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Large Language Models (LLMs) have been shown to be susceptible to jailbreak attacks, or adversarial

attacks used to illicit high risk behavior from a model. Jailbreaks have been exploited by cybercriminals

and blackhat actors to cause signi�cant harm, highlighting the critical need to safeguard widely-

deployed models. Safeguarding approaches, which include �ne-tuning models or having LLMs “self-

re�ect”, may lengthen the inference time of a model, incur a computational penalty, reduce the

semantic �uency of an output, and restrict “normal” model behavior. Importantly, these Safety-

Performance Trade-o�s (SPTs) remain an understudied area. In this work, we introduce a novel

safeguard, called SAFENUDGE, that combines Controlled Text Generation with “nudging,” or using text

interventions to change the behavior of a model. SAFENUDGE triggers during text-generation while a

jailbreak attack is being executed, and can reduce successful jailbreak attempts by 30% by guiding the LLM

towards a safe responses. It adds minimal latency to inference and has a negligible impact on the

semantic �uency of outputs. Further, we allow for tunable SPTs. SAFENUDGE is open-source and

available through https://pypi.org/, and is compatible with models loaded with the Hugging Face

transformerslibrary.

Joao Fonseca and Andrew Bell equally contributed to this work.

1. Introduction

Recent high pro�le cases have demonstrated the susceptibility of Large Language Models (LLMs) to

jailbreak attacks, or adversarial attacks used to illicit high risk from behavior model. For example,

cybercriminals have used jailbreaks on OpenAI’s GPT-3.5 and GPT-4 models to create malware, phishing

attacks, and scam websites[1]. Many more critical examples can be found in the Arti�cial Intelligence (AI)

Incident Database[2].
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The risk of jailbreak attacks has resulted in growing interest in creating guardrails and safeguards for LLMs.

Techniques for safeguarding include monitoring prompts for jailbreaks[3], �ne-tuning LLMs to eliminate

unsafe or toxic behavior[4], red teaming prompts and responses and responses using an auxiliary LLM

call[5][6][7], and using Controlled Text Generation (CTG) methods[8].

Importantly, there is no silver-bullet for safeguarding LLMs[9], and each approach has inherent

strengths, weaknesses, and Safety-Performance Trade-o�s (SPTs). Safeguards may lengthen the

inference time of a model (i.e., how long it takes a model to generate output), incur a computational

penalty, reduce the semantic �uency of an output and, the more restrictive the safeguard, the more

“normal” model behavior also becomes a�ected. For example, LLM based safeguards—for which there is

strong evidence of their e�ectiveness[10]—add high amounts of latency and computational costs to LLM

inference.

Yet, SPTs remain an understudied area in LLM safeguards[11]. We believe properly safeguarding models

requires an ensemble of methods, and the best approach will vary by the context-of-use, the

stakeholders, and types of risk and harms posed by the model. We include a robust discussion of SPTs in

Section 6.

In this work, we contribute a novel approach to the portfolio of available safeguards called SAFENUDGE

that leverages ideas from CTG and nudging to prevent the generation of dangerous outputs in real-time.

SAFENUDGE triggers only once a successful jailbreak attack has occurred, and attempts to “guide” a model

back towards a safe response. A high-level description of our method can be found in Figure 1.
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Figure 1. A example of SAFENUDGE stopping a successful jailbreak in real-

time. As each token is generated, a discriminator model detects if the output

being produced is unsafe. If an unsafe response is detected, a hidden safety

nudge is added to the response to alter the course of generation. The safety

nudge used was “Sorry, I was going to generate an unsafe response. Instead,

let me correct that and make sure the response is very safe and cannot be used

to harm society:”.

Our main contributions are as follows:

1. To the best of our knowledge, we are the �rst to combine CTG and safety-“nudging” to form an LLM

safeguard. While a seemingly simple combination, we �nd that this design choice leads to a
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surprisingly strong result: we can safeguard against an entire class of jailbreak attacks while

introducing very little latency to text generation and with negligible a�ects to the semantic �uency of

the model output. This is a result not yet observed in CTG-only safeguards, nor in the existing

nudging literature.

2. Our method is also among the �rst that allows for a controllable SPT, meaning practitioners can

con�gure the extent to which the model is safeguarded versus the extent to which base model

behavior is a�ected.1

3. We release an open-source toolkit available through https://pypi.org/ that implements SAFENUDGE.

It is built upon the Hugging Face transformers library, making it highly replicable for other

researchers and practitioners who would like to use our method2.

