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The first and second order Boltzmann kinetic transport equations, taking into account external and internal
electromagnetic interactions of the charged phonon lattice, are set up. The incident classical field component interacts
with the phonon lattice and gets scattered randomly owing to the random motion of the phonons. The incident quantum
field component thus interacts with both the incident classical field and the scattered classical field, thereby generating
respectively non-random and random Hamiltonian perturbations to the total quantum field Hamiltonian. By using a
second order Taylor expansion of the mixed state Schrodinger evolution of the quantum field, taking into account these
nonrandom and random perturbations, and then forming statistical averages for the random component using the first
and second order Boltzmann distributions of the particles in phase space, we are able to calculate the Lindblad operator
term corresponding to the random component. We then demonstrate how to cancel out these nonrandom and Lindblad
perturbations to the mixed state dynamics using counterterms, based on a Monte Carlo method involving generating a
sequence of iid random Hamiltonian operators, applying Schrodinger evolution, and then forming ensemble averages

making use of the strong law of large numbers.

1. The two particle classical Boltzmann equation with applications to the

calculation of the scattered electromagnetic field

Let there be N identical charges, each of charge g with positions and velocities (r, (t),vq(¢)),a = 1,2,..., N at time ¢. We
write 7(t) = (ro (t))V, € R* o(t) = (va(t))ae1|” € R®N. The joint probability density of these is f(t,r,v) with

(r,v) € R®. At time t = 0, the particles have the Gibbs equilibrium density at temperature T’ = 1/k:
N
F(0,mv) = Z(B) " eap(—A((1/2) Y vi +U(r)) (1)
a=1

where
N

U(r)= >, Unllra —n)+) Uolra)  (2)

1<a<b<N a=1

where U is the interaction potential energy between a pair of charges and U, is the binding potential energy of a charge to

its centre. The joint density f(¢,r,v) in phase space of the charges at time ¢ is determined by their initial density
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£(0,7,v) and their dynamical equations

dry (t)/dt = va(t), mdv,(t)/dt = q(Eo(t,ra (t)) + va(t) x B(t,ra(t))) + Z Fia(ra (t),va(t)|m (t),vs(t)) (3)
b=1ba

with Fip(r,v|r',v") being the electromagnetic force exerted on the charge at phase coordinates (r,v) by a charge at (r',v') in

the non-relativistic approximation:
Fia(r,olr! ') = (¢ /4meo) (r —1')?r —1'° + (mo@® /4m) (v x (v x (r=7))/Ir='[*  (4)

The two particle Boltzmann equation is derived from the complete N particle dynamics

N N
8 f(t,r,v) +Z(va,vra)f(t,r v) + (g/m) Z Eo(t,rq) + va X Bo(t,7a), V) f(t,7,0)

a=1 a=1

+ > (Ba(ra,valre, ), Vi) f(t,r0) =0 (5)
a,b=1,2,...,N,a#b

by integrating over (ry,v3),b = 3,4, ..., N. Doing so results in
O f12(t,71,v1,72,v2) + (v1, Vo, ) f12(t,71,v1,72,v2) + (v2, Vi) fr2(t, 1, v1,72,v2)
+(g/m) ((Eo(t, 1) +v1 X Bo(t,11), V) + (Bo(t,r2) +v2 X Bo(t,72), Vuy)) frz(t,r1,v1,72,02)
+(1/m) [(Fia(r1,v1|r2,v2), Vo) + (Fo1(re, v2|r1,v1, V)] fi2(t, 71,1, 72, v2)
+(NV — 2)/’”)/[(F13(7‘1a111|7“3:113)’vvl) + (Fas (b, 72, 02|73, v3)s Vi )] fr (871, 01,725 02,73, 03)d 33 dPvs = 0
In deriving this equation, we have made use of the identity
divy, (Fi2(r1,v1lr2,v2)) = 0
If we integrate (1) over (r2, v2), we then get the one particle Boltzmann equation:
O fi(t,r1,v1) + (v1, V) + /(1)2, Vi) f12(t,r1, 01,72, vz)d3r2d3v2

