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Mortality forecasting is crucial for demographic planning and actuarial studies, especially for

projecting population ageing and longevity risk. Classical approaches largely rely on extrapolative

methods, such as the Lee-Carter (LC) model, which use mortality rates as the mortality measure. In

recent years, compositional data analysis (CoDA), which respects summability and non-negativity

constraints, has gained increasing attention for mortality forecasting. While the centred log-ratio (CLR)

transformation is commonly used to map compositional data to real space, the  -transformation, a

generalisation of log-ratio transformations, offers greater flexibility and adaptability. This study

contributes to mortality forecasting by introducing the  -transformation as an alternative to the CLR

transformation within a non-functional CoDA model that has not been previously investigated in

existing literature. To fairly compare the impact of transformation choices on forecast accuracy, zero

values in the data are imputed, although the  -transformation can inherently handle them. Using age-

specific life table death counts for males and females in 31 selected European countries/regions from

1983 to 2018, the proposed method demonstrates comparable performance to the CLR transformation in

most cases, with improved forecast accuracy in some instances. These findings highlight the potential

of the  -transformation for enhancing mortality forecasting within the non-functional CoDA

framework.
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1. Introduction

Mortality forecasting plays a crucial role in demographic analysis and informs strategic planning across

sectors such as healthcare, insurance and social welfare. Accurate projections of population ageing and

longevity risk are essential for designing sustainable pension systems and effectively pricing longevity-

linked financial products  [1][2]. Recognising the importance of anticipating human mortality and

longevity, the development of mortality forecasting methods dates back to the twentieth century [3].

In general, mortality forecasting methods are categorised into expert judgement, extrapolative methods

and epidemiological models [4]. Among these, the Lee-Carter (LC) model which forecasts mortality based

on log mortality rates has gained popularity since its establishment [5]. It has been extended into different

variants to improve forecast accuracy over the decades [6].

Widely regarded as a benchmark in mortality forecasting, the LC model employs a statistical time series

approach to project a single time-varying parameter for forecasting mortality rates. This process is purely

extrapolative with minimal subjective judgment [6]. The time index   and age pattern   are estimated

using singular value decomposition (SVD) applied to a centred matrix of log mortality rates, enabling the

projection of life table death densities  [7][5][8]. This approach leverages the approximately log-linear

decline in age-specific mortality rates over time and allows the use of multivariate statistical techniques

designed for unbounded variables [9].

In mortality forecasting, various mortality measures can be used, each influencing the choice of modelling

methods and the resulting forecasts. While most studies commonly model mortality rates  [7][5][10][8],

others have focused on alternative measures such as death probabilities [11][1][12], life table deaths [13][14][9]

[15], survival probabilities  [16]  and life expectancy at birth  [17]. Bergeron-Boucher et al.  [18]  observed that

while death rates and death probabilities generally yield similar trends, both measures often lead to more

pessimistic forecasts compared to survival probabilities, life table deaths and life expectancy. However,

this does not imply that death rates or death probabilities consistently offer higher accuracy, particularly

when forecasts are data-dependent  [18]. Thus, the choice of measure should ultimately depend on the

research context, including the study objective, research question and target population [18]. For instance,

when the focus is on the age distributions of mortality, life expectancy may not be an appropriate choice.

In recent years, age-at-death distributions have gained increasing attention for their ability in capturing

mortality conditions [15], central measures of longevity [19] and lifespan variability [20].
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Compositional data analysis (CoDA) is an analytical framework designed to handle compositional data that

are positive vectors carrying relative information, such as proportions, that represent parts of a whole

with a fixed sum  [21]. Such data is commonly found in geochemistry and atmospheric science.

Transformations are needed to map the compositional data from the Aitchison simplex to the real space

before conducting standard statistical analyses [21]. The centred log-ratio (CLR) transformation is widely

used due to its interpretability and ability to preserve distances [21].

Since life table death counts   are non-negative, range between 0 and the life table radix, and naturally

sum to the radix each year [9], they can be treated as compositional data. Forecasting   using a log-linear

approach often results in predicted values that vary independently across ages and fail to preserve the life

table radix constraint  [18]. This limitation can be addressed by leveraging the constant sum constraint

inherent in the CoDA framework, which induces a natural covariance structure among components [18].

