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Abstract

According to quantum mechanics in its current form, quantum ran-
domness is an intrinsic property of the physical world. The legitimacy
of such interpretation is the essence of the Einstein-Bohr debate. Bell’s
theorem implies that local realism should be responsible for the experi-
mental invalidation of Bell inequalities. In this paper, it is shown that
quantum randomness is due to the unattainability of precise space and
time coordinates, and the failure of Bell inequalities is irrelevant to local
realism. Furthermore, by reconsidering Bell’s theorem in the context of
the mathematical setting for quantum physics, namely, Hilbert space, it
is shown that, whether a measurement is performed on a system or not,
the logical relation between orthogonal vectors corresponding to mutually
exclusive properties of the system must be disjunction (“or”) rather than
conjunction (“and”). Moreover, if the unattainability of precise space
and time coordinates is taken into account, and if disjunction is used to
serve as the logical relation between the orthogonal vectors, then it is
possible to render quantum mechanics complete in the sense considered
by Einstein while not essentially modifying the mathematical setting for
quantum physics.

Keywords: Quantum randomness, Uncertainty relation, Quantum superposi-
tion, Einstein-Bohr debate, EPR experiment, Bell inequalities, Bell experiments,
Bell’s theorem, Unattainability of precise time and space coordinates

1 Introduction

The quantum-mechanical description of the physical world at the level of
microscopic objects, such as photons and electrons, is based on the notion of
“quantum superposition”. If the state of an individual microscopic object is
described by a quantum superposition, how to interpret quantum randomness
exhibited in the outcomes obtained by measuring such objects is one of the most
controversial issues concerning current quantum theory. According to the stan-
dard interpretation given by quantum mechanics in its current form, quantum
randomness is an intrinsic property of the physical world rather than caused by
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lack of relevant knowledge or due to imperfections of measuring instruments.
The legitimacy of this interpretation is the essence of the Einstein-Bohr debate
[1, 2, 3].

The standard interpretation of quantum randomness is closely related to
the quantum-mechanical description of the physical world. If the quantum-
mechanical description is valid, then the standard interpretation of quantum
randomness is legitimate. By showing the purported inherent nature of quan-
tum randomness, Heisenberg’s uncertainty relation serves to illustrate quantum
randomness observed in the outcomes of measuring individual quantum objects.
As we all know, in their celebrated paper [1], Einstein, Podolsky, and Rosen
(henceforth EPR) questioned the completeness of the quantum-mechanical de-
scription. As shown in the famous thought experiment proposed by EPR in their
paper (henceforth EPR experiment), if the quantum-mechanical description is
complete, then Heisenberg’s uncertainty relation and the assumed completeness
of the quantum-mechanical description imply a contradiction. Underlying the
EPR experiment are the assumptions of freedom of choice, locality, and realism.
Locality and realism together are also referred to as the assumptions of local
realism. Based on the above assumptions, EPR concluded that the quantum-
mechanical description is incomplete. Bohr did not consider anything wrong
with the assumption of freedom of choice, but he disagreed with the notion of
locality underlying the EPR experiment [2].

Bell inequalities are devised to find a better description of the physical world,
more complete than the quantum-mechanical description [4]. Bell experiments
aim to test Bell inequalities against quantum mechanics [5]. Hailed as “the
most profound discovery of science” [6], Bell’s theorem claims that, under the
same assumptions adopted in the EPR experiment, the predictions given by
Bell inequalities differ significantly from the quantum-mechanical predictions.
Ironically, when tested by real experiments with all relevant loopholes closed
[7, 8,9, 10, 11], Bell inequalities are found to be wrong because the predictions
of Bell inequalities contradict the experimental facts while the probabilistic pre-
dictions of quantum mechanics are always correct. According to the standard
interpretation of the experimental invalidation of Bell inequalities, either or both
of locality and realism must be wrong and should be abandoned. Thus, “in the
way which Einstein would have liked least” [12], Bell experiments purportedly
resolved the Einstein-Bohr debate [13].

The present paper aims to reveal the origin of quantum randomness and to
question Bell’s theorem. Quantum randomness is due to the unattainability of
precise space and time coordinates. Bell’s theorem is questionable because the
experimental invalidation of Bell inequalities is irrelevant to the assumptions
adopted by EPR, and because Bell experiments imply a fatal logical flaw. By
reconsidering Bell’s theorem in the context of the mathematical setting for quan-
tum physics, namely, Hilbert space, it is shown that, whether a measurement is
performed on a system or not, the logical relation between orthogonal vectors
corresponding to mutually exclusive properties of the system must be disjunc-
tion (“or”) rather than conjunction (“and”). In addition, if the unattainability
of precise space and time coordinates is taken into account, and if disjunction



is used to serve as the logical relation between orthogonal vectors in Hilbert
space for describing the system, then it is possible to render quantum mechan-
ics complete in the sense considered by EPR, and meanwhile, it is not necessary
to change the mathematical setting for quantum physics essentially.

In Section 2, the EPR experiment is revisited. In Sections 3 and 4, the cause
of quantum randomness and the failure of Bell inequalities are elucidated in de-
tail, respectively. In Section 5, Bell’s theorem is reconsidered in connection with
the mathematical setting of quantum physics. In Section 6, the main findings
reported in this paper are summarized and briefly discussed with respect to the
so-called quantum information technologies, such as quantum computation and
quantum communication [14].