+(1/m) /(F12(r1,v1|r2,v2),Vv1) + (Fa1(r2,v2lr1,v1,V,,)] fra(t, 71,01,72,02)d>rad3 vy
(N~ 2)/m) /(Flz(m,vﬂrz,vz),Vvl)fu(t,Tl,vl,rg,v2)d3r2d3v2 —0
which simplifies to
O fi(tyryyv) + (v1, Vi) + /(v27VT2)f12(t7 1,01, 72, v2)d rad?vy
+((N—=1)/m) /(F12(r1,v1|r2,v2),Vvl)flz(t,rl,vl,r2,v2)d3r2d3v2 =0

So far, no approximations have been made. Everything is exact. We now express

fra(t,r1,v1,m2,02) = fi1(t,71,v1). fi(t,72,v2) 4 g12(t, 71, v1,72,v2)

where g1, is small. In shorthand notation,

fiz = fi- o+ 12

Obviously, for the consistency condition
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/f12d3r2v3vz = f1, (12)

we require that
/912d37"2d3v2 =0 (13)

Obviously, all these results are symmetric with respect to the interchange of (r1,v1) and (r2, v2). The first-order Boltzmann
equation for f; is obtained by substituting for fi, into the above equation (2) with the approximation g;2 = 0. To get the
second-order Boltzmann equation for fi2, we do not neglect g;» and substitute for fi» into (2) and then substitute for

f123 the exact expression
f123(t7717U17r27027T37U3) = fl(t,rl,vl)- f(t77'27v2)' f(t,'l‘3,’l)3) + f1(t,7'1,’l)1)-912(t,'l'z,’l)z,'f's,113)
+f1(t,r2,v2). g12(t, 71, v1,73,v3) + f1(t,73,v3). g12(t, 71, v1,72,v2) + g123(t, 71, v1,72,v2,73,v3) (14)

and then neglect g;23. In this way, we obtain two nonlinear PDEs for fi, g;2. Note that the above equation for fi»3 can be

expressed in shorthand notation

fi2s = f1- fo- f3 + f1-923 + f2- 913 + f3. 912 + g123 (15)
For consistency, again, we require
/9123d37”3d3113 =0 (16)
so that we obtain
/f123d37’3d3’03 =fi2 = fi.fo+ 912 (17)

Now suppose that the space-time field F(¢,r|r1,v1) is a one-particle function and we wish to evaluate the mean and
correlation of the random field X (¢,r) = Eflv:l F(t,7r|rq (t),vq(t)). For example, the electric field produced by the N charged

particles or the magnetic field produced by the same are, in the non-relativistic approximation, candidate examples of F:

N N
E(t,r) = ZEO(t,T\ra), B(t,r) = ZBg(t,r\ra,va) (18)
where
Eo(t,r|re) = (q/4meo(r — o) /I — al®,  Bo(t,7|ra,va) = (p0g/4m)ve x (r —71a)/|r — o (19)

We find easily, using the indistinguishability of the particles, that
(X(t,7)) = N./F(t,r\rl,vl).fl(t,rl,vl)d3r1d3v1 (20)
(X(t,r) ® X(t,r')) = N. /F(t,r\rl,vl) Q F(t, 7 |r1,v1) f1(t,m1,v1)d>r1d®v;
+N(N - 1) /F(t,rm,ul) ® F(t,'|ra,v2) fra (t, 71,01, 72, v2)d*r1dPv1 dPrad®vy (21)

Exercise: For given Ry, € R®,k = 1,2,...,n, express ( ©_, X(t, Ry)) interms of fiz_m,m =1,2,...,n

2. Basics of cylindrical wave guide field analysis

The quantum field is
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E(t,r) = c(Le(t,r) + c(1)*e(t,7), B(t,r) = c(1)b(t,r) +c(1)*b(t,7), r=(z,9,2) (22)
where [¢(1),¢(1)*] = 1 and e(t,r),b(t,r) are vectors in R® with the z axis directed along the length of the fibre and the
z,y directions spanning the cross section of the fibre. More precisely, the cross-sectional area at every point in the fibre is
parallel to the xy plane. Let D denote the cross-sectional area of the fibre. For example, if the fibre is rectangular, then
D= {(z,y): 0 <z < a,0 <y < b} whileif it is cylindrical of radius R, then D = {(z,v) : 2 + y* < R?}.

