defending against adversarial attacks.

For the GPT4o, TrustRAGstage 2 achieves exceptional performance, reaching accuracy and ASR at a

 poisoning rate. At lower poisoning levels, such as , it achieves a remarkable accuracy and an

ASR of only , demonstrating state-of-the-art robustness and adaptability across all attack levels.

75.0% 4.0%

100% 40%

78.0% 3.0%

67.0% 4.0%

100% 20% 70.0%

4.0%

82.0% 5.0%

100% 20% 84.0%

1.0%

qeios.com doi.org/10.32388/Z4DWHQ 20

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Dataset Defense

Poison-

(100%)

Poison-

(80%)

Poison-

(60%)

Poison-

(40%)

Poison-

(20%)

Poison-

(0%)

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

Mistral

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

Llama

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

GPT

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

Table 6. HotpotQA Result

↑

↓

↑

↓

↑

↓

↑

↓

↑

↓

↑

Nemo-12B

1.0/97.0 6.0/93.0 9.0/90.0 18.0/78.0 28.0/68.0 78.0

Keyword

26.0/70.0 28.0/68.0 33.0/59.0 41.0/43.0 51.0/27.0 54.0

ICL 9.0/89.0 11.0/87.0 14.0/81.0 24.0/68.0 36.0/59.0 73.0

30.0/61.0 37.0/54.0 52.0/38.0 57.0/31.0 60.0/24.0 76.0

stage 1 69.0/8.0 68.0/12.0 76.0/6.0 77.0/5.0 38.0/54.0 74.0

stage 2 75.0/4.0 79.0/4.0 79.0/4.0 78.0/3.0 74.0/13.0 78.0

3.1-8B

1.0/99.0 2.0/97.0 6.0/94.0 5.0/94.0 27.0/81.0 71.0

Keyword

8.0/89.0 10.0/87.0 19.0/76.0 33.0/57.0 40.0/50.0 54.0

ICL 26.0/73.0 40.0/57.0 50.0/47.0 52.0/44.0 54.0/41.0 83.0

48.0/41.0 53.0/38.0 59.0/30.0 59.0/31.0 65.0/16.0 65.0

stage 1 54.0/6.0 61.0/12.0 72.0/3.0 66.0/2.0 43.0/47.0 70.0

stage 2 67.0/4.0 71.0/4.0 70.0/7.0 69.0/5.0 66.0/18.0 74.0

4o

8.0/92.0 33.0/67.0 31.0/69.0 48.0/52.0 52.0/48.0 82.0

Keyword

5.0/76.0 18.0/74.0 20.0/61.0 41.0/43.0 51.0/27.0 54.0

ICL 1.0/98.0 9.0/90.0 19.0/79.0 27.0/71.0 33.0/63.0 86.0

66.0/35.0 67.0/33.0 74.0/25.0 76.0/24.0 78.0/22.0 80.0

stage 1 82.0/5.0 77.0/12.0 85.0/5.0 81.0/10.0 54.0/46.0 76.0

stage 2 81.0/3.0 84.0/1.0 81.0/3.0 81.0/4.0 84.0/6.0 84.0

qeios.com doi.org/10.32388/Z4DWHQ 21

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Appendix B. Scaling Law for TrustRAG

Table 7 demonstrates the scaling behavior across four Llama model sizes (1B, 3B, 8B, and 70B) on three datasets

(NQ, HotpotQA, and MS-MARCO) under varying poisoning ratios. For example, on the NQ dataset, the Llama3.2-

1B model achieves an ACC of around when subjected to poisoned documents, whereas the larger

Llama3.1-8B sustains an ACC of approximately under the same extreme poisoning condition, coupled

with a notably low attack success rate (ASR) of . A similar trend is observed in HotpotQA: the smallest

model registers an ACC of only 41.0 with an ASR of at poisoning, yet the Llama3.3-70B model attains

an ACC of while limiting ASR to . The MS-MARCO results further reinforce this pattern, as the 70B

variant retains close to ACC even under high-poison scenarios. Overall, these �ndings highlight a robust

scaling law: larger models provide both higher accuracy and greater resilience against poisoning attacks,

offering stronger capacity to detect and disregard malicious documents without compromising retrieval or

generation quality.

55.0% 100%

83.0%

2.0%

13.0% 100%

81.0% 1.0%

90.0%

qeios.com doi.org/10.32388/Z4DWHQ 22

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Dataset Defense

Poison-(100%) Poison-(80%) Poison-(60%) Poison-(40%) Poison-(20%) Poison-(0%)

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

NQ

Llama

Llama

Llama

Llama

HotpotQA

Llama

Llama

Llama

Llama

MS-MARCO

Llama

Llama

Llama

Llama

Table 7. Scaling-up Llama to larger models. We evaluate the performance of Llama across three datasets with

different model sizes. We observe that Llama scales well with the model size, achieving better performance with

larger models.