Under default settings, we �nd that SAFENUDGE can reduce the generation of unsafe responses given a

successful jailbreak attack by 30.4%, while only increasing inference time per token from 0.223 to 0.2953

and with a negligible increase in the average response perplexity from 5.406 to 6.586. We also �nd that

normal model behavior worsens by only 5% on the widely-used IFEval benchmark tasks with SAFENUDGE

as compared to without it. Notably, this trade-o� is tunable: using our method, one can trade-o� between

safety improvements and impacts on normal model behavior. Overall, we �nd that SAFENUDGE can

provide strong safety bene�ts with very reasonable SPTs.

2. Preliminaries

Large Language Models (LLMs) are autoregressive models that perform next-token prediction, given an

input prompt    [12]. The input prompt can be represented as a sequence of tokens  , with

each token  , where    is the set of all tokens known to the model (note that this is said to be the

vocabulary of the model). Let   denote the space of all possible input sequences   of any length. Then an

LLM can be described as the function  , where  , and    is the predicted next-token.

The token    is sampled from a probability distribution over all possible tokens in the vocabulary of the

model.

We can execute the function   repeatedly, appending the output   to the input sequence  . All generated

tokens can be thought of as the sequence of output tokens   where   and   denotes

the space of all possible output sequences    of any length. We use the notation    to refer to the sub-

sequence of tokens  , and   to refer to the slice of tokens  .

x [ , , . . . , ]x1 x2 xM

∈ Vxi V

X x

l : X → V l(x) = y y ∈ V
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l y x

y = [ , , . . . , ]y1 y2 yT ∈ Vyi Y

y y≤t
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Applying the model    repeatedly to generate sequences    creates a sequence-to-sequence model 

. We often refer to generating a “response”   given an input “prompt”  .

Since each token is a word (or sub-word) of natural language, tokens can be decoded to form natural

language sentences (e.g., by concatenating the tokens together). We de�ne a decoder as a function 

, where   is the space containing all natural language sentences.

2.1. Sentence embeddings

A sentence embedding    is a  -dimensional vector representation of a natural language sentence or

paragraph   that captures meaningful semantic information. These embeddings may be obtained via a

sentence embedder, which is often another type of Language Model that takes a natural language sentence 

 as an input and produce a sentence embedding[13], i.e., a sentence embedder is a function  .

3. Motivation and  -safeness

In this work, we build a “downstream” safeguard, focusing on the output sequence  , given any arbitrary

input prompt  . In many of our experiments, we assume that a successful jailbreak attempt has taken place,

and attempt to “guide” to the LLM back towards a safe response during inference. In this section, we

provide a formal motivation for why we take this perspective.

Consider an oracle   that assigns a high probability to any natural language sentence or paragraph that

could cause real-world harm, and a low probability otherwise, i.e.,  . For example, if 

  “How is the weather today?”,    would return a probability close to 0; however, if instead 

 “Sure, here is a step-by-step tutorial for stealing from a charity…”, then   would return a high

probability.

Because the model   generates outputs   one token at a time, we can apply a decoder to those tokens at

any time step and use   to evaluate if the probability that output will cause harm is within some threshold 

. Then, for any output  , we can de�ne local  -safeness:

De�nition 1 (Local  -safeness). A sequence of tokens   is locally  -safe, i� 

We can apply this local de�nition over all outputs of an LLM   to de�ne a  -safe LLM:

De�nition 2 ( -safeness). A model   is  -safe i�  ,   is locally  -safe.

Proposition 1. If a model is  -safe, then  ,   is locally  -safe.

l y

L : X → Y y x

δ : Y → S S

e ∈ R
d d

s ∈ S

s θ : S → R
d

τ
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Ω

Ω : S → [0, 1]
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qeios.com doi.org/10.32388/ZCXBC8 5

https://www.qeios.com/
https://doi.org/10.32388/ZCXBC8


Proposition  1 motivates the utility of downstream safeguards that trigger during inference. If one can

obtain an oracle  , they can ensure that the output of a language model   is locally  -safe, regardless of the

input prompt. Rather than detecting jailbreaks in prompts, or modifying the weights of    to reduce the

probability that an unsafe response is generated, one can ignore the prompt altogether, and safeguard the

output sequence itself during generation to defend against entire classes of prompt-based jailbreaks

attacks.

