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1. Introduction

In this paper, we deal with the following nonlocal fractional
Laplacian problem:

{ — Lxu € e0F(z,u) — M0G(z,u) + vOH (z,u)
u=0

where § is a bounded domain in (R", |.|) with a C2-boundary,
n > 2s, s € (0,1), the maps F,G,H : Q x R are measurable
potential functionals, which are only locally Lipschitz and in
general nonsmooth in the second variable. We denote by the
generalized gradient of dF(z,u), 0G(z,u) and OH (z,u) to u.
Furthermore £ g is the nonlocal operator defined as follows:

Lxufa) = [ (ule+3) + u(e ~1) - 2u(e) K W)y, =
€ R",

where K : R"\ {0} — (0,+00) is a function which satisfies
the following properties:

(Ky) 7K € L'(R™), where y(z) = min{|z|?,1};

(K,) there exists 8 > 0 such that K (z) > Blz| ")

(K3) K(z) = K(—z),forany z € R™ \ {0}.

the Kernel K is

K(z) = \:c|7("+2s>. In this case Lx is the fractional Laplacian
operator defined by

~(-ayu@) = [

These operators have various applications in different fields,
including phase transitions, thin obstacles, finance,
optimization, stratified materials, crystal dislocation,
anomalous diffusion, semipermeable membranes, soft thin
films, ultra-relativistic limits of quantum mechanics, multiple

A typical example for given by

u(z +y) + u(z —y) — 2u(x)

n
‘y|n+2s dy, z €R

in Q,
in R"
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scattering, quasi-geostrophic flows, minimal surfaces, water
waves, and materials science. For a basic introduction to this

topic, we recommend referring to the references M and the
monograph 21

It is well-known that many free boundary problems and
obstacle problems can be reduced to partial differential
equatippg yvith nonsmooth potentials. The field of nonsmooth
élﬁlysis is closely related to the development of critical points
theory for nondifferentiable functions, particularly for locally
Lipschitz continuous functionals based on Clarke's generalized

gradient Bl This theory provides a suitable mathematical
framework to extend the classic critical point theory for C*-
functionals in a natural way, and to meet specific needs in
applications such as nonsmooth mechanics and engineering.

For a comprehensive understanding of this topic, we

recommend referring to the monographs by B0l and

71[81[91[101[111[12][13][14][15][16][17
)

references such as

others.

among

If F, G and H are differentiable, then problem (1.1) becomes into
the following form

{ — Lgu = f(z,u) inQ,

- o (1.2)
u=0 inR"\ Q,

In recent years, there have been many interesting results
focusing on problem (1.2) using various methods. However, in
our case, we only assume that the energy functional
corresponding to problem 1.1 is locally Lipschitz instead of
differentiable. This assumption poses certain difficulties and
prevents us from applying classical variational methods to solve
the problem. To overcome these difficulties, we need to utilize
theories for locally Lipschitz functionals to establish existence
results for this case. Fortunately, in [@l, Theorem 3.3] (see
Theorem 2.1 below), we have developed a nonsmooth three
critical points theory that can be applied to prove that problem
11 has at least three critical points (see Theorem 3.1). One
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remarkable aspect of our results is that we do not impose any
conditions on the behavior of the nonlinearities at the origin,
which makes our results more interesting compared to most

known results in the literature (e.g., [191[201[211[221[23] ¢ al.).
Recently, there has been significant attention focused on the

study of fractional and nonlocal operators of elliptic type, both
for pure mathematical research and with a view to concrete

real-world applications. In 24 Servadel and Valdinoci proved
the following fractional Laplacian equation:

{(—A)Su =f

u=g

in Q,

inR™\ Q. (1.3)

They proved a maximum principle and used it to obtain their
regularity results. Autuori and Pucci [23] giscussed the elliptic
problems involving the fractional Laplacian in RY and derived
three nontrivial critical values. Cabre and Sire 1261 studied
problem (1.3) and established necessary conditions on the
nonlinearity f to admit certain types of solutions. In 27 Bisci,
using variational methods, established three weak solutions via
an abstract result by Ricceri about non-local equations.
However, all of these works are based on the assumption that
the potential functionals are smooth. To the best of our
knowledge, there exist no results discussing problem (1.1) with
nonsmooth potentials. For problems with nonsmooth potential
functionals, most results focus on studying the Dirichlet
problem involving the p-Laplacian or p(z)-Laplacian d-
ifferential inclusion. For example, there exist some results
studying the following problem with a nonsmooth potential in
Sobolev spaces:

fora.e. z €,

{ — div(|Vu’ 2Vu) € 0F(z,u)
=0.