2 EPR Experiment Revisited

In the literature, Bell experiments are considered as the modern versions
of the EPR experiment. However, the former and the latter are essentially
different. In the EPR experiment, the quantum correlation between two spatially
separated systems is introduced to question not only the completeness of the
quantum-mechanical description of the physical world but also the legitimacy of
the standard interpretation of quantum randomness. Unfortunately, the concept
of quantum correlation introduced in the EPR experiment is confused with
the notion of “quantum entanglement” in Bell experiments. The confusion is
largely due to the notion of quantum superposition that lies at the heart of the
quantum-mechanical description.

The concept of quantum correlation is introduced by EPR with an example.
The example is a composite system consisting of two correlated and spatially
separated particles. By taking this composite system as an example, EPR aimed
to show the incompleteness of the quantum-mechanical description: The com-
posite system is quantum-mechanically described by a wave function expressed
in the form of a quantum superposition. Because the assumed completeness of
the quantum-mechanical description and Heisenberg’s uncertainty relation im-
ply a contradiction, EPR concluded that the quantum-mechanical description
is not complete [1]. Clearly, the purpose of the EPR experiment is to question
the legitimacy of describing the physical world based on the notion of quantum
superposition. In sharp contrast to the EPR experiment, Bell experiments take
what EPR questioned for granted; this issue will be discussed in Subsection 4.2.
See also [15].

Now consider, in detail, the role played by quantum correlation between the
two systems, particle I and particle II, in the EPR experiment. The particles
had previously interacted, then separated, and no longer interact with each
other after separation. By the assumption of freedom of choice, one can choose
to measure either of two complementary observables, such as the momentum
or position of a particle, say, particle I. Of course, because the momentum and
position of the particle are both continuous observables, the measurement can
only yield an approximation to the corresponding outcome. Mathematically, for



a continuous observable, approximations to the outcomes obtained by measure-
ments may constitute a sequence of more and more accurate results, tending
to a unique, definite value, which is the limit of the sequence. However, the
limit itself is practically unattainable by measurement. Actually, no precise
values of continuous, real-valued observables can be obtained by measurement,
although outcomes of measuring such continuous observables are often referred
to as approximated values. Strictly speaking, an “approximated value” is a
small interval. Nevertheless, when there is no possibility of confusion, for ease
of exposition, an approximation to an outcome of measuring a continuous ob-
servable may still be called a value.

Thus, from the measured outcome of particle I, the value of the same observ-
able of particle IT can be obtained by prediction without measurement because
of the correlation between the particles. By the assumption of locality, after the
particles are separated far away, anything that happened to one of the particles
will not in any way affect the other particle. As a result, measuring particle I
will not in any way disturb particle II. Consequently, if the quantum-mechanical
description is complete, then definite values may be assigned to both the mo-
mentum and position of particle IT by the assumption of realism, although what
can be obtained by measurements is merely the corresponding approximations.
However, according to Heisenberg’s uncertainty relation, definite values cannot
both be assigned to the momentum and position of the same particle. This
is the contradiction implied by Heisenberg’s uncertainty relation and the as-
sumed completeness of the quantum-mechanical description of the composite
system, as shown by EPR [1]. The revealed contradiction indicates that the
quantum-mechanical description of the physical world is incomplete.

The EPR experiment may be simplified without assuming freedom of choice.
Of course, freedom of choice is a valid assumption, which is just no longer
needed in the simplified EPR experiment. Nevertheless, local realism must
still be assumed. By the assumptions of local realism, one may measure the
momentum of particle I and the position of particle II. Because the particles
are correlated, one may obtain both the value of the position for particle I and
the value of the momentum for particle II by prediction from the measured
outcomes corresponding to position of particle II and momentum of particle I,
respectively. Consequently, each particle can be measured without disturbing in
any way the other particle, while definite values of position and momentum may
be assigned to both particles. In other words, under the assumptions of local
realism, we see again the contradiction implied by the assumed completeness of
the quantum-mechanical description of the composite system and Heisenberg’s
uncertainty relation.

In general, the formal derivation of Heisenberg’s uncertainty relation relies
on the notion of “commutator”. For an individual quantum object, denote by
A and B the operators associated with observables o and [, respectively; their
standard deviations are Aa and AB. Let ¢ be the state function of the system,
where 1) is expressed in the form of a quantum superposition. By definition, the



commutator of A and B is

(A, B] = AB — BA.
The uncertainty relation then is given by
1 ~ A
> — .
s3> 1 [{145)

The equality holds if and only if the commutator vanishes identically.

In the early development of quantum theory, the meaning of Heisenberg’s
uncertainty relation is interpreted as follows: Because of the disturbance caused
by simultaneous measurements of the position and momentum of the same par-
ticle, the momentum and position of a particle cannot be simultaneously mea-
sured to arbitrary precision. Actually, no such disturbance is involved here.
As indicated clearly by the standard deviations A«, AfS, and the mean value

<[/1, B]>, the measurements are performed on different but identically prepared

particles of the same kind. According to quantum theory in its current form,
the only impediment to the simultaneous determination of values for a and j
by measurements is the so-called non-commutativity of A and B, namely,

[A, Blip # 0.