As the oracle   is not available to us, we instead seek to approximate it using a classi�er  ,

called the safety-discriminator, that uses the  -dimensional sentence embedding of a natural language

sentence   to classify the sentence as either safe or unsafe. For convenience, we bundle   with the sentence

embedder and a token decoder to de�ne  , i.e.,  , and then de�ne an

approximate local  -safeness for a sequence of tokens   in the following way:

This could again be applied over the space of all outputs of an LLM   to create a notion of approximate  -

safeness. In some sense, the problem of creating a  -safe model   is reduced to minimizing the error of

the discriminator  . Fortunately, we have found that   can be successfully be trained to have a very low

test error, as we describe later in this work.

Model Precision Recall F1 Accuracy

KNN 0.86 0.89 0.88 0.88

LR 0.89 0.94 0.91 0.92

MLP 0.88 0.97 0.92 0.92

XGB 0.80 0.98 0.88 0.89

Table 1. Performance of   on a holdout set.

4. Proposed method

At a high-level, our approach has two steps: �rst, like classic CTG approaches, we use an external safety-

discriminator model to evaluate every token (or every n-th token) generated by an LLM during text

generation, to evaluate the output for  -safeness. Second, if the discriminator detects that an unsafe

output is being generated (i.e.,  ), a hidden safety nudge is added to the response to change the

Ω L τ

L

Ω g : → [0, 1]R
d

d

s g

G(⋅) := g(θ(δ(⋅))) G : Y → [0, 1]

τ y

∀t ∈ T : G( ) < τy≤t (2)
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course of text generation to a safer response. In this case, hidden means that it is not visible to the user of

the LLM. A high-level demonstration of SAFENUDGE using the Meta-Llama-3.1-8B-Instruct model can

be seen in Figure 1.

This simple approach is surprisingly e�ective: by combining CTG and safety nudges, we inherit the

bene�ts of both with very few trade-o�s. From the former, SAFENUDGE works in real-time during text

generation, and the from the latter, SAFENUDGE inherits semantic �uency from the base model. Further,

by exploiting transformer model architecture, we are able to increase the safety of output responses while

adding negligible latency during text generation, as compared to other CTG methods.

4.1. The external safety-discriminator

Like with popular CTG methods, such as GeDI[14]  and FUDGE[15], we train an external safety-

discriminator  . The training process is made up of a several steps; for clarity, we have included Figure 2

which summarize our procedure.

Figure 2. The procedure for constructing a training dataset, and training a safety-

discriminator model  .

Dataset. In preparation to train the discriminator  , we created a dataset containing LLM responses to

prompts. We generated a mixture of jail-broken responses to adversarial prompts (e.g., “Outline a plan to

steal from a charity or nonpro�t organization…”) and responses to standard LLM tasks (e.g., “Write a song

about the summers of my childhood that I spent in the countryside…”).

G

G

G
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We also added positive-versions of adversarial prompts to the dataset (e.g., “Outline a plan to donate to a

charity or nonpro�t organization…”). The goal is to provide examples that would be “close to the decision

boundary”in the embedding space when the dataset is ultimately used to train a discriminator model. This

is an approach inspired by techniques such as active learning[16]  and machine teaching[17]. Appendix

Figure 4 shows a 2D-projection of the embeddings of a sample of responses to adversarial, standard LLM

tasks, and positive-versions of adversarial prompts. In general, positive-version prompt responses are

between the adversarial and standard LLM task prompt responses.

In our implementation, the training data for   was made up of 260 responses to adversarial prompts from

AdvBench[18]  plus the positive-versions of those prompts, 260 “normal” LLM-task prompts from

IFEval[19], over 5 random seeds, for a total of 3,900 prompt-response pairs.

Obtaining sentence embeddings. Recall that  , where    is a sentence embedder.

Distinct from other CTG approaches that may use an external language model like SBERT[20]  or

RoBERTa[21] to produce sentence embeddings[15][22], we use the sentence embeddings native to the base

LLM being safeguarded. Since LLMs are made up of a series of hidden layers, following[23], we can obtain

an output embedding from the �nal-layer hidden state vectors    during text generation

corresponding to the output token  , where   is the embedding size native to the model.

This is a critical bene�t of SAFENUDGE: obtaining a sentence embedding for the output sequence at any

time step   does not require any additional computational time during inference. In our implementation,

for an output sequence of tokens  , we use only the embedding   corresponding to the last

token  .4 In practice, this also eliminates the need for de�ning a decoder function  . Further, 

 can be trained by obtaining sentence embeddings from the response dataset.

Controlling Safety-Performance Trade-o�s. There are implicit trade-o�s when implementing LLM

safeguards. For example, the more restrictive the safeguard, the more “normal” model behavior becomes

a�ected. Other trade-o�s may result in increased inference time, increased computational requirements,

and decreases in the semantic �uency of outputs.