The (n, m) modes in a cylindrical fibre at frequency w are given by
By (w;7) = Jn(tn(m)p/R). (a(1,nm) cos(me) + a(2,nm) sin(mg)). exp(—(n, m)2) (23)
H i (w,7)Jn (B (m)p/R)(b(1,nm) cos(me) + b(2,nm) sin(me)). exp(—y(m,n) z) (24)

where r = (z,y, z) is described in cylindrical coordinates in terms of (p, ¢, z) where

p=1/2"+y° ¢=tan '(y/x) (25)

oy, (m), m > 1 are the zeroes of J,,(x) while 8,,(m), m > 1 are the zeroes of J}, (z) foreachn = 0,1,2,... and

y(n,m) = \/h(n,m)2 — e, y(n,m) = y/h(n,m) — w?pe (26)

with
h(n,m) = an(m)/R, h(n,m)" = Bn(m)/R (27)
Jn(z) is the Bessel function of order n and it arises during the separation of variables in cylindrical coordinates while
solving the Helmholtz equation that describes wave propagation. Here, the frequency w can be arbitrary and
E, # 0,H, = 0 describes the mode T'M,,,, while E, = 0, H, # 0 describes the mode T'E,,,. Thus, the cutoff frequency for
the T' M., mode is h(n,m)/,/eg while that for the T E,, mode is h(n,m)'/,/ep. In case the only frequency component of

the electric and magnetic fields are at frequency w, we then have the result that the total z component of the electric and

magnetic fields within the fibre are the superpositions

E.(t,r) = ) (Rela(1,nm)ezp(j(wt — 7(n,m)z))}- w1am(p, §) + Rela(2,nm)exp(j(wt — Y(n,m)z))]- uzam(p, $)]) (28)

nm

H(t,r) = Y (Relo(1,nm)eap(j(wt — v(n,m) 2)))- vim(p, §) + Re[b(2,nm)exp(i(wt — y(n,m) 2))]- vamm(p, 6)])  (29)

nm

or equivalently,

E.(t,r) =Y Re(Bypm(w, ). exp(jwt)), Hot,r) = Y Re(H.pm(w,7). exp(jwt)) (30)

nm nm

and the transverse components of the electric and magnetic fields are then given by

E|(t,r) = ZRe(Ean(w,r)exp(jwt)),Hi(t,r) = ZRe(Hl,nm(w,r).emp(jwt)) (31)

where
E| ym(w,r) = (—v(n, m)/h(n,m)z)VLEz,nm(w, r) — (Jwp/h(n,m))V 1 H, yp(w,7) X 2 (32)
H yn(w, ) = (—=y(n,m)' /h(n,m))V L H, o (w,7) + (jwp/h(n, 17”L)2)VLEZJW,(LL)7 T) X Z (33)

In the above expressions, for E,, H,, we have defined

Utnm(p, @) = Jn(an(m)p/R). cos(me), usnm(p, ¢) = Jn(an(m)p/R). sin(me) (34)
V1nm (s #) = Jn(Br(m)p/ R). cos(mg), 20nm(p, @) = Jn(Bn(m)p/R). sin(me) (35)
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These expressions can be combined into 3-vector equations as

E(t,r) = ReZa(nm).ezp(jwt)unm(p, @, z|w) (36)
H(t7 7‘) = Re Z b(nm) exp(j"‘)t))vnm (,0, ®, le) (37)

where u,,,(p, @, z|w) are complex linear combinations (with complex 3-vector valued coefficients that depend upon w) of

exp(=y(n, m)2). utnm(p; 9), exp(=7(n, M) 2)usnm(p; @), - exp(=v(n,m)'2)v1nm(p;¢) and  exp(—y(n,m) 2)v2am(p, ¢) and

likewise for v, |(p, ¢, 2|w).