"'an

Gansinski and Papageorgiou 1l using a variational approach
combined with suitable truncation techniques and the method
of upper-lower solutions, proved the existence of at least five
nontrivial smooth solutions for problem (1.4). lannizzotto and
Marano (28], employing variational methods with truncation
techniques, obtained at least three smooth solutions for
problem (1.4) with 8F(z, u) given by AOF(z, u). Besides, Kyritsi
and Papageorgiou [29] based on the nonsmooth critical point
theory of Chang B0 gerived two strictly positive solutions with

p > 2. In Bl Kristaly, employing a nonsmooth Ricceri-type
variational principle, proved the existence of infinitely many,
radially symmetric solutions of p-Laplacian differential
inclusions in an unbounded domain. Results of p(z)-Laplacian
differential inclusion can be found in [321331341351361(37]

However, we should mention that the variational method to deal
with problem (1.1) is not often easy to perform. Variational
approaches do not work when applied to these classes of
equations due to the presence of the nonlocal term. Fortunately,
our approach in this paper is realizable by checking that the
associated energy functional satisfies the assumptions
requested by a very recent and general nonsmooth three critical
points theorem derived by Yuan and Huang [8 Theorem 3.3]
(see Theorem 2.1 below) and thanks to a suitable framework

developed in 38, Furthermore, we observe a remarkable feature
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of our results: compared to most of the known results in the
classical Laplacian case, no condition on the behavior of the
involved nonlinearities at the origin is assumed. Therefore, our
results are more interesting.

The rest of the paper is organized as follows. Section 2 contains
the necessary preliminaries. In Section 3, we prove our main
results.

2. Preliminaries

Some basic notations

» — means weak convergence, — strong convergence.
e C denotes all the embedding constants (the exact value may
be different from line to line).

In this section, we briefly recall the definition of the functional
space X, firstly introduced in 32 The functional space

X denotes the linear of Lebesgue measurable functions from
R™ to R such that the restriction to Q of any function g in
X belongs to L?(2) and

((z,9) — (9(2) — g(y)){/ K (z — )

€ L*((R" x R") \ (CQ x C9),dzdy),

where CQ = R"\ Q. We denote by X, the following linear
subspace of X

Xo={geX:g=0aa inR"\Q}

Note that X and X, are non-empty, since C2(Q) C X, by
Lemma 11 in 32, Moreover, the space X is endowed with the

norm defined as
1.4)

1/2
lgllx = llgll L) + (/Q l9(z) — g(y)|’K (z — y)dwdy> ;

where Q = (R" xR")\ O and O = (CQ) x (CQ) C R" x R™
It is easy to see that ||. || x is a norm on X (see, for instance Iﬁl).
By [38] Lemmas 6 and 7] we can take the function

1/
Xo3 v [lullx, = ( /Q lv(z) —v(y)FK(w—y)dmdy)

as norm on X, in the sequel. Also (X, ||. || x,) is a Hilbert space
with scalar product

(u,v)x, = /Q (u(z) — u(y))(v(z) - v(y)) K (z — y)dzdy,

see [[ﬁl, Lemma 7].

Note that in (2.1) (and in the related scalar product) the integral
can be extended to all R” x R”, since v € X (@nd so v = 0 a.a.
in R™ \ Q). While for a general kernel K satisfying conditions
from (K;) to (K3) we have that X, ¢ H*(R"), in the model
case K(z)=|z| ™) the space X, consists of all the

functions of the usual fractional Sobolev space H*(R") which
vanish a.a. outside € (see [[4—0], Lemma 7]).

Here H*(R") denotes the fractional Sobolev space endowed
with the norm (the so-called Gagliardo norm)

doi.org/10.32388/ZAXY8Q.3 2
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l9(z) — g(y)[*

|113 _ y‘n+2s

1/2
ol zsy = lgll e + ( [ dmdy) .
X

Recall the embedding properties of X into the usual Lebesgue

spaces  (see (38l  Lemma 8]). The embedding
j:Xo— LI(R") is continuous for any ¢ € [1,2*], while it is
compact when g € [1,2*), where 2* = nf’;s denotes the
fractional critical Sobolev exponent. Hence, for
g € [1,2*] there exists a positive constant ¢, such that

any

[vllzo@ny < eqllv]lx, for any v € Xo.