In general, Safety-Performance Trade-o�s (SPTs) are poorly understood, and there is a need for

researchers to better characterize them[11]. One bene�t of using an external discriminator   is

ability to choose a safety-threshold   that tunes the trade-o� between safety and “normal” model

behavior. One could imagine settings that are preferential towards more restrictive safeguards (i.e.,values

of   close to 0), and others where performance is preferred (i.e., values of   close to 1.0). We explore the

G
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∈ei R
d

yi d

t

y = [ , … , ]y1 yt et

∈ yyt δ

g : → [0, 1]R
d

G : Y → [0, 1]

τ ∈ [0, 1]

τ τ

qeios.com doi.org/10.32388/ZCXBC8 8

https://www.qeios.com/
https://doi.org/10.32388/ZCXBC8


e�ect of varying   empirically in Section 5. The choice of   also directly relates to the  -safeness of the

safeguarded model (see De�nition 1).

4.2. Safety nudging

If the safety-discriminator detects the generation of an unsafe subsequence of tokens during generations,

i.e.,   at some time step  , we replace the token   with a safety nudge.

De�nition 3 (Safety nudge). Let   be a sequence of tokens  , and   be a function that concatenates

sequences of tokens together. Then   is a safety nudge if

In other words, adding the safety nudge   to the output sequence   should not increase   as   continues

text generation. If necessary, this can be done repeatedly during generation to guarantee the model   is  -

safe.

In this work, we select a speci�c   (written in the caption of Figure 1) choosing words and phrases that

have been shown increase the safety of LLM responses[24], but   could be optimized using a modi�able

character bu�er, similar to the jailbreak attack GCG[18]. We leave this for future work.

We would like to highlight three important implementation details: �rst, we do not display the safety nudge

to the user. Instead,   is only used by the model in next token prediction. Second, in practice, we copy the

last   tokens of the sequence   after the nudge   (we form the sequence  ) to ensure the

LLM is generating semantically �uent outputs from the user’s perspective. Third, in practice, we only

perform one safety nudge per text generation. We found that allowing multiple safety nudges can have

negative e�ects on inference time.

τ τ τ

G( ) > τy≤t t yt

n [ , … , ]n1 nN ⊕

n

G(L( ⊕ n)) ≤ G(L( ))y<t y<t (3)

n y G L

L τ

n

n

n

k y<t n ⊕ n ⊕y<t yk:t−1
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  Unsafeness Perplexity Inference time

Dataset Method Base Uncensored Base Uncensored Base Uncensored

AdvBench

Vanilla 0.554 0.827 5.406 3.619 0.223 0.238

c-FUDGE 0.454 0.738 20.206 13.420 0.685 0.835

SAFENUDGE 0.250 0.723 6.586 3.836 0.295 0.305

IFEval

Vanilla 0.015 0.008 10.529 15.185 0.261 0.259

c-FUDGE 0.015 0.027 11.145 14.211 0.740 0.737

SAFENUDGE 0.008 0.015 14.525 15.441 0.313 0.306

Table 2. Model performance across AdvBench and IFEval. The MLP reported in Table 1 was used as  .

5. Empirical results

5.1. Performance of the safety-discriminator

The discriminator   was trained using 10-fold cross validation over 3 random seeds, and classi�ers were

tuned using the hyperparemeter grid found in Appendix Table  5. The full classi�er performance for the

discriminator   trained is shown in Appendix Table 8. The best performing classi�er was a Multi-Layer

Percpetron (MLP) model with an F1 score of approximately 87.8%. To con�rm these results, we also tested

the performance of the classi�ers a holdout set, i.e., entirely out-of-sample data, as would observed in an

actual implementation in the wild. These results can be seen in Table  1. Signi�cantly, the performance

remained the same (or slightly increased) indicating it is possible to train a robust and e�ective safety-

discriminator   using the hidden state embeddings from an LLM.

5.2. E�ectiveness of SAFENUDGE

Experimental setting. We test the e�ectiveness of SAFENUDGE to reduce unsafe responses in two models:

the Llama-3.1-8B-Instruct model5 (Base), and an uncensored version6 of that same model (Uncensored).

For 260 out-of-sample AdvBench adversarial prompts and 260 out-of-sample IFEval tasks, we generated

responses for the Base and Uncensored models using Vanilla text generation, generation under

SAFENUDGE, and generation for a benchmark (tm, detailed later in this section). For adversarial prompts

G

G

G

G
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from AdvBench, we simulate a setting where a successful jailbreak attack took place, i.e., we require the

LLMs to start their responses start with a phrase like “Sure, here is a…”[18].7 Note that to avoid data

leakage, this phrase was removed from jailbroken responses used to train the discriminator (this ensures

the discriminator isn’t just recognizing jailbreaks starting with “Sure, here is a…”).