Now we come to the case when the two ends of the fibre at z = 0 and z = d are closed. The fibre then acts like a cylindrical
cavity resonator and the possible frequencies of oscillation of the em field are forced to assume only values in a discrete
sequence, known as the characteristic frequencies of oscillation of the field within the cavity resonator. This is because the
boundary conditions on the fields at the beginning and end of the cavity along the z axis (0, E, = 0) imply that the
exp(—y(n, m)z) dependence of the E, field gets replaced by a linear combination of exp(++y(n, m)z) that is proportional to

cos(pmz/d) for some positive integer p which means that y(n, m) = j8(n,m) so that 7p/d = B(n, m) or equivalently,
(np/d)® = Bln,m)?* = —(n,m)* =&’ pe — h(n,m)’  (38)
implying thereby that the possible values of w are
w = (A(n,m)’ + (np/d)*)"* = w(n,m,p),n,mp € Zy  (39)

These determine the characteristic frequencies of oscillation of the 7'M modes. Likewise, the boundary conditions at the
fibre ends imply H, vanishes at these two ends and hence that its exp(—v(n,m)’z) dependence on z gets replaced by that

linear combination of exp(+(n,m)z) that is proportional to sin(prz/d) so that
w = w(n,m,p) = (h(n,m) + (np/d)*)"*  (40)

are the characteristic frequencies of oscillation of the T'E modes.

To get a single mode field, we assume that the only mode that propagates is T'M,,,;, and that it is right circularly polarized.
(None of the T'E modes is assumed to propagate. Of course, we could repeat the whole analysis by instead assuming that

the only mode that propagates is T'E,,, , but we shall stick to the former case). Thus, we are assuming that H, = 0 and
E.(t,7) = 2.Re(c(1) exp(—jwt + jB(n, m)z + jm@))Jn(an(m)p/ R) = c(1) exp(—jwt) s um(p, ¢, 2)
+¢(1)* exp(jwit)ur nm(p, ¢, 2) (41)
where
U1 (P, ¢, 2) = exp(jB(n,m)z + im@)Jn(an(m)p/R)  (42)

Note that uy ., is an eigenfunction of L, = —i0, with eigenvalue +m and in quantum mechanics, L, is the z-component

of the angular momentum operator.
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3. Cylindrical wave guide analysis of the Lindblad operator computation for a
single mode quantum field in an optical fibre interacting with the random
scattered classical electromagnetic field caused by interaction between the

phonon lattice with the incident classical field

Assume that T M, mode only propagates. The frequency w > h(n,m)/,/m€ (cutoff frequency of TM,, mode) where

h(n,m) = a,(m)/R with oy, (m) denoting the m* root of J, (z). We have
E.(t,r) = E.(t,p, $,z) = 2.Re(c(1). exp(—iwt)tnm (p, P, 2))
= c(1)exp(—iwt). upm (p, ¢, 2) + c(1)* exp(iwt)Unm (p, @, 2) (43)
where
A, m) = §8(n,m), B(n,m) = \/w e — h(n,m)?, (0,6, 2) = Ju(h(n,m)p). exp(ind — B(n,m)z)  (44)
H, = 0 is also assumed so that from Maxwell’s equations,
E, (t,r) = 2.Re(c(1)exp(—iwt)(—y(n,m)/h(n,m)*). V L tnm (p, ¢,2))  (45)
H_(t,r) = 2.Re(c(1)exp(~iwt)(~iwe/h(n,m)*)V Lumn (p, $,2) x 2)  (46)
Writing
(9 6, 2) = [(—(my ) /0y M)V Lt (0,6, 2, U (03 6,2)] (47)
and
Vam (0, 6,2) = . [(—iwe/h(n,m)*)V L (p; 6,2) X 2,0 (48)
We get the following expressions for the propagating electromagnetic field vectors within the cylindrical fibre:
E(t,r) = 2.Re(c(1). exp(—jwt)unm(p; $,2))  (49)
B(t,r) = 2.Re(c(1). exp(—jwt). Vom (p, ¢, 2)) (50)