Appendix C. Ablation Studies

Table 8 presents the results of the ablation study for the Llama3.1-8B model across three datasets (NQ,

HotpotQA, and MS-MARCO). Notably, TrustRAG with all components consistently achieved the best

performance in most scenarios. Each component serves a distinct role; for instance, by comparing TrustRAG

 and TrustRAG , we observe that the �rst stage of the model effectively reduces the

number of malicious texts in the retrieved documents, signi�cantly lowering ASR values. Meanwhile, the

Internal Knowledge and Self Assessment components, particularly under a poisoning rate, enhance the

model’s robustness by consolidating external information into a reliable �nal answer. Without Internal

Knowledge, the performance of the Llama3.1-8B model declines sharply at a poisoning rate across all three

↑

↓

↑

↓

↑

↓

↑

↓

↑

↓

↑

3.2-1B 55.0/1.0 60.0/6.0 56.0/4.0 58.0/4.0 59.0/8.0 60.0

3.2-3B 76.0/4.0 75.0/6.0 75.0/2.0 78.0/1.0 78.0/13.0 77.0

3.1-8B 83.0/2.0 85.0/1.0 84.0/1.0 83.0/1.0 82.0/9.0 82.0

3.3-70B 78.0/0.0 80.0/3.0 78.0/1.0 79.0/1.0 78.0/5.0 76.0

3.2-1B 41.0/13.0 48.0/15.0 53.0/10.0 53.0/10.0 46.0/23.0 58.0

3.2-3B 57.0/5.0 57.0/8.0 67.0/5.0 60.0/6.0 54.0/28.0 66.0

3.1-8B 67.0/4.0 71.0/4.0 70.0/7.0 69.0/5.0 66.0/18.0 74.0

3.3-70B 81.0/1.0 74.0/8.0 78.0/2.0 79.0/4.0 70.0/15.0 77.0

3.2-1B 50.0/23.0 54.0/21.0 56.0/21.0 54.0/21.0 51.0/26.0 50.0

3.2-3B 71.0/12.0 71.0/12.0 74.0/12.0 76.0/11.0 73.0/20.0 78.0

3.1-8B 87.0/5.0 84.0/8.0 85.0/7.0 85.0/7.0 83.0/11.0 85.0

3.3-70B 89.0/4.0 87.0/3.0 86.0/4.0 88.0/4.0 87.0/9.0 87.0

w/o K-Means w/o Conflict Removal

20%

20%

qeios.com doi.org/10.32388/Z4DWHQ 23

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

datasets. When relying solely on external information, the model often struggles to generate correct answers,

as the consolidated information may still contain malicious or misleading texts. By incorporating Internal

Knowledge, the model is better equipped to select documents that align with its internal understanding,

thereby improving certainty and resistance to attacks. Furthermore, the addition of Self Assessment allows the

model to discard unreliable or untrustworthy documents, further reducing ASR values and improving overall

performance. With all the components combined, our TrustRAG can �lter malicious content from externally

retrieved documents, consolidate both internal and external information, and provide accurate and trustworthy

answers.

qeios.com doi.org/10.32388/Z4DWHQ 24

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Dataset Defense

Poison-

(100%)

Poison-

(80%)

Poison-

(60%)

Poison-

(40%)

Poison-

(20%)

Poison-

(0%)