Oeppen’s [9] pioneering work introduced a CoDA-based framework to mortality forecasting, analogous to

the LC model, that focuses on forecasting the redistribution of the density of  . Within this framework,

deaths are progressively redistributed from younger to older ages. Oeppen  [9]  found that the multiple-

decrement compositional forecasts by age and cause are not necessarily more pessimistic than single-

decrement forecasts by age alone, thereby contradicting earlier findings based on mortality rates [22].

Bergeron-Boucher et al.  [13]  then extended the CoDA model for regional coherent mortality forecasting,

akin to the Li-Lee model [8]. Their findings highlight that both coherent and non-coherent CoDA models

yield less biased forecasts with increased accuracy for many selected countries compared to their LC-

based counterparts. This improvement is partly attributed to the use of   as mortality measure and the

application of the CLR transformation, which accounts for the changing rate of mortality improvement

over time  [13]. Furthermore, the summability constraint in compositional data also preserves coherence

across populations, thereby addressing one of the key limitations of the LC model [13].

Acknowledging the strength of CoDA framework in capturing dependencies between causes of death,

Kjærgaard et al. [14] proposed two CoDA-based models to forecast cause-specific death distributions within

a single population. Subsequently, Shang and Haberman extended the CoDA framework to a functional

setting by introducing a functional CoDA model  [23]  that adapts the Hyndman-Ullah (HU) model  [7],

followed by a weighted functional CoDA model  [15]. These studies have shown that CoDA-based

approaches can improve the accuracy of mortality forecasting.

dt,x

dt,x

dt,x

dt,x
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However, these studies use log-ratio approaches to transform  , which have major drawbacks as they

lack flexibility and cannot handle zeros due to their logarithmic nature. These limitations can be

addressed by the  -transformation introduced by Tsagris et al.  [24]. The  -transformation generalises

log-ratio transformations, offering greater flexibility through the  -parameter [24]. With the  -parameter

commonly ranges between 0 and 1 [25][26], it balances Euclidean data analysis (EDA) and log-ratio analysis

(LRA). The intermediate    values sometimes outperform    (LRA) and    (EDA)  [27]. This

flexibility allows the  -transformation to be applied to data containing zeros using strictly positive values

of  [24][27][28]. Although the  -transformation does not satisfy all the theoretical properties outlined by

Aitchison  [21], such as scale invariance, perturbation invariance and subcompositional dominance, its

practical applicability remains unaffected since these properties primarily support the LRA methods [24]

[28].

Numerous empirical studies have demonstrated that the  -transformation can enhance performance in

both regression  [29]  and classification tasks  [27]. In the context of forecasting, Shang and

Haberman  [26]  found that the  -transformation outperformed log-ratio transformations within the

functional CoDA framework in short-term forecasting for Australian mortality data. These findings are

consistent with those of Giacomello  [25], who extended the CoDA framework by applying a multivariate

functional  -transformation to provincial mortality data in Italy.

The research gap lies in the unexamined application of the  -transformation within the CoDA framework

under a non-functional data setting for all-cause mortality forecasting, by treating age as discrete rather

than a continuum. This paper addresses the gap by evaluating forecast performance across multiple

countries, highlighting the potential of the  -transformation to produce better or at least comparable

results relative to the CLR transformation.

Section 2 provides a detailed description of methodology, covering the key steps and analytical framework

employed in this study. Subsequently, Section 3 presents the results, along with a comprehensive

discussion revolving around the forecast accuracy of each transformation. Lastly, Section 4 concludes the

paper by summarising key findings and suggesting possible extensions for future research.

2. Methodology

This study comprises several phases, including data preprocessing,  -parameter tuning, modelling and

forecasting, and model evaluation. All analyses are performed using R Statistical Software version

dt,x
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4.1.1 [30].

2.1. Data preprocessing

Observed mortality data for males and females from age 0 to an open interval 110+ from 31 selected

European countries/regions, covering the period 1983 to 2018, are retrieved from the Human Mortality

Database (HMD)  [31]  using the demography package in R  [32]. The countries/regions are selected to

maximise data completeness while ensuring a common timeframe. The pre-pandemic period is chosen to

avoid anomalies and uncertainties introduced by COVID-19, as forecast performance is known to be highly

sensitive to data quality and stability. Zero values are imputed to ensure a fair comparison between the 

 and CLR transformations.