However, the non-commutativity has nothing to do with simultaneous determi-
nation of values for @ and § by measurements, because there exists a physical
constraint imposed on measuring individual quantum objects, which is much
more stringent than the non-commutativity. According to this constraint, the
same single quantum object can at most be measured only once. Therefore, after
measuring either o or £, but not both, it is impossible to measure the quantum
object anymore. As can be readily seen, the commutator [A,E] violates the
constraint imposed on measuring individual quantum objects by allowing the
same single quantum object to be measured more than once.

Nevertheless, the constraint imposed on measuring individual quantum ob-
jects is not necessarily an impediment to assigning definite values to o and 8
before measurements, as shown correctly by EPR [1]. On the other hand, assign-
ing definite values to a and 8 before measurements may not necessarily imply
that the values of o and [ are obtainable by measurements. In addition, Heisen-
berg’s uncertainty relation is expressed in terms of mathematical expectations
and standard deviations concerning position and momentum corresponding to
measurement results of a large number of different particles of the same kind.
Such statistics are useful for us to understand a typical particle representative
of a given kind of individual particles, but may not be appropriate to describe
a particular particle. Therefore, using Heisenberg’s uncertainty relation for de-
scribing the random behavior of a particular particle may make little sense. It
may also be worth noting that, in the EPR experiment, the same particle will
not be measured more than once under the assumption of freedom of choice.

Therefore, the quantum-mechanical description of the physical world ap-
pears to be indeed incomplete as shown by EPR; however, the incompleteness



of the quantum-mechanical description of the physical world and whether the
quantum-mechanical predictions are correct are two different issues. There is
no experimental evidence for the quantum-mechanical predictions failing to be
correct. On the contrary, the quantum-mechanical predictions are always in
agreement with the experimental facts.

3 Origin of Quantum Randomness

Many experiments have already confirmed the correctness of the probabilistic
predictions given by quantum mechanics. Nevertheless, the standard interpre-
tation of quantum randomness is still debatable. According to the standard in-
terpretation, quantum randomness is an intrinsic property of the physical world,
and hence quantum mechanics is inherently probabilistic. The standard inter-
pretation of quantum randomness is closely related to the quantum-mechanical
description of the physical world. The legitimacy of the former is implied by
the validity of the latter. Equivalently, if the standard interpretation of quan-
tum randomness is illegitimate, then the quantum-mechanical description of the
physical world is invalid. However, showing the incompleteness of the quantum-
mechanical description may not necessarily negate the standard interpretation of
quantum randomness. To resolve the Einstein-Bohr debate reasonably, it is nec-
essary to negate the standard interpretation of quantum randomness. Revealing
the origin of quantum randomness can negate the standard interpretation.

Physical quantities all exist in space and time of the real world. To measure
physical quantities, we must model space and time of the real world mathemat-
ically. The hint to reveal the origin of quantum randomness then can only be
found in such mathematical models. The mathematical model of space in which
we live and measure physical quantities is the three-dimensional Euclidean space
R3 endowed with a metric d. The metric is the usual distance function. The
distance between two arbitrary points r = (rq1,r2,73) and ' = (r},r5,7%) in
space is given by

Al x') = [ (r1 = )2+ (r = 75)2 + (15 — 4)2

By definition, d(r,r’) = 0 if and only if r = r’. The mathematical model of
time elapsed in the real world is the set of positive real numbers R equipped
with a metric. This metric is the distance function d restricted to R;. The
length between two arbitrary instants s,¢ € Ry then is simply given by the
absolute value of their difference |t — s|. Induced by the corresponding metrics,
R3 and R, are topological spaces with the metric topologies formed by open
subsets of R® and R, , respectively. As can be readily seen below, erroneously
interpreting quantum randomness as an intrinsic property of the physical world
stems from omitting a well-established mathematical fact, i.e., precise space and
time coordinates are unattainable by measurements. This fact is irrelevant to
anything about instruments used for measurements in practice. Although it
is always possible to improve the measurement results, the unattainability of



precise space and time coordinates will remain forever, and we may have to live
with it.

A neighborhood of r is a set V(r) C R? with r € B(r,v) C V(r), where
B(r, ) is an open ball with center r and radius v > 0 defined by

B(r,y) = {r' e R®: d(r,r") < v}.

A necessary condition to measure the coordinates of r perfectly precisely is that
r is an isolated point of R?, i.e., there is a neighborhood V(r) such that

R*NV(r) = {r}.

However, this condition is false for every r, because for each sufficiently small
real number vy > 0,
V(r) N B(r,7) = B(r,7) # {r}.

Similarly, a neighborhood of an arbitrary instant ¢ € R is an interval K (t)
such that ¢ is in an open subset of K (t). The subset is an “open ball” with center
t and radius v < t. This “open ball” is simply an open interval (¢t — ~,t + 7).
A necessary condition to obtain the precise coordinate of ¢t by measurement is
that ¢ is an isolated point of Ry, i.e., there is an interval K (t) such that

R, NK(t) = {t}.

