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Mortality forecasting is crucial for demographic planning and actuarial studies, particularly for predicting population

ageing rates and future longevity risks. Traditional approaches largely rely on extrapolative methods, such as the Lee-

Carter model and its variants which use mortality rates as inputs. In recent years, compositional data analysis (CoDA),

which adheres to summability and non-negativity constraints, has gained increasing attention from researchers for its

application in mortality forecasting. This study explores the use of the  -transformation as an alternative to the

commonly applied centered log-ratio (CLR) transformation for converting compositional data from the Aitchison

simplex to unconstrained real space. The  -transformation offers greater flexibility through the inclusion of the 

parameter, enabling better adaptation to the underlying data structure and handling of zero values, which are the

limitations inherent to the CLR transformation. Using age-specific life table death counts for males and females in 31

selected European countries/regions from 1983 to 2018, the proposed method demonstrates comparable performance

to the CLR transformation in most countries with improved forecast accuracy in some cases. These findings highlight

the potential of the  -transformation as a competitive alternative transformation technique for real-world mortality

data within a non-functional CoDA framework.

Corresponding author: Dharini Pathmanathan, dharini@um.edu.my

1. Introduction

Mortality forecasting plays a pivotal role in demographic analysis, informing strategic planning across critical sectors,

including healthcare, insurance, workforce management and social welfare. Over the years, numerous studies have been

conducted to enhance forecast accuracy and minimize the risks associated with inaccurate mortality predictions. These

approaches are generally classified into expert judgment, extrapolative models and epidemiological models[1]. Among

these, the Lee-Carter (LC) model has been widely regarded as a benchmark in mortality forecasting since its

establishment. Following that, numerous variants and applications have been developed over the decades[2].

The success of LC model is attributed to its powerful mechanism that employs a single time-varying mortality index

along with statistical time series models to project age-specific mortality trends. This is a purely extrapolative process

with minimal subjective judgment[2]. The LC framework extracts the time index through singular vector decomposition
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method of the logarithm of age-specific mortality rates, in order to forecast the density of deaths in the life table[3][4][5].

It leverages the approximately log-linear decline in mortality rates by age over time and allows the application of

multivariate statistical techniques for unbounded variables[6].

In addition to age-specific mortality rates, alternative demographic indicators have been used as inputs of the model,

such as death probabilities[7][8][9], age-at-death distributions[10][11][6][12], survival probabilities[13] and life expectancy

at birth[14]. Among these indicators, Bergeron-Boucher et al.[15] observed that while death rates and death probabilities

generally yield similar trends, they often lead to more pessimistic forecasts compared to other indicators. As different

indicators may influence the outcomes, their selection should align with the research interests[15]. Since the age-at-

death distribution provides information on the mortality conditions[12], central measures of longevity[16]  and lifespan

variability[17], it has gained increasing attention.

Compositional data are positive vectors carrying relative information, representing part of a whole with a fixed sum[18].

Some commonly found compositional data include geochemical elements, atmospheric components and food

compositions. Pioneered by Oeppen[6], the compositional data analysis (CoDA) has been adopted in mortality forecasting

by treating age-specific life table death counts    as compositional data. This approach models and forecasts the

redistribution of the density of  , in which deaths are shifted gradually from younger to older ages. Such technique is

deemed appropriate because   values are bounded between 0 and the life table radix, summing to the radix for each

year. The bounded nature of compositional data leads to the need of deploying transformations to map them from

constrained simplex to unconstrained real space, where the transformed values can vary freely between  . In this

context, Aitchison[18] has introduced log-ratio transformations, with the centered log-ratio transformation (CLR) being

widely adopted for its interpretability and ability to preserve distances.