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

NQ

Vanilla RAG

TrustRAG

TrustRAG

TrustRAG

TrustRAG

TrustRAG

HotpotQA

Vanilla RAG

TrustRAG

TrustRAG

TrustRAG

TrustRAG

TrustRAG

MS-

MARCO

Vanilla RAG

TrustRAG

TrustRAG

TrustRAG

TrustRAG

↑

↓

↑

↓

↑

↓

↑

↓

↑

↓

↑

2.0/98.0 2.0/98.0 3.0/97.0 4.0/93.0 26.0/73.0 71.0

w/o K-Means 55.0/39.0 55.0/41.0 58.0/36.0 63.0/28.0 69.0/18.0 81.0

w/o Conflict Removal

67.0/6.0 51.0/19.0 56.0/3.0 62.0/2.0 43.0/50.0 65.0

w/o Internal Knowledge

75.0/3.0 67.0/11.0 65.0/4.0 67.0/3.0 50.0/34.0 64.0

w/o Self Assessment

78.0/2.0 75.0/7.0 80.0/2.0 80.0/2.0 69.0/21.0 78.0

83.0/2.0 85.0/1.0 84.0/1.0 83.0/1.0 82.0/9.0 82.0

1.0/99.0 2.0/97.0 6.0/94.0 5.0/94.0 27.0/81.0 71.0

w/o K-Means 41.0/56.0 42.0/57.0 49.0/48.0 53.0/44.0 61.0/34.0 73.0

w/o Conflict Removal

54.0/6.0 61.0/12.0 72.0/3.0 66.0/2.0 43.0/47.0 81.0

w/o Internal Knowledge

69.0/6.0 61.0/10.0 67.0/6.0 72.0/8.0 51.0/32.0 67.0

w/o Self Assessment

64.0/5.0 59.0/8.0 65.0/6.0 67.0/5.0 55.0/32.0 65.0

67.0/4.0 71.0/4.0 70.0/7.0 69.0/5.0 66.0/18.0 74.0

3.0/97.0 3.0/96.0 5.0/94.0 7.0/93.0 28.0/70.0 79.0

w/o K-Means 51.0/47.0 53.0/44.0 53.0/42.0 64.0/32.0 83.0/11.0 86.0

w/o Conflict Removal

77.0/7.0 64.0/18.0 72.0/7.0 78.0/6.0 45.0/47.0 70.0

w/o Internal Knowledge

80.0/6.0 75.0/13.0 73.0/10.0 69.0/12.0 54.0/35.0 75.0

w/o Self Assessment

86.0/4.0 78.0/12.0 80.0/8.0 86.0/5.0 74.0/19.0 86.0

qeios.com doi.org/10.32388/Z4DWHQ 25

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Dataset Defense

Poison-

(100%)

Poison-

(80%)

Poison-

(60%)

Poison-

(40%)

Poison-

(20%)

Poison-

(0%)

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

TrustRAG

Table 8. Ablaiton Studies

Appendix D. Prompt Template for TrustRAG

D.1. Prompt for Internal Knowledge Generation

Figure 5. The embedding distribution of retrieved documents.

↑

↓

↑

↓

↑

↓

↑

↓

↑

↓

↑

87.0/5.0 84.0/8.0 85.0/7.0 85.0/7.0 83.0/11.0 85.0

qeios.com doi.org/10.32388/Z4DWHQ 26

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

D.2. Prompt for Knowledge Consolidation

D.3. Prompt for Final Answer

Footnotes

1 https://github.com/InternLM/lmdeploy.

References

�. a, bChen J, Lin H, Han X, Sun L (2024). "Benchmarking large language models in retrieval-augmented generation".

Proceedings of the AAAI Conference on Arti�cial Intelligence. 38: 17754–17762.

�. ^Gao Y, Xiong Y, Gao X, Jia K, Pan J, Bi Y, Dai Y, Sun J, Wang H (2023). "Retrieval-augmented generation for large la

nguage models: A survey". arXiv preprint arXiv:2312.10997.

�. a, bLewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, Küttler H, Lewis M, Yih W-t, Rocktäschel T, et al. Retr

ieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing Syste

ms. 33:9459-9474, 2020.

qeios.com doi.org/10.32388/Z4DWHQ 27

https://github.com/InternLM/lmdeploy
https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

�. a, bAchiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, Almeida D, Altenschmidt J, Altman S, Anadkat S, e

t al. (2023). "Gpt-4 technical report". arXiv preprint arXiv:2303.08774. Available from: https://arxiv.org/abs/2303.08

774.

�. ^Microsoft (2024). "Bing Chat". Available from: https://www.microsoft.com/en-us/edge/features/bing-chat.

�. ^AI Perplexity (2024). "Perplexity AI". Available from: https://www.perplexity.ai/.

�. ^Google (2024). "Generative AI in Search: Let Google do the searching for you". https://blog.google/products/searc

h/generative-ai-google-search-may-2024/.

�. a, bBBC (2024). "Glue pizza and eat rocks: Google AI search errors go viral". https://www.bbc.co.uk/news/articles/c

d11gzejgz4o.

�. a, brocky (2024). "A retrieval corruption attack". Available from: https://x.com/r_cky0/status/185965643088802652

4?s=46&t=p9-0aPCrd_0h9-yuSXpN8g.

��. a, b, cGreshake K, Abdelnabi S, Mishra S, Endres C, Holz T, Fritz M. "Not what you've signed up for: Compromising r

eal-world llm-integrated applications with indirect prompt injection". Proceedings of the 16th ACM Workshop on

Arti�cial Intelligence and Security. 2023:79-90.