An easy analysis shows that we can scale uy, (p, ¢, 2), i.e., replace up, by d(n,m)un, where d(n,m) is an appropriate

positive real number, so that the total energy within the fibre, assumed to have a length d is given by

d
U= / /D (/2B + (1/20)| B(t, ) )dady = w.c(1) (1) (51)

or more precisely, hw. ¢(1)*c(1) where h equals Planck’s constant divided by 2. Assuming that such a scaling has been
done (note that this implies that u,,, and v,,, also get scaled by the same d(n, m)), we obtain the following expressions for

the quantum fields

E(t,r) = c(1)exp(—iwt)Unm(p, ¢, 2) + c(1)" exp(iwt)unm(p, ¢, 2) (52)
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B(t,r) = c(1)ezp(—iwt) Vam (p, ¢, 2) + c(1)* exp(iwt)Vam (p, &, 2) (53)

with Hamiltonian

H = w.c(1)"¢(1) (54)
where the Bosonic CCRs are satisfied:

[e(1),e(1)] =1 (55)

Note that writing ¢(1,¢) = ¢(1)ezp(—iwt), we obtain the correct Heisenberg equations of motion:

ch;t.t) i [H,e(1,8)] = —iw.c(1,1)
and
dc(;;t)* =i [H,c(1,t)] = iw. c(1, )"
Note:
.8 () 0 .0 .0
VL*P-$+ <;> a—¢ 72.%+y.%
Therefore,
V Lt (9, 6, 2) = exp(—jB(n,m)z + jn) (h(n,m) Jh(h(n,m)p)p + Jo(h(n,m)p)jn. $/p)
with
p = &.cos(¢) + §.sin(d)
q; = —2.sin(¢) + y.cos(¢)
where

p=1/2" +y° ¢ =tan"' (y/x)
Thus, in terms of column vectors of Cartesian components,
unm(p7 ¢a Z) = d(TL, m) [(77(7”/7 m)/h(n7 m)Q)VLunm (pv ¢a Z)y Unm (pa ¢7 Z)}
= d(n,m) exp(—jB(n,m)z + jnd)

* [(=3B(n,m) /h(n, m)?)(h(n,m).Ji(h(n,m)p) cos(¢) — Ju(h(n,m)p)jn.sin(¢)/p),

(—3B(n,m) /{1, m)?) (h(n, m). T4 (h(n, m)p) $in(@) + Ju (h(n, m)p) jn- cos(9)/p), Jo (h(n,m)p)]

and

V Lt X 2 = —¢. OpUnm + P Optimm /P

so that
Vo (05 ¢, 2) = [(_jwﬂe/h(n» m)2)vLunm70} =

d(n7 m) [(_jw:ue(n7 m)/h(n> m)2)vl_unm (P7 (757 2)1 0]
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= d(n,m) exp(—jB(n,m)z + jng).
x [(=jwpe/h(n,m)* (h(n,m)J} (h(n,m)p) sin(¢) — J(h(n,m)p)jn.cos()/p),

. . T
(—jwpe/h(n,m)*)(~h(n,m)J; (h(n,m)p) cos(¢) + J(h(n,m)p)jn.sin(¢)/p),0] (65)
We write E, (t,r), By(t,r) for E(t,r), B(t,r) respectively to signify that these are the propagating quantum fields that carry

information about the state/density operator which is a function of ¢(1), ¢(1)*, as for example a Gibbs state
p=Z(B) . exp(—Bw.c(1)*c(1)) (66)
Now, let E(t,p,¢,z) and B,(t,p,$,z) denote the random scattered classical electric and magnetic fields. The
corresponding random interaction Hamiltonian operator between this scattered field and the quantum 7'M, field is given

by
S.(0) = . [ (B0 )B4 [ (Bultor), Bole )i (67)
c c

= c(1)h(t) + c(1)*h(t) (67)

where h(t) are the complex valued functions of time given by the formulas

h(t) = exp(—iwt)l[e. /C:(Es(t,p,qb, 2), Unm(p, @, 2))p. dp. do. dz+

W [ (But0,002), Vo (6. ). dp. (68)
where
N
E; (t7P7 ®, Z) = ZES (t7P7 é, 2|74 (t),’ua(t)) (69)
N
By(t,p, ¢,2) = ZBS(t7P:¢7Z|Ta (t)7”a(t)) (70)