Similar to the pipeline of Bergeron-Boucher et al. [13], observed death counts   for each country/region

are first calculated based on observed mortality rates   and exposure-to-risk estimates  . However, at

older ages above 80,    values often exhibit considerable random variation due to unboundedly high

rates, smaller denominators in   or measurement error [33][6]. To address this, the Kannisto model [34] is

applied to smooth mortality rates for ages 80 and above, separately for males and females [33]. The model

uses a Poisson log-likelihood procedure, where a logistic curve better fits old-age mortality patterns

compared to alternative models [33]. As a result, zeros and missing values are eliminated at advanced ages.

For ages below 80, zeros are present for some specific years in some countries/regions, which can lead to

undefined results in the CLR transformation due to the nature of logarithm. A multiplicative replacement

strategy [35] is therefore applied to   to impute zeros [13]. This non-parametric method is coherent with

simplex operations and retains the covariance structure of non-zero components, ensuring minimal

distortion to the overall mortality pattern [35], while enabling the application of log-ratio transformations

by replacing zeros with small positive values. In this study, although the  -transformation can handle

zeros, zero replacement is still necessary to ensure a fair comparison of its impact on forecast accuracy

against the CLR transformation.

Basically, a composition    of    containing zeros is replaced by a composition 

 without zeros as follows [13]:

where   is the number of zeros counted in   and   is the imputed value for part   computed as follows:

α

Dx

Mx Ex

Mx

Ex

Dx

α

x = [ , , … , ]x1 x2 xD Dx

r = [ , , … , ]r1 r2 rD

= {rj
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(1 − ) ,zδ

∑ xj
xj
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Subsequently,    is multiplied by    to obtain a new set of death counts without zeros, which are

then used to calculate mortality rates for ages below 80 [13]. Combining these with the mortality rates for

older ages, a smoothed and imputed set of observed mortality rates is ready to be used for constructing life

tables.

The country-specific life tables are constructed from the preprocessed mortality rates separately for males

and females using the LifeTable function from the MortalityLaws package  [36]. The average number of

years lived by individuals dying within the age interval  , denoted as  , is assumed to be 0.5 for

all single-year ages, except age 0 [13][33]. For age 0,   for each country/region is computed as the average

of   values derived from the range of infant mortality rates   during the training period (1983-2010), as

outlined in Table  2.1  [37]. This approach is similar to that employed by the HMD  [33], incorporating

averaging to allow for country-specific and gender-specific adjustments, thereby reflecting infant

mortality more accurately than using a fixed   value across all populations.

The life table radix is assumed to be unity, ensuring that the   fall within a standard simplex [38][9][13].

For visualisation purposes,   values are multiplied by 100,000, a commonly used radix in demographic

research [33][15][26].

Gender  range Formula

Male

Female

Table 1. Formulas for computing   based on  [37].

δ = , ∀ > 0.

( )/2min
t,x

Dt,x

∑
110
x=0 Dt,x

Dt,x (2)

r ∑
110
x=0 Dt,x

[x,x + 1) ax

a0

a0 m0

a0

dt,x

dt,x

m0

[0, 0.02300) (0.14929 − 1.99545 )1

N
∑N

t=1 mt,0

[0.02300, 0.08307) (0.02832 + 3.26021 )1

N
∑N

t=1 mt,0

[0.08307, ∞) 0.29915

[0, 0.01724) (0.14903 − 2.05527 )1

N
∑N

t=1 mt,0

[0.01724, 0.06891) (0.04667 + 3.88089 )1

N
∑N

t=1 mt,0

[0.06891, ∞) 0.31411

a0 m0
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Note.   is the length of the training set.