In what follows, let \; be the 1-th eigenvalue of the operator
—L i with homogenous Dirichlet boundary data, namely the 1-
th eigenvalue of the problem

— Lgu = Mu inQ

) 2.2
{u =0 inR™\ Q. (22)
Note that, as in the classical Laplacian case, the set of the
eigenvalues of problem (2.2) consists of a sequence

{ Ak Hren With
0< A <A< <A< Ayt <. (2.3)

and

Ap — +o00 as k — oo. (2.4)

Definition 2.1. A function I: X — R is locally Lipschitz if for
every u € X there exist a neighborhood U of u and L > 0 such
that for everyv,n € U

[I(v) = I(n)| < Lllv —nl|.

Definition 2.2. Let I : X — R be a locally Lipschitz function,
u, v € X : the generalized derivative of I in u along the
direction v,

I(n+1v)—1I(n)

I°(u;v) = limsup
7]~>u,‘r~>0Jr T

= e/ﬂﬁ(av,u)v(z)da: - A/ﬂ((z,u)v(w)dav +v
/Q n(z,u)v(z)dz.

Proposition 2.1. (ﬁl) Let h: X — R be locally Lipschitz
function. Then

i.(=h)°(u;2) = h°(u; —2) forallu, z € X;

ii. h°(u; 2) = max{(u*, 2)x : u* € Oh(uw)} < L||z|| with L as
in Definition 2.1, forall u, z € X;;

iii. Let j: X — R be a continuously differentiable function.
Then 8j(u) = {j'(v)}, Jj°(u;2) coincides with
(7'(u),2)x and (h+3)°(u; 2) = h°(u; 2) + (5'(u), z)x for
allu, z € X

iv. (Lebourg's mean value theorem) Let u and v be two points
in X. Then, there exists a point w in the open segment
between u and v, and u; € Oh(w) such that

h(u) — h(v) = (ul, v — v)x;

v.Let Y be a Banach space and j:Y — X a continuously
differentiable function. Then & o j is locally Lipschitz and

d(h o j)(u) € Oh(j(y)) o j'(y) forally € Y;
vi. If by, hs : X — R arelocally Lipschitz, then

vii. Oh(u) is convex and weakly* compact and the set-valued
mapping 8h : X — 2% is weakly* upper semicontinuous;
viil. (Ah)(u) = AOh(u) for every A € R.

Let I, ¥, &: X — R be three given functions, for each
1> 0andr €]infy ®,supy P[, we set
hl(uI + \II7¢>7‘) =
[LI(’M) + \I’(U) - infuelﬁl(]foo,r]) (MI + ‘Il)
r— ®(u)

in
ued 1 (]—o0,r|)

and
It is.easy to see tha.t the function v — I O(u;v) is sublinear, hy(ul + 0, &,7) =
continuous and so is the support function of a nonempty, 7 o inf Tow
convex and w* — compact set 9I (u) C X*, defined by sup pl () + ¥ (u) — i0f g1 oo (W + ) )

. wedL(Jr+00]) r— ®(u)
0I(u) = {u" € X" : (u",v)x <I’(u;v)forallv e X}
) When ¥4 P is bounded below, for each
If1 € C'(X), then r €]infx ®,supyx ®[ such that
oI(w) = {I'(w)}. inf I < inf I(u).
ued ™ (]—o0,r]) ued ™ (r)

Clearly, these definitions extend those of the Gateaux directional
derivative and gradient. Set
A point u € X is a critical point of I, if 0 € dI(u). It is easy to hs(I,¥,®,r) =
see that, if u € X is a local minimum of I, then 0 € 8I(u). For . T(u) —y+r
more details we refer the reader to Clarke (2], inf m— I(a) tu€ X, @(u) <7 I(u) <7,
Definition 2.3. We say that 4 € X is a solution of problem (1.1) if
there exist &(z,u) € 0F(z,u), {(z,u) € 0G(z,u) and where
n(z,u) € OH(z,u) for aa. x € Q such that for all v € X we v = inf (¥(u) + B(u))
have ueX

and

| (@) ~ u)otz) ~ o)K@~ y)dady
geios.com doi.org/10.32388/ZAXY8Q.3 3
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inf I(u).

"= ued(r)

With the above notations, our abstract tool for proving the main

result of our paper is [18l Theorem 3.3] and we recall here for
the readers’ convenience.