The above condition does not hold for any ¢ € R;. In other words, R, has no
isolated points. To see this, consider an arbitrary ¢t € R,. For each sufficiently
small v > 0,

K@) N@E—vyt+y)=(t—7t+7) #{t}

Therefore, in no sense can precise space and time coordinates be obtained by
measurements. This important fact is the key to understanding quantum ran-
domness. Omitting this fact and misguided by precise but practically unattain-
able coordinates, one might be allured to characterize a given kind of identically
prepared individual quantum objects by using a single quantum object, even
though one is aware of the physical constraint imposed on measuring individual
quantum objects elucidated in the last section, i.e., the same single quantum
object can at most be measured only once. Implying the standard interpretation
of quantum randomness, such characterization cannot provide any reasonable
explanation about the cause of the randomness exhibited in real experiments
with quantum objects.

For example, the randomness exhibited in the behavior of individual pho-
tons is due to the unattainability of precise space coordinates, and omitting the
unattainability of precise space coordinates will result in using a single photon to
characterize identically prepared individual photons, leading to the standard but
unreasonable interpretation of quantum randomness. To be specific, consider
an experiment with a plane polarized beam of identically prepared individual
photons in a sequence (vy)k>1. Each of these photons propagates purportedly
in the same direction and encounters a polarizer astride its direction of propa-
gation. All the photons in the sequence purportedly have the same polarization



direction ry. The orientation r/, of the polarizer is neither parallel nor perpen-
dicular to rq. It is not difficult to specify an arbitrary direction (or orientation)
in space by the precise coordinates of a unique point on a unit sphere D C R3.

D ={r:d(r,0) =1}. (1)

However, because precise coordinates of each point in R3 are unattainable by
measurements, the actual polarization directions rj of the k-th photon and the
actual orientations rj for measuring v,k = 1,2,--- are all unknown when
the experiment is actually performed. In fact, rq # ry except for at most a
finite number of k; otherwise rg would equal rj for infinitely many k, which
implies that the precise coordinates of ry can be attained by measurements
in actually performed experiments. By no means will this happen in the real
world! Therefore, we can only use a small volume V(rg) as an approximation,
which contains ry and ri,k = 1,2,---. The volume may be considered as
an infinitesimal quantity but must not be treated as zero. Similarly, the precise
coordinates of r/, and rj, cannot be obtained by measurements either and r/, # rj,
except for at most a finite number of k. As a result, a small volume V(r/)
containing r/, and rj,k =1,2,--- has to be used as an approximation.

Consequently, for each k, the precise value of the angle between rj and ry,
denoted by 6, is also unknown. Let 6 represent a precise value specified for
detecting all the photons in (vg)r>1, namely, 6, = 6 for each k. However,
0, = 0 can only hold at most for a finite number of k, because rg # r; except
for at most a finite number of k. In addition, as a continuous quantity, € is
also practically unattainable just like precise space and time coordinates, and a
small interval J(#) containing 6 is what can be obtained by measurement and
serves as an approximation to the desired value 6 in a real experiment. The
precise but unknown values 0,k = 1,2,--- are also contained in J(6).

Omitting the unattainability of precise space coordinates implies that the
desired value 6 is attainable by measurements for detecting each photon in
(Vk)k>1- In a scenario like this, a single photon characterizes all other photons
in (vg)k>1, making the behavior of the photons inexplicable: There seems to
be no way to distinguish v; and v; in (vg)r>1 if ¢ # j, and yet, each photon
behaves randomly rather than deterministically, say, with a fifty-fifty chance to
be detected for § = /4. Where does such randomness come from?

This question can be answered by taking into account the unattainability
of precise space coordinates. Because precise space coordinates are all practi-
cally unattainable, 8 = 7/4 only holds at most for a finite number of k. The
desired value # = 7/4 and the precise but unknown values 6 for detecting
Vg, k = 1,2,--- are all contained in a small interval J(m/4). This interval has
a strictly positive length, which may be considered as an infinitesimal quantity
but must not be treated as zero. Therefore, the identically prepared photons
behave randomly rather than deterministically.

To analyze such random behavior further, write v, = 6 — 0. For an arbi-
trarily fixed k in different repetitions of the experiment with (vj)k>1, both 6y
and 7 are random variables with unknown distributions. Actually, it is un-
necessary and even impossible to know their distributions. Both (0j)r>1 and



(k) k>1 consist of independent and identically distributed (i.i.d.) random vari-
ables because the photons are statistically independent and identically prepared.
Denote by 7y a random variable identically distributed as ;. Fach repetition
of the experiment then produces a sample path of (v4)k>1. Let the sample path
be associated with events {y; = 0} and {vx # 0},k = 1,2,---. By the strong
law of large numbers, it is not difficult to see vy # 0 almost surely: because
v, = 0 only holds at most for a finite number of k at every sample path, and
hence the probability of {7o = 0} must be zero almost surely (in a trial sense).
Write

L w=0
X, = ’
r {07 7k7é0
and L
_ ]-7 Yk 0
Y’“‘{ 0, v =0.

Because (7x)r>1 consists of 1.i.d. random variables, both (Xx)r>1 and (Yi)r>1
are sequences of i.i.d. random variables. Therefore, by applying the strong law
of large numbers,

lim
and hence

LY
lim k:#lk:}}”(%;éO):l.