2.2. The CLR transformation

A positive compositional data vector typically satisfies a unit sum constraint and lies within a sample

space called the standard simplex [39][24], defined by

Positive points can be mapped to the simplex   using the closure operator [39][25] defined as:

When the simplex is equipped with Aitchison geometry and its associated operations, it is referred to as

the Aitchison simplex which forms a vector space  [21]. Some key features of Aitchison geometry  [21][13]

[39] are:

Since compositional data carry only relative proportions, Aitchison  [21]  introduced log-ratio based

transformations, including the widely used CLR transformation. The CLR transformation  [21]  that maps

the simplex onto a hyperplane passing through the origin of   is defined as:

where   is the geometric mean of the composition.

N = 28

= {x = [ , … , ] ∈ ∣ > 0, = 1}.S
D x1 xD R

D xi ∑
i=1

D

xi (3)

S
D
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The CLR transformation is a one-to-one mapping between    and    under a zero-sum constraint. It

also preserves distances where    with    representing the Euclidean

distance [39].

2.3. The  -transformation

Proposed by Tsagris et al.  [24], the  -transformation is a one-parameter Box-Cox type power

transformation that maps compositional data    from  -dimensional Aitchison simplex    to  -

dimensional unconstrained real space  . Given a compositional vector  , the transformation

and its inverse are expressed as:

where  ,    is the power transformed vector in  ,    is the 

  Helmert sub-matrix and    is the  -dimensional vector of ones.    is a standard

orthogonal matrix obtained by removing the first row from the orthonormal Helmert matrix, reducing the

dimensionality of transformed vector to  [40].

The parameter   can be tuned using criteria tailored to the type of analysis, such as the pseudo-

, profile log-likelihood or Kullback-Leibler divergence  [24][29]. As noted by Tsagris et al.  [24], when 

 approaches 1, it simplifies to a linear transformation. When  , it is equivalent to the isometric log-

ratio (ILR) transformation, which requires the data to be free of zeros:

2.4. Modelling and forecasting

Following the pipelines proposed by Bergeron-Boucher et al.  [13]  and Oeppen  [9], a matrix 

  consists of    is constructed for each country/region and gender, where the    rows

representing the years and    columns representing the ages. In this study, the data are split into

training and test sets using the commonly chosen 80:20 ratio [41], resulting in a training period from 1983

to 2010 and a test period from 2011 to 2018. Hence, each matrix   in the training set consists of 28 rows

(1983–2010) and 111 columns (ages 0 to 110+). Each row of the compositional data sums up to the life table

radix.

S
D

R
D

⟨x, y⟩ = (clr(x), clr(y))da de de

α

α

x D S
D (D − 1)

R
D−1 x ∈ S

D
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D

R
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1

α
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j

S
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D − 1
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D
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The matrix    is then centred by subtracting the column-specific geometric means  , resulting in

matrix  . Transformations are applied to the matrix    to allow the compositional data to vary freely in

unconstrained real space, forming matrix  . Subsequently, SVD is applied to the matrix    to estimate 

 and   through a rank-  approximation. Although a rank-1 approximation is commonly used, higher-

rank approximations are adopted when the variance explained by the first component is insufficient [13].

Based on the proportion of explained variance,    for females and    for males are deemed

appropriate, as they each account for over 80% of the total variance on average. This leads to a total

number of   series of estimated   for each dataset.

An autoregressive integrated moving average (ARIMA) model is then fitted to each    series with a

forecast horizon of 8. The approximately linear trend of    makes it suitable for forecasting using an

ARIMA model. Although the random walk with drift has been shown to provide a good fit  [5], prior

research  [13]  demonstrated that the ARIMA (0,1,1) with drift performs well for most Western European

countries. Therefore, this study considers two forecasting models, namely (i) the default model, ARIMA

(0,1,1) with drift and (ii) the automatic ARIMA model [42], which selects the optimal order using a stepwise

algorithmic procedure. The resulting matrix is denoted as  .

Then, the inverse transformation is applied to convert the data back to the simplex, forming matrix  .

Matrix   which contains the forecast life table death counts    is obtained by adding back   to  .

Eventually, a complete forecast life table providing a full mortality profile for a population can be

constructed using  .

2.5. Model evaluation

Forecast accuracy for each model, fitted to data transformed using both methods, is evaluated on the test

set using root mean squared error (RMSE) and mean absolute error (MAE). For each country/region and

gender, the model yielding the lowest out-of-sample forecast error is selected for comparison. A thorough

comparative analysis is then conducted to assess the impact of the  -transformation on predictive

performance relative to the benchmark CLR transformation.