Theorem 2.1. Let (X,]| -||) be a reflexive Banach space,
I€CYX,R) a sequentially weakly lower semicontinuous
function, bounded on any bounded subset of X, such that I' is of
type (S)+. ¥ and ® : X — R are two locally Lipschitz functions
with compact gradient. Assume also that the function ¥ + A® is
bounded below for all A > 0 and that

v
lim inf ()

fiminf 7 = —00. (2.5)

Then, for each r > supy ®, where N is the set of all global minima
of I, for each p > max{0,h3(I,%,®,7)} and each compact
interval [a,b] C]0, ho(ul + ¥, ®,7)[, there exists a number
p > 0 with the following property: for every A € [a,b] and every
locally Lipschitz function H : X — R with compact gradient, there
exists 6 >0 such that, for each v €0,4], the function
ul(u) + ¥(u) + A®(u) + vH(u) has at least three critical points
in X whose norms are less than p.

3. The main results
Firstly, we define I'(u), ¥ (u), ®(u), H(u) : X, +— Rby

ull%,

Iw) = —,

V() = —Fw), F(u)— A F(o, u)dz,

@(u)z/G(m,u)dw, I{I(u)z/H(a:,u)dx
Q Q
for all v € X. It is easy to see that the functional I is a

continuously Gateaux differentiable whose Gateaux derivative at
the point 4 € X, is the functional I’ (u) € X¢ given by

(I'(w),v) = /Q(U(m) — u(y))(v(z) — v(y)) K (z — y)dedy

forally € X,. For each r €]infx ®,supy P, set

h(I, 9, ®,7) =
T(u) — 4+
'nf{M rue X, ®(u) <rI(u) < f]r},
My — I(U)
where
5= / inf(G(z,u) — Fla,u))ds,
Q ueR
and
7, = inf I(u).
ued™(r)

Foreach e € 0, ,let

1 [
max{0,h3(I,¥,®,r)}
hy(I+9,®,7) =
I(w) + €¥(u) — infy1g_ o, (I +€¥)
r— ®(u)

sup
ued 1 (Jr,+o00])
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In order to discuss problem (1.1, we need the following
hypotheses:

(Fp) forallu € R, Q 5 z — F(z,u) is measurable;

(F,) foraa.z € O, R > u — F(x,u) islocally Lipschitz;

(F3) ¢ <ki(1+|u|/® ") for aa. z€Q and every u € R,
£(z,u) € OF(z,u) (k1 > 0, @1 € (2,27));
(Fs)

infzeq F(z,u) sup,cq F(z,u)

lim

= +o00 and
|u|—=+o00 \u|

[u| =400 u? @

+00,
where a € (2,2%);
(G forallu € R, Q 3 z — G(z,u) is measurable;
(Gy) foraa.z € ©,R 3 u — G(z,u) islocally Lipschitz;
(G3) ¢ <ka(1+|u|® ") for aa. z € Q and every u € R,
((z,u) € 0G(z,u) (k2 > 0, g2 € (2,2%));
(Gy)
infzeq G(z,u)
im ————— = +oo,
|u|—+00 |U|
where o € (2,2%);

(Hy) forally € R, Q > & — H(z,u) is measurable;
(Hy) foraa.z € Q,R 5 u — H(z,u) islocally Lipschitz;

(H3) |n| < ks(1+|u|®") for aa. = € Q and every u € R,
77(%“) € 8H(1L‘7’LL) (k3 > 07 q3 € (27 2*))

Remark 3.1. It is easy to see that there exist lots of functions which
satisfy hypotheses (F1)-(Fy), (G1)-(G4) and (Hq)-(Hy). For
example, for simplicity, we drop the z-dependence.

Jul, lu| <1,
F(u) =
@={jub o1
Jul, lul <1,
G(u) = { \u|a+a2 > 1 and H(u) = |ul,

where0 < a1 < a—2,0<a; <2*—a.
Lemma 3.1. If hypotheses (K1) — (K3) hold, then

i.I': Xo — X¢ is a continuous, bounded and strictly monotone
operator;

ii. I' is a mapping of type (S.), ie, if u, = u in X, and
Timn 400 (I'(uy) — I'(w), un — uy < 0,thenu, — win Xj.