Oeppen’s[6] CoDA framework has inspired subsequent extensions with the aim to improve forecast accuracy. Bergeron-

Boucher et al.[10] adapted it for coherent mortality forecasting akin to the Li-Lee model[5]. Their findings indicate that

both coherent and non-coherent CoDA models produce less biased forecasts with increased accuracy for many of the

selected Western European countries, as compared to their LC model counterparts. This is partly attributed to the

changing rate of mortality improvement over time as a consequence of the use of    as input along with the CLR

transformation. The summability constraint in compositional data also preserves coherence across populations,

addressing the limitations of the LC-based models.

Building on this, Kjærgaard et al.[11]  applied CoDA to forecast causes of cancer death, so that the dependency between

causes is accounted for at the aggregate level. Shang and Haberman[12], on the other hand, introduced weights within a

functional CoDA framework. The findings from these studies have proven the potential of CoDA method in improving the

mortality forecasting accuracy. Nevertheless, most of them employ the log-ratio approaches to transform  . Such

methods have a major shortcoming where they fail to handle zero values due to the nature of the logarithm.

To address this limitation, Tsagris et al.[19] proposed a Box-Cox type transformation that is capable of handling zeros[20]

[21], namely the  -transformation. This method offers greater flexibility in terms of the degree of transformation via the

parameter  , ranging from an isometric log-ratio (ILR) transformation to a linear transformation[20][19]. This parameter
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can be fine-tuned to fit different datasets, which in turns help in improving the accuracy. While the  -transformation

violates the properties such as perturbation and permutation invariance and subcompositional dominance and coherence

suggested by Aitchison[18], this does not affect its applicability since these properties are meant to support the log-ratio

transformations[19][22]. The practicality of  -transformation has been demonstrated in various contexts, including

regression[21], classification[23] and forecasting[24][25] settings.

This paper extends prior research by evaluating the  -transformation within a non-functional CoDA framework. Using

CLR transformation as a benchmark, it is aim to compare forecast accuracy between the two transformations. The

analysis focuses on male and female populations across 31 European countries/regions from year 1983 to 2018 using the

data retrieved from the Human Mortality Database (HMD)[26]. These countries/regions are selected to obtain the longest

possible common timeframe.

Section 2 provides a detailed description of methodology, covering the key steps and analytical framework employed in

this study. Subsequently, Section 3 presents the results, along with a comprehensive discussion revolving around the

forecast accuracy of each transformation. Lastly, Section 4 concludes the paper by summarizing key findings and

suggesting possible extensions for future research.

2. Methodology

2.1. Data preprocessing

Similar to the pipeline of Bergeron-Boucher et al.[10], age-specific mortality rates over the years   for each country are

first calculated based on the observed death counts    and exposure-to-risk estimates    provided by the HMD.

However, the observed   at older ages have considerable random variation as a consequence of   being smaller than 

[27].

To address these anomalies, the Kannisto model of old-age mortality is fitted to smooth the mortality rates of ages 80

and above, up to the open age interval of 110+, separately for male and female[27]. This smoothing model that is originally

proposed by Thatcher et al.[28] utilizes a Poisson log-likelihood procedure where the logistic curve was found to better fit

the old-age mortality patterns compared to other mortality models. Such approach also helps avoid the presence of zeros

and missing values at older ages.

For ages below 80, zeros are still present in the observed   for some countries, resulting from zeros in  , can lead to

undefined results in CLR transformation due to the nature of logarithm. In this context, a multiplicative replacement

strategy is applied on the observed death counts to remove zeros before constructing life tables, as implemented in[10].

Even though the  -transformation can theoretically accommodate zeros, zero imputation is performed uniformly across

transformations to compare forecast accuracy consistently.

Basically, a composition    of    containing zeros is replaced by a composition 

 without zeros as follows[10]:
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where   is the number of zeros counted in   and   is the imputed value for part   computed as follows:

Subsequently,    is multiplied by    to obtain a new set of death counts without zeros which are then used to

calculate mortality rates for ages below 80[10]. Combining these with the mortality rates for ages 80 and above, a

smoothed and imputed set of observed mortality rates is ready to be used for constructing life tables.