3. Application to Real Data

This section presents the results and provides an in-depth discussion comparing model performance

using data with different transformations.

D αx

F F

H H

κt βx K

K = 7 K = 4

K κt

κt

κt

H∗

F∗

D∗ d̂ t,x αx F∗

d̂ t,x

α
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3.1. -parameter tuning

Country/Region Optimal α Average validation RMSE (%)

Austria 0.2354 0.0495

Belgium 0.3268 0.0553

Bulgaria 0.1000 0.0727

Belarus 0.1000 0.0973

Switzerland * 0.0000 0.0550

Czechia 0.3358 0.0591

East Germany 0.5364 0.0727

West Germany 0.1103 0.0532

Denmark 0.1409 0.0992

Spain * 0.0000 0.0443

Estonia 0.2295 0.1320

Finland 0.0766 0.1101

France 0.1000 0.0611

England & Wales * 0.0000 0.0505

Northern Ireland 0.1919 0.1444

Scotland 0.1000 0.0665

Greece 0.1000 0.0614

Hungary 0.2208 0.0691

Ireland * 0.0000 0.1235

Iceland 0.1000 0.2731

Italy 0.5226 0.0407

Lithuania 0.1000 0.0903

Luxembourg * 0.0000 0.1768

α
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Country/Region Optimal α Average validation RMSE (%)

Latvia 0.0365 0.0895

Netherlands 0.1000 0.0703

Norway 0.1000 0.0737

Poland 0.1803 0.0673

Portugal * 0.0000 0.0707

Slovakia 0.1000 0.0731

Slovenia 0.1001 0.0927

Sweden 0.1000 0.0633

Table 2. Optimal α values for female mortality data.

Note. Asterisks (*) denote countries/regions with optimal α = 0.

The values of    are chosen via cross-validation on a data-driven basis  [29]. In order to determine the

optimal    values for transforming    of each country/region, an expanding window approach  [41]  is

adopted. As mentioned in Section 2.4, data from year 1983 to 2010 serve as the training set, while the

remaining eight years (2011-2018) form the out-of-sample test set.

To tune the  -parameter, the training set undergoes an additional split into sub-training and validation

sets. Starting with an initial sub-training set of 15 years, the training window expands by one year at a

time, while maintaining a fixed validation period of four years. This results in a total of ten iterations. For

example, in the first iteration, the sub-training set spans 1983-1997, while validation covers 1998-2001. In

the final iteration, the sub-training set spans 1983-2006, with validation covering 2007-2010. By

progressively increasing the sub-training set size, this approach enhances generalisability and mitigates

the risk of overfitting to a limited subset of data.

The flexibility of the  -parameter allows the transformation to adapt to different mortality patterns, but

excessive flexibility may lead to overfitting, particularly if    is overly sensitive to small variations in the

sub-training data. To prevent this, the optim function in R [30]  is used to select optimal   values within

the range of    that minimise the average RMSE in the validation set. In addition, a penalisation

α

α dt,x

α

α

α

α

[0, 1]
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mechanism is applied to exclude    values that yield negative detection limits, preventing implausible

negative estimates of  .

Using female data as an example, Table  3.1 tabulates the    values chosen for the best model that yields

higher forecast accuracy. Interestingly, only six countries/regions have an optimal   value of 0, suggesting

that the intermediate   values are more suitable for female mortality forecasting than both EDA and LRA.

3.2. Forecasts of mortality: A case study on Italian female mortality

The country-specific model accuracy shows that the  -transformation performs comparably to, or better

than, the CLR transformation in 22 countries/regions for females and 23 for males. Using the Italian

female data as an example, Figures  1a to 1b illustrate the forecast    based on both    and CLR

transformations for the last holdout year (2018) and for selected 20-year-gapped ages over the years,

respectively.

Figure 1. Forecast age-specific life table death counts (a) in 2018 and (b) for selected ages with forecast errors

(c) over years and (d) by ages for females in Italy.