��. a, b, c, dZhong Z, Huang Z, Wettig A, Chen D (2023). "Poisoning retrieval corpora by injecting adversarial passages".

arXiv preprint arXiv:2310.19156.

��. a, b, c, dTan Z, Zhao C, Moraffah R, Li Y, Wang S, Li J, Chen T, Liu H (2024). "Glue pizza and eat rocks"--Exploiting vu

lnerabilities in retrieval-augmented generative models. arXiv preprint arXiv:2406.19417.

��. a, b, c, d, e, f, gZou W, Geng R, Wang B, Jia J (2024). "Poisonedrag: Knowledge corruption attacks to retrieval-augmen

ted generation of large language models". arXiv preprint arXiv:2402.07867.

��. a, b, c, d, e, fShafran A, Schuster R, Shmatikov V (2024). "Machine Against the RAG: Jamming Retrieval-Augmented

Generation with Blocker Documents". arXiv preprint arXiv:2406.05870.

��. a, bXiang C, Wu T, Zhong Z, Wagner D, Chen D, Mittal P (2024). "Certi�ably Robust RAG against Retrieval Corrupti

on". arXiv preprint arXiv:2405.15556.

��. a, bWei Z, Chen WL, Meng Y (2024). "InstructRAG: Instructing Retrieval-Augmented Generation with Explicit Deno

ising". arXiv preprint arXiv:2406.13629.

��. a, b, c, d, eWang F, Wan X, Sun R, Chen J, Arık SÖ (2024). "Astute rag: Overcoming imperfect retrieval augmentation

and knowledge con�icts for large language models". arXiv preprint arXiv:2410.07176.

��. a, bLin C-Y (2004). "ROUGE: A Package for Automatic Evaluation of Summaries." In: Text Summarization Branche

s Out. Barcelona, Spain: Association for Computational Linguistics; p. 74-81. Available from: https://aclanthology.o

rg/W04-1013.

qeios.com doi.org/10.32388/Z4DWHQ 28

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

��. a, bSun Z, Wang X, Tay Y, Yang Y, Zhou D (2022). "Recitation-augmented language models". arXiv preprint arXiv:22

10.01296.

��. a, bYu W, Iter D, Wang S, Xu Y, Ju M, Sanyal S, Zhu C, Zeng M, Jiang M (2022). "Generate rather than retrieve: Large l

anguage models are strong context generators". arXiv preprint arXiv:2209.10063.

��. ^Touvron H, Martin L, Stone K, Albert P, Almahairi A, Babaei Y, Bashlykov N, Batra S, Bhargava P, Bhosale S, et al.

Llama 2: Open foundation and �ne-tuned chat models. arXiv preprint arXiv:2307.09288. 2023.

��. ^Mistral-Nemo (2024). "Mistral-Nemo-Instruct-2407". Available from: https://huggingface.co/mistralai/Mistral-N

emo-Instruct-2407.

��. ^Zhou Y, Liu Y, Li X, Jin J, Qian H, Liu Z, Li C, Dou Z, Ho T-Y, Yu PS (2024). "Trustworthiness in retrieval-augmented

generation systems: A survey". arXiv preprint arXiv:2409.10102.

��. ^Guu K, Lee K, Tung Z, Pasupat P, Chang M. "Retrieval augmented language model pre-training." In: Internationa

l conference on machine learning. PMLR; 2020. p. 3929-3938.

��. ^Izacard G, Lewis P, Lomeli M, Hosseini L, Petroni F, Schick T, Dwivedi-Yu J, Joulin A, Riedel S, Grave E (2023). "Atla

s: Few-shot learning with retrieval augmented language models". Journal of Machine Learning Research. 24 (251):

1--43.

��. ^Zheng HS, Mishra S, Chen X, Cheng HT, Chi EH, Le QV, Zhou D (2023). "Take a step back: Evoking reasoning via a

bstraction in large language models". arXiv preprint arXiv:2310.06117.

��. ^Dai Z, Zhao VY, Ma J, Luan Y, Ni J, Lu J, Bakalov A, Guu K, Hall KB, Chang MW (2022). "Promptagator: Few-shot d

ense retrieval from 8 examples". arXiv preprint arXiv:2209.11755.

��. ^Glass M, Rossiello G, Chowdhury MF, Naik AR, Cai P, Gliozzo A (2022). "Re2G: Retrieve, rerank, generate". arXiv pr

eprint arXiv:2207.06300. Available from: https://arxiv.org/abs/2207.06300.

��. ^Chen H, Pasunuru R, Weston J, Celikyilmaz A (2023). "Walking down the memory maze: Beyond context limit thr

ough interactive reading". arXiv preprint arXiv:2310.05029.