To meet the constant-sum constraint in CoDA, the life table radix is assumed to be unity, ensuring that   values fall

within a standard simplex[29][6][10]. For visualization purposes,    values are multiplied by 100,000, which is a

commonly used radix in demographic research[27][12][25].

The average number of years lived within the age interval    for people dying at that age, denoted as  , is

assumed to be 0.5 for all single-year ages except age 0[10][27]. Unlike in[10]  where the infant    is fixed across all

countries, the value of   in this study is computed in a similar manner to that employed by the HMD[27]. The gender-

specific   for each country is computed as the average of   values, which are calculated based on the range of infant life

table mortality rates   for each year in the training set, as outlined in Table 1. This method that is inspired by the core

idea suggested by Andreev and Kingkade[30], incorporates averaging to allow for country-specific adjustments which

reflects the infant mortality more accurately than a fixed   value across all countries and genders.

Subsequently, country-specific life tables are constructed from the preprocessed mortality rates separately for males and

females, using a readily available LifeTable() function in the R package called MortalityLaws[31].

Gender  range Formula

Male

 

 

Female

 

 

Table 1. Formulas for computing   based on  .

Note:   here refers to the length of the training set, which is equivalent to 28 years (1983-2010) in this context.

2.2. CLR transformation

A positive compositional data vector typically satisfies a unit sum constraint and lies within a sample space called the

standard simplex[20][19], defined by
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Positive points can be mapped to the simplex   using the closure operator[20][24] defined as:

When the simplex is equipped with Aitchison geometry and its associated operations, it is referred to as the Aitchison

simplex which forms a vector space[18]. Some key features of Aitchison geometry[18][10][20] are:

Since compositional data carry only relative proportions, Aitchison[18]  introduced log-ratio based transformations,

including the widely used centered log-ratio (CLR) transformation. The CLR transformation[18]  that maps the simplex

onto a hyperplane passing through the origin of   is defined as:

where   is the geometric mean of the composition.

The CLR transformation is a one-to-one mapping between    and    under a zero-sum constraint. It also preserves

distances where   with   representing the Euclidean distance[20].

2.3.   transformation

Proposed by Tsagris et al.[19], the  -transformation is a one-parameter Box-Cox type transformation that maps

compositional data    from  -dimensional Aitchison simplex    to  -dimensional unconstrained real space 

 using the Helmert sub-matrix  , as defined below:

Given a compositional vector  , the transformation and its inverse are expressed as:

where  ,    is the power transformed vector in  ,    is the 

  Helmert sub-matrix and    is the  -dimensional vector of ones. Note that    satisfies 
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 and   where   is the  -dimensional centering matrix[20].

The parameter   can be tuned using criteria tailored to the type of analysis, such as the pseudo- , profile log-

likelihood (excluding zeros) or Kullback-Leibler divergence[19][21]. As noted by Tsagris et al.[19], when   approaches 1, it

simplifies to a scaled Euclidean transformation. When  , it is equivalent to the ILR transformation, which requires

the data to be free of zeros for it to be well-defined.

2.4. Modeling

Following the approach of Bergeron-Boucher et al.[10], after constructing the life tables,    are extracted to form a

matrix    for each country and gender, where    rows representing the number of years and    columns

representing the ages  . Obeying the summability constraint of compositional data, each row sums up to

the life table radix.

The matrix   is then centered by subtracting the column-specific geometric means   for each age using the negative

perturbation operator, resulting in matrix  . Since compositional data are constrained between 0 and the radix, a

transformation is applied to project them into unconstrained real space. For this purpose, the  -transformation with a

fine-tuned   and the CLR transformation are applied separately to  , forming matrix  .