α

d̂ t,x

α

α

α

α

d̂ t,x α
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Based on Figure  1a, it is observed that the age-at-death distribution is negatively skewed and bimodal,

with peaks in infancy that later shift towards older ages  [15][43]. In general, infant mortality is primarily

driven by genetic errors or infectious diseases while ageing becomes the main cause of mortality at older

ages  [43]. According to Abouzahr et al.  [44], high mortality rates are typically found during infancy and

reach their lowest levels between ages 5 and 14, before rising exponentially beyond age 35. There might

also have some bumps during female reproductive ages, indicating premature mortality due to maternal

deaths.

On the other hand, Figure  1b shows that death counts for infants and younger age groups up to age 80

generally exhibit a decreasing trend over the years, whereas ages 100 and above display an increasing

trend, likely reflecting population ageing. Both transformations generate forecasts that broadly follow the

historical trend. However, the  -transformation tends to produce smoother and more stable forecasts,

particularly for age groups with volatile and low death counts such as ages 20 and 110+. In contrast, the

CLR transformation appears more sensitive to variability in sparse data, likely due to the amplifying effect

of log-ratio transformations on small values.

As the years progress in the test set, forecasts based on  -transformed data retain the trend patterns of 

, similar to those predicted based on CLR-transformed data. Despite yielding similar forecasts, the  -

transformation results in lower forecast errors as depicted in Figure 1c. Furthermore, forecasts from the 

-transformed data are more accurate, especially beyond age 75, with a slight decrease in accuracy between

ages 86 and 90 as shown in Figure  1d. More results for females and males can be found in the

supplementary materials.

3.3. Comparison of mean forecast accuracy

3.3.1. Overall mean errors

Table 3.3.1 summarises the overall mean forecast errors for female mortality in both training and test sets.

Both transformations yield comparable performance on the training and test sets, with the  -

transformation producing slightly lower errors overall. Similar findings have been reported by

Giacomello [25] and Shang and Haberman [26]. This is primarily due to the flexibility introduced by the  -

parameter which allows it to better adapt to the underlying data structure [24], particularly the temporal

changes in age-specific life table death counts [26].

α

α

dt,x α

α

α

α
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Phase

RMSE (%) MAE (%)

α CLR α CLR

Train 0.0619 0.0621 0.0348 0.0349

Test 0.0882 0.0903 0.0523 0.0529

Table 3. Overall mean forecast errors for female mortality.

Note. Bold values indicate that the α-transformation yields comparable or lower errors than the CLR

transformation.

3.3.2. Mean errors by country/region

Breaking down model forecast accuracy of female mortality at the country/region level, Table  3.3.2

presents RMSE and MAE values for both the training and test sets under the   and CLR transformations,

along with their best ARIMA models. Notably, the ARIMA (0,1,1) with drift appears as the best-performing

model in more than half of the countries/regions, suggesting its suitability for forecasting female

mortality in Europe [13].

α
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Country/Region

RMSE MAE (%)

ARIMA model

Train Test Train Test

α CLR α CLR α CLR α CLR α CLR

Austria 0.0400 0.0400 0.0962 0.1251 0.0234 0.0232 0.0546 0.0688 Auto Auto

Belgium 0.0418 0.0423 0.0635 0.0704 0.0243 0.0245 0.0393 0.0420 Default Default

Bulgaria 0.0680 0.0681 0.1200 0.1192 0.0350 0.0350 0.0673 0.0670 Default Default

Belarus 0.0521 0.0511 0.2091 0.2158 0.0315 0.0309 0.1299 0.1341 Default Default

Switzerland * 0.0365 0.0365 0.0485 0.0485 0.0224 0.0224 0.0299 0.0299 Default Default

Czechia 0.0503 0.0493 0.0648 0.0522 0.0269 0.0264 0.0362 0.0303 Auto Auto

East Germany 0.0585 0.0545 0.0704 0.0800 0.0303 0.0286 0.0416 0.0443 Auto Default