It is worth noting that the above analysis is entirely based on the axiomatic
probability theory formulated by Kolmogorov, which is sufficient to analyze
quantum randomness. It is not necessary to use the so-called quantum proba-
bility here. In addition, because each photon can at most be detected only once,
using any given photon to characterize any other photon implies that precise but
practically unattainable space coordinates are taken for granted. Consequently,
except the unreasonable, standard interpretation of quantum randomness, it is
impossible to infer anything from a detected photon about the random behavior
of any other photon. By taking into account the unattainability of precise space
coordinates, the randomness exhibited in the Stern-Gerlach experiment with
identically prepared spin-1/2 particles can be analyzed in exactly the same way.
The analysis can also be generalized to elucidate the randomness observed in
optical experiments for testing Bell inequalities, as shown in the next section.

The randomness caused by the unattainability of precise time coordinates
can also be analyzed similarly. Some quantum systems are not subject to the
constraint imposed on measuring individual quantum objects and can be mea-
sured repeatedly. For a system of this kind, omitting the unattainability of pre-
cise time coordinates can lead to incorrect explanation about the measurement
outcomes observed by experiments, because almost surely different instants of
time are mistaken for the same instant, and hence the outcomes obtained by
measuring the system at almost surely different instants in different repeti-
tions of the experiment in question are erroneously explained as the outcomes



measured at the same instant, making the random behavior of the system inex-
plicable.

4 Failure of Bell Inequalities

Before the inception of quantum mechanics, scientists considered locality and
realism as two fundamental hypotheses for scientific research. However, quan-
tum mechanics seems to be inconsistent with one or both of the hypotheses.
The inconsistency appears to be a demonstration that the quantum-mechanical
description of the physical world is incomplete [1]. Bell inequalities, as an ef-
fort to “reinterpret quantum mechanics in terms of a statistical account of an
underlying hidden-variables theory” [16], attempted to describe the physical
world in a way consistent with local realism and hence represented a hope of
providing a description more complete than the quantum-mechanical descrip-
tion. Unfortunately, this effort was not successful. When tested by experi-
ments against quantum mechanics, the predictions of Bell inequalities not only
conflicted with the quantum-mechanical predictions but also contradicted the
experimental facts. Ironically, nowadays the majority of the scientific commu-
nity considers the experimental invalidation of Bell inequalities as a reason for
giving up either locality or realism or both, because it is widely believed that
the assumptions of local realism should be responsible for the failure of Bell
inequalities. However, Bell inequalities actually have nothing to do with local
realism. Taking the optical experiment for testing the CHSH inequality as an
example, we can readily see that the failure of Bell inequalities is mainly due to
the following two factors.

(a) Based on improper counter-factual reasoning, the derivations of Bell in-
equalities violate the physical constraint imposed on measuring individual
quantum objects.

(b) The quantum-mechanical description of the physical world and the stan-
dard interpretation of quantum randomness are taken for granted in Bell
experiments, resulting in a fatal logical flaw that cannot be explained away
as a loophole to be closed.

In the following, Subsection 4.1 and Subsection 4.2 present the detailed expla-
nations of how the above two factors lead to the failure of Bell inequalities.

4.1 Counter-Factual Reasoning and Bell Inequalities

The description of the physical world given by Bell inequalities is not the
quantum-mechanical description. The main difference lies in the interpretation
of quantum randomness. According to the quantum-mechanical description,
quantum randomness is considered an intrinsic property of the physical world.
According to the description given by Bell inequalities, a hidden variable is
considered as the cause of quantum randomness. Because Bell inequalities are
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found to be wrong when tested by experiments against quantum mechanics,
the interpretation of quantum randomness given by Bell inequalities must also
be wrong. However, the failure of Bell inequalities does not necessarily imply
that the quantum-mechanical interpretation is correct, because the origin of
quantum randomness is the unattainability of precise space and time coordi-
nates, as shown in Section 3. Irrelevant to the assumptions of local realism, the
experimental invalidation of Bell inequalities is partly due to violating the physi-
cal constraint imposed on measuring individual quantum objects. The violation
takes place merely in Bell inequalities because the constraint will not be violated
by actually performed experiments. As can be readily seen, the derivations of
Bell inequalities are based on correlation functions constructed by mixing actual
and counter-factual outcomes. The correlation functions so constructed cannot
describe any physical phenomenon in the real world and hence are not physically
meaningful. Therefore, Bell inequalities are all physically meaningless.

Consider, for example, the CHSH inequality tested by the optical Bell ex-
periment [5, 7]. In the derivation of this inequality, different pairs (v1,v2) of
correlated photons are purportedly characterized by different values of the hid-
den variable introduced to interpret the randomness exhibited in the outcomes
obtained by measuring different pairs of photons at two spatially separated po-
larizers [7]. Denote by A and F' the value and distribution of the hidden variable.
The outcomes of measuring 7 and vy are given by functions A and B corre-
sponding to polarizers I and I, respectively. The functions take either +1 or
—1 as their values. The outcomes are purportedly determined by A and the ori-
entations of the polarizers. Each of the polarizers has two different, arbitrarily
chosen orientations. Denote by a, a’ and b, b’ the orientations of polarizers I
and II, respectively. Hence

A(\a) = +1, A(\,a’) = 1, B(\,b) = &1, and B(\,b’) = £1.
Let S be a quantity defined as follows.