Subsequently, singular vector decomposition (SVD) is applied to matrix  . A rank-1 approximation is used to extract the

time index   and those corresponds to the training period are extrapolated using a forecasting model. Note that the data

are split into a training set and test set by a typically chosen ratio of 80:20[32], covering the years 1983 to 2010 (28 years)

for training and the remaining 8 years for testing. The rank-1 approximation is considered adequate as supported by the

prior studies[10][6].

The approximately linear characteristic of   allows it to be forecast using an ARIMA model, particularly the random walk

with drift which gives a good fit[4]. In addition to that, previous research[10]  has shown that ARIMA (0,1,1) with drift

performs well for most Western European countries. Thus, two ARIMA models are fitted to the data in this study, namely

ARIMA (0,1,1) with drift and the automatic ARIMA model proposed by Hyndman and Khandakar[33] that uses step-wise

algorithmic selection of the best order.

After forecasting, the inverse of the respective transformations is applied to the matrix to convert it back to

compositional data, forming matrix  . Finally, the perturbation operator is used to add back the column-specific

geometric means to matrix  , obtaining the fitted   values in matrix  . A fitted life table can then be constructed

based on  .

2.5. Accuracy measures

The predictive performance of models fitted to data under both transformations is compared between the actual and

forecast life table death counts using root mean squared error (RMSE) and mean absolute error (MAE). The model that
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yields lower out-of-sample forecast errors is considered as the best model for each country and is chosen for further

comparative analysis.

3. Application to Real Data

3.1.  -parameter tuning

As this study focuses on predictive analysis of mortality, the value of   should be chosen via cross-validation on a data-

driven basis[21]. In order to determine the optimal   value for transforming   for each country, an expanding window

approach[32] is adopted. Starting with a subset of 15 years of data, the training window size is increased by one year each

time, with a fixed size of 4 years of validation data. This results in a total of ten iterations.

Making good use of the optim() function in R[34], optimal   values within the range of   are selected to minimize the

average RMSE in the validation data. It is important to note that penalization is applied to   values resulting in negative

detection limits by excluding them from consideration in order to avoid returning negative  .

Taking female data as an example, Table 2 tabulates the   values chosen for the best model that yields higher forecast

accuracy. Interestingly, only five countries have    as the optimal value, indicating that the  -transformation

outperforms the log-ratio transformations in these cases[24]. This is because ILR, the special case when   approaches 0,

simply involves multiplying CLR by the Helmert sub-matrix[25].

α

α

α dt,x
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α
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Country Optimal  Average validation RMSE

Austria 0.257989 0.000485

Belgium 0.592753 0.000492

Bulgaria 0.099998 0.000997

Belarus 0.100013 0.000866

Switzerland 0.099967 0.000504

Czechia 0.099954 0.000565

East Germany 0.683139 0.000532

West Germany 0.524746 0.000378

Denmark 0.099999 0.000691

Spain 0.099964 0.000482

Estonia 0.099989 0.001215

Finland 0.000000 0.000838

France 0.547718 0.000483

England & Wales 0.000000 0.000478

Northern Ireland 0.100039 0.001273

Scotland 0.099990 0.000610

Greece 0.099967 0.000567

Hungary 0.099980 0.000575

Ireland 0.000000 0.000989

Iceland 1.000000 0.002776

Italy 0.514915 0.000481

Lithuania 0.099994 0.000772

Luxembourg 0.099984 0.001799

Latvia 0.099989 0.000911

Netherlands 0.099992 0.000667

Norway 0.100001 0.000677

Poland 0.000000 0.000558

Portugal 0.000000 0.000659

Slovakia 0.099995 0.000710

α
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Country Optimal  Average validation RMSE

Slovenia 0.100024 0.000883

Sweden 0.100003 0.000470

Table 2. Optimal   values for female mortality data.

3.2. Forecasts of mortality

The country-specific model accuracy shows that the  -transformation performs comparably to the CLR transformation

in 25 countries for females and 23 countries for males. Taking Austrian female life table death counts as an example,

Figures  1a to 1b illustrate the forecast    based on both    and CLR transformations for the holdout period and for

selected 20-year-gapped ages over the years, respectively.