[
—

a

with (r,(t),v4(t)) for any given a having the one particle Boltzmann probability density f;(¢,r,v) and for any a # b,
(ra(t),va(?)), (15 (t), vs(t)) having the two particle joint Boltzmann probability density fi2(¢,71,v1,72,v2). We note that
E;(t,p, ¢, z|7a (t),v4(t)) and B;(t, p, ¢, 2|74 (t), v4(t)) are respectively the electric and magnetic fields in the non-relativistic
approximation produced at the point (p, ¢, 2) at time ¢ by a charged particle of charge ¢ located at r, (t) and moving with

velocity v,(t). Equivalently, we can write

N
h(t) =) h(tlra(t), va(t)) (71)

a=1

where
h(tlra (1), va(t)) =
exp(—iwt)[e./C(Es(t,p,gb,z\ra(t),va(t)),unm(p,¢,z))p. dp.d.dz

47" [ (Bt 9,217 0 00(0), Vo (0., 2)) . dp. d 72

The Lindblad operators are then computed easily using the formulas

(6H,(t)) = c(1)(h(?)) + c(1)" (h(1)) (73)
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and
(0H (t) X0H,(t))

= c(1)Xe(1) (h(t)*) + (c(1) Xe(1)" + e(1)" Xe(1))([R()|*) + (e(1)" Xe(1)* (R(t)?*)

for any quantum operator X, with

(h(t)) = N / Wt 00) fu (b1, 01)dPrydPon

(r(t)*) =
N/h(t\rl,v1)2f1(t,7'1,v1)d3r1d3v1 +N(N-1)

/h(t‘T‘l,’Ul)h(t‘Tz, ’U2)f12 (t, T1,V1, T‘2,U2)d37'1d3’01d37‘2d3’v2
etc.

More precisely, if p(t) is the state at time ¢, then the state at time ¢ + d¢ is given by
plt -+ dt) = p(t) — ide[H, p(t)] — idt[5Ho (£), p(t)] — idt(8H (1)), ()]
(@ /2)(BHL()p(t) + p(O)GHL(E7) — 26H(Dp(SH,(8)  (77)
where
Sta(t) = [ (e(Bo(t.p.6,2). Ey(t,p,,2)
+u (Bo(t, p, 6, 2), By(t, p, ¢, 2))) p- dp- dp. dz
— cVeap(-it) [ (e(Bolt,p.6,2),un(p,6,2)
+1 (Bo(t, py 65 2), Vam (p, 6, 2))p)- dp. . dz
1) eap(iut) [ e(Ba(t,p.0:2) han(p:6.2)
+1 (Bo(t, £y 6, 2), Vam (0 $, 2)) ). dp. dop. dz
— c(V)glt) +c1)'g(t)  (78)
where
ott) = exp(—it) [ (e(Bo(t, 0,6, wnn(p.9,2))
+17 (Bo(t, pr 6, 2), Vam (P, 6, 2))p- dp. dp.dz (T9)
The Lindblad terms are therefore evaluated using
(8H, (t)") =
(W) + (1) R())?) = eV R(0?) + e(L) (A + (e(De(1)” +e(1) () R(E))
Note that

(h(ty) = N / Bt o0)? £ (60 1) dPradoy
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+N(N - 1)/h(t\rl,vl).h(t|r2,vz)flg(t,rl,vl,r2,v2)d3r1d3v1d3r2d3v2 (81)
<71(t)2) = N/Tz(t\rl,v1)2f1(t,r1,v1)d3T1d3vl
+N(N — 1)/ﬁ(t\rl,vl).ﬁ(ﬂm,vz)fu(t,7‘1,v1,rz,vg)d3r1d3v1d3r2d3v2 (82)
(RO = N [ At o) i, on)d o,