��. ^Kim J, Nam J, Mo S, Park J, Lee S-W, Seo M, Ha J-W, Shin J (2024). "SuRe: Summarizing Retrievals using Answer Ca

ndidates for Open-domain QA of LLMs". arXiv preprint arXiv:2404.13081.

��. ^Chen Z, Xiang Z, Xiao C, Song D, Li B (2024). "Agentpoison: Red-teaming llm agents via poisoning memory or kn

owledge bases". arXiv preprint arXiv:2407.12784.

��. ^RoyChowdhury A, Luo M, Sahu P, Banerjee S, Tiwari M (2024). "Confusedpilot: Confused deputy risks in rag-bas

ed llms". arXiv preprint arXiv:2408.04870.

��. ^Chen Z, Liu J, Liu H, Cheng Q, Zhang F, Lu W, Liu X (2024). "Black-Box Opinion Manipulation Attacks to Retrieval-

Augmented Generation of Large Language Models". arXiv preprint arXiv:2407.13757.

qeios.com doi.org/10.32388/Z4DWHQ 29

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

��. ^Xue J, Zheng M, Hu Y, Liu F, Chen X, Lou Q (2024). "BadRAG: Identifying Vulnerabilities in Retrieval Augmented G

eneration of Large Language Models". arXiv preprint arXiv:2406.00083.

��. ^Cheng P, Ding Y, Ju T, Wu Z, Du W, Yi P, Zhang Z, Liu G (2024). "TrojanRAG: Retrieval-Augmented Generation Can

Be Backdoor Driver in Large Language Models". arXiv preprint arXiv:2405.13401.

��. ^Long Q, Deng Y, Gan L, Wang W, Pan SJ (2024). "Backdoor attacks on dense passage retrievers for disseminating

misinformation". arXiv preprint arXiv:2402.13532.

��. a, bJelinek F. Interpolated estimation of Markov source parameters from sparse data. In: Proc. Workshop on Patter

n Recognition in Practice, 1980, 1980.

��. a, bJain N, Schwarzschild A, Wen Y, Somepalli G, Kirchenbauer J, Chiang P-y, Goldblum M, Saha A, Geiping J, Goldst

ein T. "Baseline defenses for adversarial attacks against aligned language models". arXiv preprint arXiv:2309.0061

4. 2023.

��. ^Ebrahimi J, Rao A, Lowd D, Dou D (2017). "Hot�ip: White-box adversarial examples for text classi�cation". arXiv p

reprint arXiv:1712.06751.

��. a, bBai Y, Kadavath S, Kundu S, Askell A, Kernion J, Jones A, Chen A, Goldie A, Mirhoseini A, McKinnon C, et al. (202

2). "Constitutional ai: Harmlessness from ai feedback". arXiv preprint arXiv:2212.08073.

��. a, bKwiatkowski T, Palomaki J, Red�eld O, Collins M, Parikh A, Alberti C, Epstein D, Polosukhin I, Devlin J, Lee K, et

al. Natural questions: a benchmark for question answering research. Transactions of the Association for Computa

tional Linguistics. 7: 453–466, 2019.

��. a, bYang Z, Qi P, Zhang S, Bengio Y, Cohen WW, Salakhutdinov R, Manning CD (2018). "HotpotQA: A dataset for div

erse, explainable multi-hop question answering". arXiv preprint arXiv:1809.09600.

��. a, bBajaj P, Campos D, Craswell N, Deng L, Gao J, Liu X, Majumder R, McNamara A, Mitra B, Nguyen T, et al. A hum

an generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268. 2018.

��. ^Gao T, Yao X, Chen D (2021). "Simcse: Simple contrastive learning of sentence embeddings". arXiv preprint arXiv:2

104.08821. Available from: https://arxiv.org/abs/2104.08821.

��. ^Devlin J (2018). "Bert: Pre-training of deep bidirectional transformers for language understanding". arXiv preprin

t arXiv:1810.04805.

��. ^Chen J, Xiao S, Zhang P, Luo K, Lian D, Liu Z. BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Gran

ularity Text Embeddings Through Self-Knowledge Distillation. 2024. Available from: arXiv:2402.03216.

��. ^Alon G, Kamfonas M (2023). "Detecting language model attacks with perplexity". arXiv preprint arXiv:2308.14132.

Available from: https://arxiv.org/abs/2308.14132.

��. ^Huang Y, Chen S, Cai H, Dhingra B (2024). "Enhancing Large Language Models' Situated Faithfulness to External

Contexts". arXiv preprint arXiv:2410.14675.

qeios.com doi.org/10.32388/Z4DWHQ 30

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/Z4DWHQ 31

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