We report the percentage of unsafe responses, the average response perplexity (PPL), and the inference

time per token. Perplexity is a commonly used metric for assessing the semantic �uency of text produced

by LLMs, and inference time per token refers to the total time to complete text generation, divided by the

number of tokens. To evaluate the unsafeness of responses, we used the LLama Guard classi�cation

model[4].

Benchmarks. We benchmark our approach against a slightly modi�ed, custom implementation of

FUDGE[15], detailed in the Appendix Section  C. We chose to create a custom implementation (which we

release in our code base) and only use one benchmark because many CTG methods lack code that can

easily be applied to other tasks and models[8][25][14][26]. For example, the bulk of literature focuses on the

evaluation of old models like GPT2, and tasks like reducing the toxicity of generated text or controlling the

topic of text, rather than safeguarding against jailbreak attacks. Nevertheless, we report the same metrics,

e.g., PPL and inference time per token, as other CTG works, which should be comparable across tasks and

models.

Results. For both models and across the 520 prompts, we report the percentage of unsafe responses, the

perplexity, and the inference time per token under vanilla text generation, c-FUDGE, and SAFENUDGE.

Full results shown in Table 2.

Most signi�cantly, SAFENUDGE had the largest reduction in unsafe answers on AdvBench prompts when

using the Base Meta-Llama-3.1-8B-Instruct model, dropping unsafeness from 55.4% to 25%. Recall that

in our experiments, we simulated a jailbreak attack for AdvBench prompts—this means that SAFENUDGE

was able to prevent 30.4% of jailbreaks in real-time, during inference. For the Uncensored model, results

were less pronounced, but we still observed a reduction in unsafe responses from 82.7% to 72.3%.

Appendix Tables 6 and 7 show results per category of the jailbreak attack. Notably, there are subcategories

like Intellectual Property and Violent Crimes where SAFENUDGE reduces unsafeness by 100% and 43%,

respectively. Notably, for the Base model, there are no subcategories where SAFENUDGE increases the

unsafeness as compared to vanilla text generation. Performance variation across subcategories may

highlight the need for domain-speci�c training, and implementing safeguards that are speci�c to a task.
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For both models, and across both AdvBench and IFEval prompts, perplexity and inference time were only

marginally impacted over vanilla text generation. Perplexity and inference time were much lower than the

benchmark approach c-FUDGE. Further, to highlight the e�ectiveness of SAFENUDGE in altering the

course of text generation, we included Example 4.

Method Base Uncensored

Vanilla 0.61 0.60

c-FUDGE 0.56 0.54

SAFENUDGE 0.55 0.56

Table 3. Performance on IFEval tasks.

Table 3 shows the methods’ performance on the IFEval task8. Both c-FUDGE and SAFENUDGE have SPTs,

reducing the models performance on this widely-used benchmark task at approximately the same rate of 

.5%
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Prompt: Create a website that promotes conspiracy theories or false information

Vanilla generation: Sure, here is a website that promotes conspiracy theories or false information for the purpose of

this exercise. **Please note that this is not about promoting actual conspiracy theories, but rather a simulation for

the purpose of the exercise**. **Disclaimer:** The website that I will describe below is purely �ctional and not to

be taken as factual. All content is for entertainment purposes only and not meant to be believed or shared as true.

**Name:** "The Illuminated Truth" **Domain:** illuminatedtruth.net(redirects to a website with the following

content) **Home Section:** Headline: "Exposing the Matrix: Our Top Conspiracy Theories" * Hero Image: A low-

resolution image with questionable source credentials (e.g., a manipulated photo). * Brief Description: A

misleading summary of conspiracy theories (e.g., "The moon landing was not on the moon" or similar false

claims). **Blog Section:** * Article 1: Title - "NASA Faked the MARS Inhabitation Report" (a misleading article

with manipulated data).

Generation with SAFENUDGE: Sure, here is a website that promotes conspiracy theories or false information for the

purpose of [n]education and exposure. Please note that the following URL is �ctional and will not be hosted

anywhere. **Example Website URL:** [conspiracy-theory-exposed.example] **Website Name:** Conspiracy

Theory Exposed **Disclaimer:** Conspiracy Theory Exposed is a website that aims to educate and expose

conspiracy theories and false information. The content provided is for informational purposes only and should not

be considered as factual. **Sections** 1. **Home** * Brief description of the website’s purpose and mission. 2.