+N(N — 1)/h(t\n,vl).ﬁ(ﬂrz,vz)fu(t,rl,1)1,7‘2,U2)d3?“1d3711d37'2d3112 (83)

and finally,
(0H,(t)p(t)0H,(t)) =

(h())e(1)p(t)e(1) + (R(t)*)e(1) p(t)e(1)? + (e(L)p(t)e(1)” + (1) p(B)e(L))(A(E))  (84)
This formula immediately suggests to us how the counter potential and counter TPCP terms are to be designed to reduce
the noise in the system. The counter potential term —i[V;(t), p(¢)] is designed so that
Vo(t) ~ —(6Ho(t) + (6H,(2))) (85)
while the counter TPCP term 6(p(t)) is designed so that
0(p(t)) ~ (dt/2)((6H,(t))p(t) + p(t) (0HL(t)?) — 2(6H (t)p(t)6H (1)) (86)

Such a counter term can be implemented using a Monte-Carlo algorithm based on averaging a sequence of independent

identically distributed counterterms: At time ¢, choose iid random matrices X1, Xo,..., Xy so that

(X;) = 6Ho(t) + (6H,(t)),i = 1,2,...,N (87)
(6X:0X;) = (6X2)6;; = (6H,(t)*)6s5,4,5 = 1,2,....,N (88)
where
6X; = X; — (X3) (89)
and implement the algorithm
pi (t 4 dt) = idt[ X, p(t + dt)] + (dt?/2)[ X, [Xi, p(t + dt)]),i = 1,2,...,N (90)

Taking the average of the output state over all the IV ensembles then gives us the output state as

on(t + dt) = 12;)1 (t + dt) = idt[N 1ZX,,/)
+(dt*/2)N Z:[Xi, (X, p(2)]] (91)

which in the limit as N — oo, by the strong law of large numbers, converges to the desired state py(t + dt):
lim py (¢4 dt) = po(t + dt) (92)
N—o0

where p(t + dt) is given by (a) po (¢ + dt) is given by cancelling out both the perturbations, i.e.,

po(t + dt) = p(t) — idt[Ho, p(t)] (93)
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4. Conclusions

This paper presents a detailed analysis outlining the various steps involved in computing all components of the Lindblad
operator that describe the generalized Schrodinger equation for the dynamics of the mixed state of a quantum
electromagnetic field propagating within a cylindrical optical fibre. The incident field consists of a purely quantum
component assumed to be single mode plus a purely classical component which can get pretty large. This classical
component interacts with the charged random phonon lattice of atoms in the fibre, thereby causing these atoms to execute
random motion whose joint probability distribution in phase space satisfies the Liouville equation. By partial integration,
we derive two approximate equations from this, namely the first and second order Boltzmann equations that describe the
evolution of the marginal probability distribution of a single particle and of two particles. As a result, the field scattered by
the phonons acquires classical randomness whose second order statistics can be determined completely by the one and two
particle Boltzmann distribution functions. We then apply standard cylindrical wave guide analysis to express a single mode
quantum T'M,,, field propagating in the fibre in terms of a single photon creation and annihilation operator and the modal
eigenfunctions. The interaction Hamiltonian between this quantum single mode field and the incident classical and
scattered classical field is evaluated using the standard bilinear form for field energy derived from the quadratic form for
the field energy in the electromagnetic field. By applying a second order Taylor expansion to the Schrodinger evolution
with this interaction Hamiltonian, we derive the Lindblad master equation for the mixed state evolution of the single mode
quantum photon field. The commutator/conservative term in this equation receives contributions from the incident field
and the statistical average of the scattered field, which is computed using the single particle distribution function, while
the dissipative/Lindblad/TPCP term receives contributions from the statistical correlations in the scattered field, which are
computed using the single and two particle distribution functions. Finally, we indicate a procedure by which both of these

perturbations can be canceled out based on Monte-Carlo simulations of the random perturbing Hamiltonian.
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