Proof. (i) By virtue of the properties of (K;) — (K3), it is obvious
that I’ is continuous and bounded. Note that

(T (u),u) = /Q () — u(y) K (& — y)dedy,
(I (w),v) = (I'(4),u) = /Q (u(z) — u(®)(v(z) - v(v) K (=
— y)dzdy,
(T'(0), ) = /Q lo(z) — o) K (@ — y)dedy,

then, we have

(I'(u) = I'(v),u — )
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= (I'(u),u) — (I'(u),v) = (I'(v),u) + (I'(v),v)

= A[(U(aﬁ) —u(y))* — 2(u(z) — u(y))(v(z) — v(y) (1)
+ (v(@) — v(y))’]

= A)[(U(m) —u(y)) — (v(2) — v(y))* K (z,y)dzdy > 0,

ie, I' is monotone. In fact I’ is strictly monotone. Indeed, if
(I'(w) — I'(v),u — v) = 0, then we have

/ [(u(e) - u(y)) -
Q

so u = v. Therefore, (I'(u) — I'(v),u —v) > 0 if u # v. This
means that I’ is a strictly monotone operator in X.

(if) From (), if w, — w and lim,_, oo (I’ (v) — I’ (v),u — v) < 0,
then lim,_,, o (I'(v) — I'(v),u — v) = 0. According to (3.1),
u, — u in Q, so we obtain a subsequence (which we still
denoted by w,) satisfying u,, — v a.a. € . From Fadou's
lemma, we have

K (z,y)dzdy

(v(z) = v(y)* K (z,y)dedy = 0,

— u(y)| K (z,y)dady.
By u,, — u we derive

lim (I’ (up), un — u)

n—+00

_ . ! _ 7! _
On the other hand, we also have

un) Uy — U)

/ [ (2) —

(¥) — (u(z) — w(y)](v,(z) - u,

— y)dzdy

- y)dzdy

K(z - 2 2
———[[un(@) —ua(y)|” — |u(z) — u(y)|"]dzdy.

2/Q 2y)

In view of (3.2), (3.3) and (3.4), we have

lim
n—-+00

L K@ = lun(@) — un(y) *dady = / K(z - y)lule)
— u(y)| dzdy.
Therefore, u, — uin Xy, ie., I' isof type (S;).O

The next Lemma displays some properties of #(u).

Lemma 3.2. If hypotheses (Fy) — (F3) hold, then & : X — Risa
locally Lipschitz function with compact gradient.

Proof. Firstly we show that .Z is locally Lipschitz. Let u,v € X.
According to the Lebourg's mean value theorem, we have

geios.com

tim, , . [ () — v () K o, 0)dndy > [ Jufa) (32)
=0

(v) K (z

- /Q [t () = 4 (1)) = (1 () — 10 1)) () — ()} K5

doi.org/10.32388/ZAXY8Q.3

1P () — F(v)] < / |F(z,u(z)) — F(z,v(x))|dz

: / k(14 [u(@)| T+ 1+ fo(@)[ ") |u(z) -

< kiCllu — vl 2q - 1

L1~

q11

) + R ([l L@

al

2@

< ki Cllu —v)x, + kOl + o) %) llu -

Then it is easy to see that .# is locally Lipschitz.

Next, we prove that 0% is compact. Choosing u € X,
u* € 0% (u) we obtain that for every v € X

(u,v) < F°(u;0) (3.5)

and Z°(u;-): L"(Q) - R is a subadditive function (see
Proposition 2.1). Furthermore, u* € X} is continuous also with
respect to the topology induced on X, by the norm || - |
Indeed, setting L > 0 as a Lipschitz constant for % in a
neighborhood of u, for all z € X we derive from Proposition 2.1

(if)

(u*,2) < L|zl|gry, (v, —2) < L|| — 2| rq)

So
(u*,2) < Lzl g

Hence, by the Hahn-Banach Theorem, u* can be extended to an
ele(léw t of the dual L"(Q2) (complying with (3.5)) for all
v € L"(Q2), this means that we can represent u* as an element
of L' (2) and write for every v € L" (1)

() = /Q o (@)o(z) da. (3.6)

Let {u,} be a sequence in X, such that |lu,| < M for all
€ .@yhere M > 0) and take &, € 0F(u,) foralln € N. It
STlows from (F3) and (3.6) that

/{n v(z)dz
s@snnv 2)|do

< A k(1 + Jun () ) o(e)| da

< B C( A+ [lun |2 Hlv]|x,
<k CA+ M2 vy,

£TL7

foralln € Nandu € X,. So
[€nllx; < RO+ M2,

ie, the sequence {¢,} is bounded. Hence, passing to a
subsequence, we have &, — < X}. We will prove that
{&} C X¢ has strong convergence. We proceed by
contradiction. Assume that there exists some ¢ > 0 such that

[1€n —

Elxy > ¢

for all ne N and hence for all n €N there exists
v, € B(0,1) such that

(&n 3.7)

—&vp) > €
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Recall that {v,} is a bounded sequence and passing to a
subsequence, one has

vp =V E Xo, |lvn —vllp2) =0, [vn —vlza@) — 0.