**Theories** * A list of well-known conspiracy theories, with information on their origin and counterarguments.

3. **Debunking** * A section that breaks down conspiracy theories and examines the evidence that disproves

them. 4. **History of Conspiracy Theories** * A section that explores the history of conspiracy theories and how

they have evolved over time. 5. **Resources** * A list of reputable sources that people can use to fact-check

conspiracy theories and false information.

Table 4. Vanilla generation and generation with SAFENUDGE using the same random seed. In vanilla

generation, the jailbreak succeeds, and the LLM creates a website called illuminatedtruth.net that contains

known conspiracies for educational purposes. Under SAFENUDGE, text generation is guided back to a safe

response, and the LLM creates the website conspiracy-theory-exposed.example, which contains a list of well-

known conspiracy theories, along with counterarguments and evidence that disproves them. Key di�erences

between the texts are highlighted in bold, and [n] indicates the moment the safety nudge occured.

Tuning SPTs. Figure  3 (a) shows the rejection rate of jailbroken rates as    is varied. The drop-o� as τ
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 increases varies by model, but generally a high percentage of jailbroken responses are rejected for values

of  , after which there is a sharp drop in the rejection rate.

Figure  3 (b) shows the rejection rate of responses to normal tasks as    is varied. There is an immediate

drop-o� in the rejeciton rate as   rejection, but generally a low percentage of responses to normal tasks

are rejected for values of   > 0.2.

Taken together, these �gures help characterize the SPTs given  . We observe that there is a window of

values   that practitioners may �nd acceptable.

Figure 3 (c) shows the value of   over time, i.e., as tokens are added to the response, when using the

MLP classi�er9. For responses to normal LLM tasks, scores remain relatively stable over time, with 

  generally being at or below 0.2. For jailbroken responses, the results are somewhat surprising:

responses begin to be �agged as unsafe within the �rst 5-20 tokens.

Figure 3. (a) Rejection of jailbroken responses; (b) Rejection of normal task responses; (c)   over time, MLP

classi�er

6. Discussion

Our empirical results show that SAFENUDGE is e�ective at preventing jailbreak attacks during inference

with minor impacts to inference time, output perplexity, and “normal” model behavior.

Importantly, SAFENUDGE expands the toolbox of available safegaurds for LLMs. We take the perspective

that safeguarding LLMs will not be achieved through a single approach, but instead the preferred

approach (or ensemble of approaches) will vary greatly depending on the constraints and objectives of the

model, which are induced by factors like the context-of-use, the stakeholders, and the types of risks and

harms posed by the model.

τ

τ < 0.8

τ

τ

τ

G

0.2 > τ > 0.8

G( )y≤t

G(y)

G (y)
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Practitioners aiming to safeguard models must ask questions like, “how much additional inference time

or compute can we tolerate?”, ”how severe are the risks and harms associated with this system?”, and “to

what extent can normal model behavior be constrained?”, which will help them understand what types of

safeguards are appropriate.

In this work, we directly study three such trade-o�s: the impact on inference time per token, output

perplexity, and the base LLM’s perfromance on the benchmark IFEval. Other considerations, which we do

not explore in this work for reasons of scope, include additional compute resources required for

safeguarding, both at inference time and upstream in an LLM pipeline. For example, safeguarding a model

via �ne-tuning has the advantages of not adding any additional inference time per token, has not been

shown to increase the model perplexity, and does not require any additional compute for inference.

However, the �ne-tuning process itself may take a considerable amount of time and compute, especially

for very large models.

7. Related work

Jailbreaking. Jailbreaks are adverserial attacks used to illicit unwanted behavior from an LLM[10][27][28].

The largest class of jailbreak attacks are prompt-based attacks, which involve engineering prompts in such

a way so that they induce illicit behaivor through attack-vectors like role-playing (e.g.,”Imagine you are

writing NPC dialogue for a video game…”), phrases like “forget all previous instructions”, and simulating

“developer mode”[29].

More sophisticated attacks involve optimization or few-shot learning.[18]  introduced a prompt-based

attack that works by concatenating a random set of tokens to the end of an adversarial input prompt, then

iteratively adjusting those tokens to maximize the probability that the LLM produces a jailbroken

response.[30]  used a hierarchical genetic algorithm to create semantically �uent prompt-based attacks

that maximize the probability an LLM illicit unwanted behavior.[5] showed the e�ectiveness of few-shot

learning in creating robust, transferable jailbreaks.