S(\,a,a’,b,b') =
A\ a) B\, b) — A\, a) B\, ) + A(\, &) B(\, b) + A\, a') B(\, b).

After a simple inspection, we see

S(\,a,a’,b,b') =
AN\, a)[B(A,b) — B(A\,b)] + A(\,a')[B()\,b) + B(\,b')] = £2.

Integrating S over the set A of all values of the hidden variable.

/ dF(\)S(\a,a, b, bl) = 2.
AEA

Suppose the polarizers are in orientations, say, a and b. The corresponding
correlation function of A and B is

E(a,b) = A _ AFOVAQ @) B D)

11



Consequently, the CHSH inequality is
-2 < E(a,b) — E(a,b’) + E(a’,b) + E(a’,b") < 2.

The CHSH inequality allows each component of every pair (v1,12) to be mea-
sured in two different orientations, which amounts to allowing the same photon
to be detected more than once. Thus, the constraint imposed on measuring
individual quantum objects is violated. To see this in detail, we can explicitly
label S with the given pair (v1,v3), and label A and B with the corresponding
components 7 and vo. Thus, the outcomes corresponding to different compo-
nents of (1, v5) can be written as 4,, (\,a), A,, (A, a’), B,,(\,b), and B,, (A, b’).
Accordingly, S takes the following form.

Sy (A a,a’,b,b') =
Auy (X 2)[Buy (A, b) = Buy (A B)] + Ay, (A, ) By (A b) + Buy (A, ).

As indicated clearly by the above expression of S, each component of every
pair (v1,v9) can be detected twice in two different orientations: v is measured
along a and a’, and vy is measured along b and b’. However, after 11 and 15
are measured in whatever directions, they will not be available for detection
anymore. For instance, if 1y and v5 have been detected when polarizer [ is in
orientation a and polarizer I is in orientation b, then it is no longer possible to
measure either v1 or v, and talking about the so-called counter-factual outcomes
obtained by measuring v; and v, in any other directions is meaningless, because
the same single quantum object cannot be detected more than once, not only
in actually performed measurements but also in counter-factual measurements.

Based on improper counter-factual reasoning, actual and counter-factual
outcomes are used for constructing the correlation functions not only in the
CHSH inequality but also in all other Bell inequalities. Such counter-factual rea-
soning is improper because it treats the identically prepared pairs of correlated
quantum objects of the same kind as the same pair and allows their components
to be measured more than once. The counter-factual outcomes involved in the
correlation functions purportedly represent objective reality that exists whether
or not the corresponding measurements are actually performed. Independently
of observation or measurement, objective reality exists indeed; however, mixing
actual and counter-factual outcomes makes the correlation functions so con-
structed physically meaningless because there are no physical phenomena in
the real world corresponding to such correlation functions, and hence the cor-
relation functions cannot describe any statistical correlation in the real world.
Consequently, Bell inequalities in general and the CHSH inequality in particular
make little sense for the description of the physical world. Of course, actually
performed measurements will never violate the constraint; the violation of such
a constraint takes place only in mathematical descriptions or explanations of
the measurement outcomes.

By taking precise but practically unattainable space coordinates for granted,
the derivations of Bell inequalities are all based on the correlation functions
constructed by mixing actual and counter-factual outcomes based on improper

12



counter-factual reasoning and allow the same single quantum object to be mea-
sured more than once. In contrast, under the assumption of freedom of choice,
the argument given by EPR neither involves anything constructed by mixing
actual and counter-factual outcomes nor implies that the same particle can be
measured repeatedly [1]. This may explain why Bell inequalities have nothing
to do with the assumption of realism adopted by EPR. As will be elucidated in
the following subsection, Bell inequalities are also irrelevant to the assumption
of locality adopted by EPR.

4.2 Fatal Logical Flaw in Bell Experiments

Bell experiments aim to test Bell inequalities against quantum mechanics.
Bell inequalities are devised to reinterpret quantum mechanics by introducing
a hidden variable to account for quantum randomness. As suggested by the
meaning of “reinterpret,” reinterpreting quantum mechanics based on a hid-
den variables theory implies that the basic notions in quantum mechanics, such
as quantum superposition and quantum entanglement, remain essentially un-
changed. Such notions imply not only the quantum-mechanical description of
the physical world but also the standard interpretation of quantum randomness,
which are important issues in the Einstein-Bohr debate to be resolved by Bell
experiments. However, based on the hidden-variables theory, the reinterpreta-
tion of quantum mechanics takes such basic notions for granted. In other words,
the validity of the quantum-mechanical description of the physical world and
the legitimacy of the standard interpretation of quantum randomness, which are
exactly what Einstein argued against in the debate, are presumed in the rein-
terpretation. As shown above, the reinterpretation actually presumes Bohr’s
arguments concerning the corresponding issues in the debate, and hence implies
a logical flaw in Bell experiments.