Hence, for n large enough, we have

e &0l < 20 6w —vll < 2,

|m—wmm<ﬂiauw—wm@<@jﬁ;
Then,

(€0 — &) = (En — £,0) + (Enyvn — V) — (00 — )

+[}@mmw>fwwMz

P)
+k1[2(1+ ]2V on () — v(z)|de

-1
+ k1 Cllvn — UHLZ(Q) + kl'lun”%ql—l [vn = vl|zas ()

+ k1Cllvn — 'U”LZ’(Q) R M o, — V|| pai ()

<e

= <y

which contradicts to (3.7). [

Similar, we have the following properties of the functions
®(u) and H(u).

Lemma 3.3. If (G1) — (G3) and (H1) — (Hs) hold, then ®(u),

H(u) : Xo — R are locally Lipschitz functionals with compact
gradient.

With the above lemmas, our main result reads as follows.

Theorem 3.1. Let s € (0,1), n > 2s. If hypotheses (K;) — (K3),
(Fy) — (Fy), (G1) — (G4) and (H,) — (Hs3) hold, then for all

1
r>0 €€ ]O’ max{0,y(1,%,8,7)}

la,b] C]O,h3(I + ¥, ®,r)|, there exist numbers p>0 and
§ > 0such that forall \ € [a,b] and all v € [0, 8], problem (11) has
at least three weak solutions whose norms in X are less than p.

and all compact interval

Proof. We will employ Theorem 2.1 to prove it. Observe that X, is
a reflexive Banach space. T € C!(X,,R) is continuous and
convex, and hence weakly l.s.c. and obviously bounded on any
bounded subset of X,. From Lemma 3.1, I’ is of type (S.).
Moreover, it follows from Lemmas 3.2 and 3.3 that ¢, ¥ and
H are locally Lipschitz functionals with compact gradient.
Hence we only need to prove that the functional ¥ + A® is
bounded below for all A >0 and liminf),_, % =
Firstly, we prove that ¥ + A® is bounded below for all A > 0.
From hypotheses (F3) and (Fy) there exists ¢; > 0 such that

—0Q.

F(z,u) < c1(1+ |ul). (3.8)

Moreover, from (G3) and (G4), we also have that for all

co > 0 there exists a constant c3 > 0 such that
G(z,u) > colul® —c3 (3.9)

for aa. z € Q. By virtue of (3.7) and (3.8), for each A > 0,
choosing c; > 671 we derive that

T4 AD = /Q AG(z,u) — F(z,u)ldz
zﬁu@mf—m—qu+WMMm

- L[()\cz — en)ful® — Acs — e]dz

> —(Aes +a1)[9],
which means that ¥ 4 A® is bounded below.
Next, we prove that
()

imin = —o0. (3.10)
ful-+o0 T(w)

From [, Proposition 9 and Appendix A] we have the following
characterization of the following eigenvalue A; :

Jaon lu(@) — u(y)"K (= — y)dedy

Jq u(z)?dzda @1

A1 = min
ueXo\{0x,}

Furthermore, the first eigenfunction u; € Xy is nonnegative in
Q (see [2L, proposition 9 and Appendix Al, or [[24, Corollary 8]).
It follows from (3.11) that

[l = [ w(afda.

In order to prove (3.10) it is enough to show that

\I’(kul) -

im ———— = —o0. (3.12)
horee flkua,

For this purpose, fix two positive numbers M;, M. with
0 < 2M; < M. Note that

. infyeq F(x,u)
llm _— =
[ —+o00 u?

00,
there exists large constant m; > 0 when |u| > m,, we have
F(z,u) > A\ Mou?

foraa. .z € Q. Foreach k € N, put
Q= {m €Q:u(z) > %}

It is obvious that for every k € N, one has ; C Q;,, the

sequence { I 0, W (z)zdm} is non-decreasing, i.e.,

/ ul(m)2dx§/ up (z)?dz
Qe D1

forevery k € Nand [, u (z)*dz — [, w1 (z)?dx. Based on this
point, set k € N such that

/ uy(z)?dz > %/ul(w)zda:.
% My Jo

By virtue of hypotheses (F1) — (F3), there exists a constant
¢4 > 0such that
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