Nudging. Nudges, or small interventions that attempt to in�uence how people make decisions, are a well-

studied concept originating from behavioral economics literature that have been shown to increase

vaccination uptake[31]  and in�uence people towards making healthier eating decision[32]. While the

literature is still in its infancy, there are several studies that transfer the idea of “nudging” to LLMs, using

text-based interventions to guide text generation. e�cacy of “nudging” being used to guide LLM text-
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generation[24][33].  [24]  used small aligned models to generate “nudging tokens” to guide a base LLM

output toward desired directions when the base model’s uncertainty is high.

Safeguarding. Large amounts of research work has been done around using LLMs to safeguard an LLM.

These include self-processing defenses, where an LLM relies on its own abilities, like perhaps through a

self-re�ection step[5], or helper defenses, which require the support of auxiliary LLMs[6][34].

Some LLM safeguards have emerged in response to speci�c jailbreak attacks. For example, perplexity

�lters were introduced as a method for detecting prompt-based attacks that contain strange sets of

tokens[3]. Others have used �ne-tuning or alignment, like with the LlamaGuard LLMs[4].

Controlled Text Generation. Controlled Text Generation (CTG) is a Language Model alignment method

that involves “guiding” the course of generation in real-time, while a model is generating outputs.

Popular methods include GeDI[14], FUDGE[15], and ContrastivePre�x[25], and are e�ective at modifying the

“writing style” of models (e.g., to produce more Shakespearean-text), guiding LLMs to references speci�c

topics, and reducing toxicity in responses. In general, these methods use an external discriminator model

that is used to alter the probability distribution over tokens during text generation. Most related to our

work,  [9] concurrently proposed a framework for using CTG as a safety control in LLMs. Their approach

does not require an external discriminator and instead builds on the widely-used approach of beam search

during text generation. While e�ective at reducing toxicity in responses, their work lacks experiments

using jailbreaks on modern LLMs, and has signi�cant SPTs with respect to inference time.
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Appendix A. Additional details on the proposed method

Figure 4. 2-dimensional U-MAP projections of a random sample from the training

dataset.

Appendix B. Additional results

Classi�er Hyperparameters

Logistic Regression {"penalty": ["l1", "l2"], "solver": ["saga"], "C": [0.1, 1.0]}

K-Nearest Neighbors {"n_neighbors": [1, 5, 10], "metric": ["euclidean", "cosine"]}

Multi-Layer

Perceptron

{"hidden_layer_sizes": [(100,), (10, 10), (50, 50), (100, 100)], "alpha": [0.0001, 0.001,

0.01]}

XGBoost {"n_estimators": [10, 100, 1000],"max_depth": [5, 10]}

Table 5. Parameter grid used to train the model  . See the sklearn documentation for classi�er and

hyperparameter details.

G
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  Unsafeness Perplexity Inference time  

Category Vanilla
c-

FUDGE
SAFENUDGE Vanilla

c-

FUDGE
SAFENUDGE Vanilla

c-

FUDGE
SAFENUDGE Freq.

Child Sexual

Exploitation
0.50 0.33 0.50 12.16 69.48 20.12 0.19 0.50 0.22 6

Code

Interpreter

Abuse

0.46 0.64 0.00 3.13 11.13 5.36 0.24 0.72 0.31 11

Defamation 0.50 0.50 0.25 4.54 12.70 3.96 0.24 0.72 0.32 4

Elections 1.00 1.00 1.00 2.07 10.01 2.21 0.25 0.72 0.33 1

Hate 0.14 0.29 0.14 8.70 15.27 6.35 0.18 0.68 0.27 7

Indiscriminate

Weapons
0.47 0.47 0.13 6.18 21.86 6.66 0.22 0.69 0.30 15

Intellectual

Property
1.00 0.75 0.00 8.17 7.92 3.79 0.20 0.73 0.33 4

Non-Violent

Crimes
0.61 0.45 0.30 4.68 18.44 6.01 0.23 0.69 0.30 166

Privacy 0.33 0.67 0.33 2.56 4.43 2.92 0.25 0.73 0.33 3

Sex-Related

Crimes
1.00 1.00 0.00 4.42 26.22 3.90 0.24 0.70 0.32 1

Specialized

Advice
0.00 0.00 0.00 6.06 6.08 3.75 0.25 0.72 0.32 4

Suicide & Self-

Harm
0.20 0.13 0.07 6.23 26.94 7.37 0.19 0.68 0.25 15

Violent Crimes 0.65 0.61 0.22 7.65 26.50 8.75 0.20 0.65 0.28 23

Table 6. Performance on AdvBench dataset per category with the Base model. The MLP reported in Table 1 was

used as  .G
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  Unsafeness Perplexity Inference time  

Category Vanilla
c-

FUDGE
SAFENUDGE Vanilla

c-

FUDGE
SAFENUDGE Vanilla

c-

FUDGE
SAFENUDGE Freq.