Figure 1. Mortality forecasting results for females in Austria.

In general, the life table death counts are negatively skewed and bimodal, with peaks in infancy that later shift towards

older ages[12][35]. Infant mortality is primarily driven by genetic errors, infectious diseases or exposure while aging

becomes the main cause of mortality at older ages[35]. According to Abouzahr et al.[36], high mortality rates are typically

found during infancy and reach their lowest levels between ages 5 and 14, before rising exponentially beyond age 35.

α

α

α

d̂ t,x α
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There might also have some bumps during female reproductive ages, indicating premature mortality due to maternal

deaths.

As the years progress in the test set, forecasts based on  -transformed data retain the age patterns in  , similar to

those predicted based on CLR-transformed data. Despite yielding similar forecasts, the  -transformation results in

lower forecast errors as depicted in Figure 1c. Furthermore, forecasts from the  -transformed data are more accurate,

especially beyond age 65, with a slight decrease in accuracy between ages 86 and 90 as shown in Figure 1d. More results

for females and males can be found in the supplementary materials due to the limited space.

3.3. Comparison of mean forecast accuracy

3.3.1. Overall mean errors

Table 3 summarizes the overall mean forecast errors for female mortality in both training and test sets. It is observed that

although  -transformation has a slightly higher training error with an extremely small difference, it yields more

accurate forecasts in the test set. Similar findings are obtained in  [25][24], in which  -transformation outperforms

conventional log-ratio transformations. This is primarily due to the flexibility introduced by the parameter   in the Box-

Cox type power transformation which allows it to better adapt to the underlying data structure  [19], particularly the

temporal changes in age-specific life table death counts [25].

Phase

RMSE MAE

CLR CLR

Train 0.000715 0.000700 0.000392 0.000385

Test 0.000812 0.000866 0.000477 0.000502

Table 3. Overall mean forecast errors for female mortality.

3.3.2. Mean errors by country

Breaking down model forecast accuracy of female mortality at the country level, Table 4 presents RMSE and MAE values

for both the training and test sets under the   and CLR transformations, along with their best ARIMA models. Notably,

ARIMA (0,1,1) with drift demonstrates superior performance across most countries compared to the models selected by

the auto ARIMA algorithm. This result further supports that ARIMA (0,1,1) with drift is highly suitable for modeling   for

most of the selected European countries, consistent with findings reported in [10].

α dt,x
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Country

RMSE MAE

ARIMA Model

Train Test Train Test

α CLR α CLR α CLR α CLR α CLR

Austria 0.000455 0.000440 0.000811 0.001024 0.000258 0.000249 0.000454 0.000553
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Belgium 0.000520 0.000481 0.000514 0.000615 0.000285 0.000265 0.000319 0.000367
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Bulgaria 0.001000 0.001000 0.001119 0.001124 0.000456 0.000457 0.000623 0.000625
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Belarus 0.000998 0.000993 0.002012 0.002028 0.000563 0.000561 0.001222 0.001231
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Switzerland 0.000471 0.000469 0.000472 0.000492 0.000265 0.000264 0.000290 0.000299
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Czechia 0.000507 0.000504 0.000541 0.000574 0.000276 0.000276 0.000320 0.000338
ARIMA(1,1,0)

with drift

ARIMA(1,1,0)

with drift

East

Germany
0.000836 0.000669 0.000732 0.000927 0.000438 0.000346 0.000425 0.000492

ARIMA(0,1,0)

with drift

ARIMA(0,1,0)

with drift

West

Germany
0.000414 0.000405 0.000554 0.000683 0.000208 0.000203 0.000298 0.000353

ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Denmark 0.000643 0.000646 0.001103 0.001079 0.000363 0.000364 0.000615 0.000602
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Spain 0.000446 0.000437 0.000556 0.000626 0.000239 0.000236 0.000297 0.000328
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Estonia 0.000971 0.000980 0.001097 0.001069 0.000576 0.000582 0.000693 0.000675
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Finland 0.000840 0.000840 0.000539 0.000539 0.000440 0.000440 0.000327 0.000327
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