West Germany 0.0411 0.0448 0.0584 0.0600 0.0209 0.0227 0.0344 0.0350 Auto Auto

Denmark 0.0562 0.0549 0.1383 0.1319 0.0333 0.0327 0.0775 0.0735 Auto Default

Spain * 0.0310 0.0310 0.0459 0.0459 0.0167 0.0167 0.0273 0.0273 Default Default

Estonia 0.0943 0.0938 0.0973 0.0881 0.0585 0.0583 0.0649 0.0579 Default Default

Finland 0.0948 0.0927 0.0966 0.0995 0.0493 0.0482 0.0572 0.0587 Auto Auto

France 0.0397 0.0404 0.0669 0.0819 0.0201 0.0203 0.0368 0.0435 Default Default

England & Wales * 0.0323 0.0323 0.0482 0.0482 0.0172 0.0172 0.0275 0.0275 Default Default

Northern Ireland 0.0897 0.0889 0.0890 0.0903 0.0516 0.0514 0.0533 0.0541 Auto Auto

Scotland 0.0516 0.0515 0.0561 0.0560 0.0299 0.0299 0.0362 0.0362 Default Default

Greece 0.0504 0.0503 0.0680 0.0679 0.0266 0.0267 0.0404 0.0403 Auto Auto

Hungary 0.0501 0.0485 0.0708 0.0764 0.0273 0.0258 0.0434 0.0454 Auto Default

Ireland * 0.0727 0.0727 0.0727 0.0727 0.0426 0.0426 0.0432 0.0432 Auto Auto

Iceland 0.2006 0.2008 0.1905 0.1824 0.1112 0.1115 0.1012 0.0993 Auto Auto

Italy 0.0325 0.0404 0.0691 0.1039 0.0161 0.0203 0.0378 0.0514 Default Auto

Lithuania 0.0639 0.0637 0.0985 0.0965 0.0398 0.0398 0.0641 0.0631 Default Default

Luxembourg * 0.1328 0.1328 0.1862 0.1862 0.0771 0.0771 0.1077 0.1077 Default Default
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Country/Region

RMSE MAE (%)

ARIMA model

Train Test Train Test

α CLR α CLR α CLR α CLR α CLR

Latvia 0.0749 0.0750 0.1418 0.1401 0.0466 0.0467 0.0869 0.0859 Default Default

Netherlands 0.0389 0.0388 0.0458 0.0480 0.0215 0.0214 0.0275 0.0285 Default Default

Norway 0.0570 0.0570 0.0511 0.0502 0.0321 0.0322 0.0307 0.0292 Default Default

Poland 0.0404 0.0459 0.0837 0.0732 0.0204 0.0236 0.0501 0.0429 Default Auto

Portugal * 0.0439 0.0439 0.0539 0.0539 0.0243 0.0243 0.0338 0.0338 Default Default

Slovakia 0.0632 0.0638 0.1115 0.1044 0.0328 0.0332 0.0620 0.0581 Default Default

Slovenia 0.0762 0.0754 0.0807 0.0904 0.0434 0.0429 0.0521 0.0574 Auto Auto

Sweden 0.0449 0.0448 0.0397 0.0396 0.0259 0.0259 0.0252 0.0250 Auto Auto

Table 4. Mean forecast errors of the best ARIMA models for female mortality in each country/region.

Note. The default model refers to ARIMA (0,1,1) with drift. Asterisks (*) denote countries/regions where the

optimal α value is 0, while bold values indicate cases where the α-transformation yields comparable or lower

mean forecast errors than the CLR transformation in the test set.

Generally, the  -transformation results in comparable or lower forecast errors than the CLR

transformation in 22 countries/regions for females. It is also worth noting that when  , as observed

in Switzerland, Spain, England & Wales, Ireland, Luxembourg and Portugal, the transformation reduces to

the ILR transformation, resulting in the similar accuracy as the CLR transformation. This is in accordance

with Shang and Haberman’s  [26]  findings that both ILR and CLR transformations perform similarly in

terms of point forecast accuracy for Australian gender-specific   within functional CoDA framework.

3.3.3. Mean errors over years

Figure 2 visualises the trend of mean forecast errors for female mortality over years in the training and

test sets. The  -transformation performs comparably to the CLR transformation, yielding slightly lower

mean forecast errors, especially during the later years of the forecast horizon. In addition, it is worth

α

α = 0

dt,x

α
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highlighting that the extremely small errors up to   in the last fitting year, i.e. year 2010, are due to the

jump-off adjustment. This occurs because the last observed    are used as jump-off point, ensuring

continuity between the observed and forecast life table death counts [10][45].