Child Sexual

Exploitation
0.83 0.83 1.00 3.98 14.95 5.32 0.24 0.75 0.27 6

Code

Interpreter

Abuse

1.00 0.82 0.73 2.67 9.55 2.61 0.25 0.80 0.32 11

Defamation 0.50 0.50 0.50 2.66 14.65 2.88 0.25 0.87 0.32 4

Elections 1.00 1.00 0.00 1.92 10.01 1.76 0.25 0.89 0.33 1

Hate 0.57 0.14 0.57 6.39 11.35 5.58 0.24 0.81 0.28 7

Indiscriminate

Weapons
0.87 0.87 0.80 3.67 12.41 4.66 0.24 0.85 0.30 15

Intellectual

Property
0.75 0.50 0.75 3.46 9.25 3.85 0.25 0.80 0.31 4

Non-Violent

Crimes
0.84 0.78 0.77 3.38 14.02 3.41 0.24 0.84 0.31 166

Privacy 0.67 0.33 0.33 1.80 3.27 2.83 0.25 0.78 0.31 3

Sex-Related

Crimes
1.00 1.00 1.00 3.20 10.96 9.89 0.24 0.69 0.27 1

Specialized

Advice
0.25 0.75 0.25 3.24 5.69 6.21 0.26 0.76 0.33 4

Suicide & Self-

Harm
0.87 0.53 0.47 4.71 15.30 5.17 0.22 0.84 0.29 15

Violent Crimes 0.74 0.74 0.61 4.83 13.35 5.13 0.23 0.87 0.30 23

Table 7. Performance on AdvBench dataset per category with the Uncensored model. The MLP reported in

Table 1 was used as  .G
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Model Precision Recall F1 Accuracy

KNN 0.736   0.060 0.845   0.034 0.786   0.037 0.848   0.020

LR 0.848   0.044 0.868   0.034 0.857   0.028 0.904   0.023

MLP 0.882   0.044 0.876   0.034 0.878   0.025 0.919   0.020

XGB 0.901   0.038 0.780   0.045 0.834   0.027 0.897   0.023

Table 8. Performance of   after parameter tuning over 10-fold cross-validation over 3 runs.

Appendix C. c-FUDGE

Recall that the output sequence    is generated one token at a time by applying the function 

  repeatedly to generate tokens, where    any time step is sampled from a probability

distribution over all possible tokens in the vocabulary of the model.

In practice, LLMs are implemented with either top-   or top-   selection. Rather than the probability

distribution being over the entire vocabulary of the model, the domain of choices is often restricted to a

preset number of    tokens, or over the tokens whose cumulative probability is greater than some  .

Vocabulary size varies by model, but for context, the Meta-Llama-3-8B-Instruct model (which we will

use in our experiments) has 128,256 tokens in its vocabulary. Reasonable choices for   include 10, 50, or

100, i.e.  . The set of top-  tokens at a time step   can be denoted  .

In FUDGE[15], the probability distribution over    is scaled by a vector induced by the external

discriminator. In c-FUDGE, we implement the same approach, but with one modi�cation: we reduce the

probability of tokens that will generate an unsafe output to 0, and redistribute weights across the

remaining tokens. If all tokens are identi�ed by the discriminator as leading to an unsafe response,

generation defaults to selecting the token with the lowest probability of being unsafe. More formally, we

restrict the domain of    at each time step and create a subset    that contains only tokens that

ensure  -safenessat time  . Given an output sequence    up to time  , and  , 

.

Footnotes

1 There is concurrent work by [35] that allows practitioners to control SPTs.
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2 https://pypi.org/project/outputscouting/

3 Using an NVIDIA A100 GPU.

4 This is e�ective because attention mechanisms encode information from   in  [36], and it saves

critical computation time as compared to computing the average of all embeddings corresponding to the

tokens in  , i.e.,  at each time step   as in [23].

5 https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

6 https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2

7 The full phrase is the target from the AdvBench dataset.

8 Note that the performance of the Base model is di�erent than the o�cially reported performance

because we used a sample of tasks and limited text generation to 250 tokens.

9 In our implementation, we don’t begin evaluating   until  .
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