France 0.000441 0.000295 0.000420 0.000806 0.000216 0.000167 0.000251 0.000422
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

England &

Wales
0.000438 0.000438 0.000556 0.000556 0.000232 0.000232 0.000314 0.000314

ARIMA(3,1,0)

with drift

ARIMA(3,1,0)

with drift

Northern

Ireland
0.000875 0.000875 0.001019 0.001080 0.000501 0.000500 0.000587 0.000623

ARIMA(2,1,0)

with drift

ARIMA(1,1,0)

with drift
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Country

RMSE MAE

ARIMA Model

Train Test Train Test

α CLR α CLR α CLR α CLR α CLR

Scotland 0.000740 0.000743 0.000592 0.000608 0.000418 0.000418 0.000365 0.000374
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Greece 0.000548 0.000551 0.000631 0.000646 0.000290 0.000291 0.000372 0.000379
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Hungary 0.000518 0.000519 0.000615 0.000638 0.000278 0.000280 0.000372 0.000381
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Ireland 0.000694 0.000694 0.001012 0.001012 0.000397 0.000397 0.000574 0.000574
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Iceland 0.002126 0.002133 0.001828 0.001819 0.001165 0.001168 0.001005 0.001031 ARIMA(0,1,2)
ARIMA(0,1,1)

with drift

Italy 0.000445 0.000373 0.000627 0.000992 0.000224 0.000195 0.000333 0.000499
ARIMA(0,1,1)

with drift

ARIMA(1,1,0)

with drift

Lithuania 0.000914 0.000882 0.000847 0.000833 0.000536 0.000523 0.000549 0.000542
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Luxembourg 0.001470 0.001470 0.001621 0.001652 0.000837 0.000841 0.000916 0.000939
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Latvia 0.000833 0.000839 0.001110 0.001103 0.000504 0.000508 0.000729 0.000725
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Netherlands 0.000428 0.000429 0.000436 0.000449 0.000230 0.000229 0.000265 0.000271
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Norway 0.000643 0.000646 0.000512 0.000505 0.000353 0.000354 0.000310 0.000302
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Poland 0.000499 0.000499 0.000564 0.000564 0.000253 0.000253 0.000320 0.000320
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Portugal 0.000477 0.000477 0.000502 0.000505 0.000259 0.000259 0.000308 0.000310
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Slovakia 0.000739 0.000743 0.000972 0.000944 0.000394 0.000398 0.000560 0.000546
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Slovenia 0.000835 0.000828 0.000884 0.000970 0.000459 0.000454 0.000540 0.000587
ARIMA(0,1,1)

with drift

ARIMA(0,1,1)

with drift

Sweden 0.000410 0.000410 0.000372 0.000373 0.000231 0.000230 0.000226 0.000228
ARIMA(2,1,0)

with drift

ARIMA(2,1,0)

with drift
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Table 4. Mean forecast errors for female mortality in each country, along with their best ARIMA models.

Generally, the  -transformation results in lower forecast errors than the CLR transformation in many countries for both

training and test sets. The large difference in RMSE and MAE between both transformations, specifically in East

Germany, contributes to the slightly higher training error under  -transformation as depicted in Table 3. It is also worth

noting that when   as observed in Finland, Ireland, Poland, Portugal and England & Wales, which corresponds to the

ILR transformation, the accuracy is similar to that of the CLR transformation. This is in accordance with Shang and

Haberman’s findings that both ILR and CLR perform similarly in terms of point forecast accuracy for Australian gender-

specific   within functional CoDA[25].