Figure 2. Mean forecast errors for female mortality over years across countries/regions.

When the widely used LC model was first introduced, Lee and Carter [5] noted that using fitted values as

jump-off rates would not perfectly match the data in the jump-off year, leading to a discontinuity between

observed and forecast log mortality rates. Although they claimed that such discontinuity affects only rates

that are absolutely low with little impact on life expectancy, Lee and Carter [5] suggested that the jump-off

error could be fixed by setting    equal to the most recently observed age-specific log mortality rates.

However, this approach has a drawback that may deteriorate the goodness of fit over the remaining fitting

period.

Lee and Miller [10] later highlighted the presence of significant jump-off bias, which requires adjustment

to improve short-term forecast accuracy, especially when using low-rank approximations that tend to

incur greater approximation error  [46]. Bell  [46]  and Lee and Miller  [10]  discovered that a jump-off

adjustment using observed jump-off rates can eliminate the bias and achieve a more accurate forecast in

10−18

dt,x

ax
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forecasting period, as also proven by Stoeldraijer et al.  [45]. Following this, the errors between    and 

 reported here are nearly zero, as the fitted values are adjusted to match the observed values [10].

3.3.4. Mean errors by age

Figure  3 illustrates the mean forecast errors for female mortality by age across countries/regions

measured using RMSE and MAE. Both the  -transformed and CLR-transformed data result in comparable

forecast accuracy, although the former tends to exhibit slightly higher errors around ages 80 to 90.

However, this situation does not persist as the  -transformation shows a clear advantage over the CLR

transformation at older ages, particularly between ages 91 and 100. This result aligns with previous

findings that the  -transformation can be an alternative to the CLR transformation for compositional

mortality forecasting [25][26].

Figure 3. Mean forecast errors for female mortality by age across countries/regions.

4. Conclusion

This study investigates the use of the  -transformation as an alternative to the commonly used CLR

transformation within the CoDA framework under a non-functional data setting for mortality forecasting.

Unlike in the classical LC model, life table death counts are employed as the mortality measure. As these

dt,x

d̂ t,x

α

α

α

α
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data are subject to a summability constraint, they are inherently compositional and should be transformed

into an unconstrained real space prior to forecasting. Using age-specific life table death counts by gender

across selected European countries/regions, a comparative analysis is conducted between the two

transformations, evaluated from several perspectives, including overall mean forecast errors, errors by

country/region, errors across years and errors by age.

The results show that models fitted to the  -transformed data perform comparably to those using the CLR

transformation across most countries/regions, with slightly improved forecast accuracy observed in

certain cases. This finding is consistent with earlier studies on the  -transformation within the

functional CoDA framework [25][26]. The advantage of the  -transformation is particularly evident at older

ages, where it yields noticeably improved accuracy for ages with low death counts. This improvement is

largely attributed to its flexibility in bridging EDA and LRA [27], as the  -parameter can take intermediate

values between 0 and 1, allowing for better data adaptation. In this study, optimal    values for most

datasets fall within the intermediate range, determined by minimising the average validation RMSE

during the parameter tuning phase.

A key limitation of this study lies in the dataset used. Since forecast accuracy is highly data-dependent,

factors such as the selection of countries/regions, the fitting period and the level of age group aggregation

can all influence model performance. In this context, high-quality data with sufficiently large volume is

crucial to ensure consistent and reproducible results. Moreover, the study does not fully exploit the

strengths of the  -transformation. A notable advantage of this transformation is its ability to handle

compositional data containing zeros. However, due to the need for a fair comparison with the CLR

transformation, zero values in the dataset were imputed, limiting the potential benefit of using the  -

transformation.

Future directions of this study may include exploring alternative power transformation techniques that

accommodate zeros, such as the chiPower transformation [47], to enhance predictive performance. Further

work could also examine the performance of various transformations within a functional coherent CoDA

framework that captures common trends across countries. For practical applications, particularly in the

pension and insurance industries, it may be valuable to estimate annuity prices at different ages using

forecasts of life table death counts, as demonstrated by Shang and Haberman [15].

α

α

α

α

α

α

α
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