Because of this logical flaw, the fate of Bell inequalities for reinterpreting
quantum mechanics is already predetermined by presuming Bohr’s arguments
even before Bell experiments are actually performed. The logical flaw is fatal and
cannot be explained away as a loophole to be closed. Because Bell inequalities
describe the physical world in a way different from quantum mechanics and do
not involve any quantum-mechanical notions, the flaw cannot be found in Bell
inequalities; it can only be found in the descriptions of identically prepared pairs
of correlated quantum objects in Bell experiments for testing Bell inequalities.
These descriptions are quantum-mechanical. The logical flaw is also responsible
for the failure of Bell inequalities. Because of the logical flaw, the failure of Bell
inequalities is believed to be experimental evidence for the existence of physical
counterparts of quantum superposition and quantum entanglement. However,
as elucidated above, such belief is grounded on the fatal logical flaw and hence
questionable.

To be specific, consider the well-known optical Bell experiment for testing
the CHSH inequality [7]. By generalizing the analysis presented in Section 3, it
can be readily seen that the randomness exhibited in the outcomes of measuring
the polarizations of correlated photons actually stems from the unattainability
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of precise space coordinates. Therefore, the experimental invalidation of Bell
inequalities is not experimental evidence for the existence of anything character-
ized or implied by the purported inherent randomness of the physical world. In
particular, quantum superposition and quantum entanglement have no physical
counterparts in the real world.

In the optical Bell experiment, a sequence of identically prepared pairs
(v1,v2)k>1 of correlated photons is generated from the same source, one pair at
a time. The photons in each pair counter-propagate purportedly along the same
direction in space specified by an arbitrarily chosen z-axis corresponding to a
point r, in the set D, see Eq.(1). Each pair is quantum-mechanically described
by the same entangled state expressed in the form of a quantum superposition
[7].

1
V2

The superposed states are |z, x) and |y, y), where |z) and |y) are linear polar-
ization states. After 1 and v in the same pair are spatially separated, their
polarizations are analyzed by linear polarizers I and II in arbitrarily chosen
orientations a and b, perpendicular to the z-axis. Each photon has two distin-
guishable measurement outcomes, denoted by + and —. The outcome depends
on whether the linear polarization of the photon is parallel or perpendicular to
the orientation of the corresponding polarizer. Let hy(v;), ¢ = 1,2 represent the
outcome of measuring vy in the k-th pair, &k = 1,2,---. It is sufficient to focus
on a scenario such that the orientations of the two polarizers are parallel, i.e.,
a =b. Let r, € D correspond to the common orientation of the polarizers.
In this scenario, a perfect correlation manifests itself between the measurement
outcomes of photons in the same pair.

W, v2)) = —=[lz,2) + [y, 9)]-

hk(Vl) = hk(llg), k = 1,2, cee

The meaning of the above expression is “measurement outcomes on the two
sides of ‘=" are identical.” Because each pair is prepared and tested in the same
way in a symmetrical configuration,

Plhy (1), hip(v2)] = P(+, +) = P(—, —) = =

which implies
Plhi(v1) # hi(v2)] = 0.

Similar to the analysis in Section 3, denote by {2 the set of measurement
outcomes obtained in the optical Bell experiment.

Q= {[hk(Vl), hk(Vg)] k= 1,27 R }

Needless to say, the polarizations of photons are measured in space, the real
world modeled by the Euclidean space R3. Because of the unattainability of
precise space coordinates, quantum randomness exhibited in €2 is actually due
to subjective ignorance of knowledge about precise coordinates of the points in
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D representing the actual propagating directions ry of (v1,v2); and the actual
orientations rj, for measuring the k-th pair, K = 1,2,---. Consequently, ry
and rj, are all unknown when the experiment is actually performed. In other
words, the measurement outcomes in €2 are random rather than deterministic
because they are the polarizations of photons in different pairs measured in
almost surely different, unknown orientations rj,, and because photons in differ-
ent pairs counter-propagate along almost surely different, unknown directions
ri. The outcomes represent measurement results of different pairs because ei-
ther photon in each pair can at most be measured only once, as required by the
constraint imposed on measuring individual quantum objects. Once a photon
is registered at a detector, it cannot be detected anymore. The precise coordi-
nates of ry and r, are all contained in a tiny volume V(r,). Furthermore, the
outcomes are obtained by measuring the polarizations of photons along almost
surely different, unknown orientations, because the precise coordinates of the
orientations are unattainable. Similarly, the precise coordinates of rj, and r,
are all contained in a tiny volume V (r/,). The volumes V(r,) and V(r}) might
be treated as infinitesimal quantities but cannot be considered as zero.

The analysis in Section 3 can now be applied straightforwardly to reveal
the origin of quantum randomness exhibited in the optical Bell experiment.
Revealing the origin of quantum randomness appears to be the only way to show
the difference between “quantum entanglement” and quantum correlation. Let
01 be the precise but unknown value of the angle between rj and rj. Let ¢
represent the precise value specified for detecting the photons for all the pairs,
namely, 6, = 0 for each k. In other words, 6 is the desired angle between r,
and r/,. For the same reason elucidated in Section 3, 8 = 6 can only hold at
most for a finite number of k, and @ is practically unattainable. A tiny interval
J(#) containing 6 and precise but unknown values 0,k = 1,2,--- serves as an
approximation to the desired value € in a real experiment. The length of J(6)
might be considered as an infinitesimal quantity but must not be treated as
zero. Based on the above analysis, the same conclusion obtained in Section
3 concerning the origin of quantum randomness can be reached again: the
randomness exhibited in the optical Bell experiment is due to the unattainability
of precise space coordinates.