3.3.3. Mean errors over years

Figure  2 visualizes the trend of mean forecast errors for female mortality over years in the training and test sets. A

tabulated version can be found in the supplementary materials. While the  -transformation gives a higher forecast

errors at the beginning, it performs consistently better than the CLR transformation in the holdout set. In addition, it is

worth highlighting that the extremely small errors up to   in the last fitting year, i.e. year 2010, is due to the jump-off

adjustment. This occurs because the last observed   are used as jump-off rates to avoid jump-off bias[37][38].

Figure 2. Mean forecast errors for female mortality over years across countries.

α

α

α = 0

dt,x

α

10−18

dt,x
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When the widely used Lee-Carter model was first introduced, Lee and Carter[4] noted that using fitted values as jump-off

rates would not perfectly match the data in the jump-off year, leading to a discontinuity between observed and forecast

logs of mortality rates. Although they claimed that such discontinuity affects only rates that are absolutely low with little

impact on life expectancy, they suggested that the jump-off error could be fixed by setting   equal to the most recently

observed age-specific   with a drawback that such approach might deteriorate the goodness of fit for the rest of

the fitting period.

Later, Lee and Miller[37] found that the jump-off bias was actually apparent. This could likely be due to the shortcoming

of using a one-principal component (PC), i.e.   approximation in the LC model[39]. Although forecasting of only a

single time series is required following the use of the first PC, having subtracted the age-specific means  , this method

comes along with more approximation error compared to taking more PCs. Hence, bias adjustment would be required.

Bell[39] and Lee and Miller[37] discovered that a jump-off adjustment using observed jump-off rates can eliminate the

bias and achieve a more accurate forecast in forecasting period, as also proven in[38]. Using the similar approach, errors

between   and   are nearly zero since the fitted values are corrected to match the observed values exactly[37].

3.3.4. Mean errors by age

Figure 3 illustrates the mean forecast errors for female mortality by age across countries measured using RMSE and MAE.

These results are further summarized in tabular form in the supplementary materials. Both the  -transformed and CLR-

transformed data result in comparable forecast accuracy up to age 84, after which  -transformation begins to exhibit

slightly higher errors. However, this situation is short-lived as the  -transformation shows a clear advantage over the

CLR transformation at older ages, particularly between ages 91 and 100. Beyond this age interval, different types of

transformation appear to have a minimal impact on model predictive performance. This result aligns with previous

findings that the  -transformation can be a competitive alternative to the widely used CLR approach for converting

compositional mortality data into real space in mortality forecasting.

ax

logmt,x

K = 1

αx

dt,x d̂ t,x

α

α

α

α
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Figure 3. Mean forecast errors for female mortality by age across countries.

4. Conclusion

In this study, the potential of the  -transformation as an alternative to the commonly used CLR transformation in

compositional mortality forecasting has been investigated. Using age-specific life table death counts for each gender

across the selected countries/regions, a mortality modeling and forecasting procedure within a non-functional CoDA

framework akin to the Lee-Carter model that involves  -transformation has been proposed. A comparative analysis is

then carried out between the two transformations from a few perspectives, including overall mean errors, mean errors by

country, mean errors over years and mean errors by age.

The results show that the model fitted to the  -transformed data has a comparable and superior performance in most of

the selected countries as compared to the CLR-transformed data, especially at older ages. In particular, these findings are

consistent with previous studies that involve the application of  -transformation within the functional CoDA

framework[24][25]. The improved accuracy can be mainly attributed to the flexibility of the  parameter, which is fine-

tuned for better data adaptation, as opposed to the rigid log-ratio transformation.

Future research may explore the application of  -transformation in coherent mortality forecasting to account for a

common trend that affects the country-specific mortality pattern. In addition, investigating the predictive performance

of weighted compositional forecasting models using  -transformed versus log-ratio transformed life table death counts

may provide some valuable insights in this field.

α

α

α

α

α

α

α
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