According to the quantum-mechanical description given by the entangled
state, if no measurement is performed on either photon in the k-th pair for an
arbitrary k, then neither vy nor v5 in the pair has a definite polarization state.
Once a measurement is performed, say, on v, then immediately v, in the same
pair attains a definite polarization state identical to the measurement outcome
of 1. In contrast, according to Einstein’s argument, because the two photons
in the same pair are spatially separated, measuring one photon will not disturb
the other photon in any way. Therefore, Einstein considered such a quantum-
mechanical description implying a “spooky action at a distance”, and hence
contradicting relativity. By interpreting the sudden state change of vs triggered
by measuring v as a result implied by the so-called “non-locality”, which is
claimed to be a character of quantum mechanics, most physicists believe that
Einstein’s criticism can be explained away. However, this interpretation can-
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not tell us why the pairs of correlated photons behave randomly. For example,
although the pairs are all identically prepared and tested under the same con-
ditions, if ¢ # j, the measurement outcomes [h;(v1), h;(v2)] may or may not be
identical to [h;(v1), hj(r2)]; however, there seems to be no way to distinguish
any one pair from any other pair. According to the standard interpretation, such
quantum randomness is an inherent property of the physical world. Actually, by
taking the validity of the entangled state for granted, the quantum-mechanical
description has already implied the legitimacy of the standard interpretation
even before the optical Bell experiment is performed.

Now we can see clearly that Einstein’s argument is correct. “Quantum en-
tanglement” is not a meaningful notion. Because the unattainability of precise
space coordinates is omitted, quantum randomness is interpreted incorrectly as
an intrinsic property of the physical world. As a consequence of this incorrect
interpretation, “non-locality” is attached to “quantum entanglement” in Bell
experiments to dismiss Einstein’s criticism. In fact, “quantum entanglement”
in Bell experiments cannot describe any physical phenomenon in the real world.
The phenomena purportedly described by “quantum entanglement” in Bell ex-
periments are actually quantum correlations. Unlike the inexplicable “quantum
entanglement” represented by the entangled states in Bell experiments, quantum
correlation between spatially separated systems is due to physically explainable
reasons: The two systems in the EPR experiment are correlated because they
were interacted before separation; photons in the same pair in the optical Bell
experiment are correlated because they are created by the same source. Differ-
ent from the misleading notion of “quantum entanglement” in Bell experiments,
quantum correlation in the EPR experiment does not need “non-locality” to ex-
plain away “spooky action at a distance”. So long as the unattainability of
precise space coordinates is taken into account, we can interpret quantum ran-
domness observed in the optical Bell experiment reasonably and hence get rid
of the inexplicable “quantum entanglement” while avoiding any “spooky action
at a distance” disguised as “non-locality.”

5 Bell’s Theorem and Hilbert Space

Bell’s theorem is proved as a consequence of Bell’s inequalities. Based on
a hidden variables theory, Bell inequalities are derived purportedly under the
assumptions of freedom of choice, locality, and realism adopted by EPR. Accord-
ing to Bell’s theorem, local theories of natural phenomena formulated within the
framework of realism might all be tested by Bell experiments, and the predic-
tions of Bell inequalities must differ significantly from the quantum-mechanical
predictions [16]. Were Bell’s theorem correct, the experimental invalidation of
Bell inequalities would force us to give up either or both of locality and realism.
However, as shown in the previous sections, the assumptions adopted by EPR
are irrelevant to Bell inequalities, and Bell experiments imply a fatal logical
flaw. Consequently, Bell’s theorem is problematic and questionable.

In the literature, Bell’s theorem is considered a significant advance in un-

16



derstanding the conceptual foundations of quantum mechanics [16]. However,
without considering the mathematical setting for quantum physics, the concep-
tual foundations of quantum mechanics may not be properly understood. The
mathematical setting for quantum physics is Hilbert space. Needless to say,
Hilbert space is a very powerful mathematical tool because the concepts in-
volved in its definition are highly abstract. No practical meanings are assigned
to the concepts used for defining Hilbert space in general. In a given application,
practical meanings may be assigned to the corresponding concepts to define a
specific Hilbert space. Consequently, Hilbert space has widespread applications,
not only in quantum physics but also in many other fields.

In general, the elements in Hilbert space are abstract vectors. Orthogonality
is one of the most important concepts to define Hilbert space. Mathematically,
orthogonality is defined by an inner product of two vectors. Because Hilbert
space is a natural generalization of Euclidean space, the inner product and the
orthogonality defined for abstract vectors in Hilbert space may look similar to
the scalar product defined for ordinary Euclidean vectors and the orthogonality
defined for orthogonal vectors in ordinary Euclidean space. Except for the
similarities to the above notions in Euclidean geometry, abstract vectors and
the orthogonality for defining Hilbert space in general are purely mathematical
concepts without geometric or any other practical meaning. In particular, there
is no need to assign any practical meaning to the orthogonality. Moreover, for
Hilbert space in general, it is even unnecessary to specify the logical relation
between orthogonal vectors. Of course, for a specific Hilbert space, the logical
relation between orthogonal vectors can be conjunction (“and”). In this case,
however, orthogonal vectors must not represent mutually exclusive properties
of any element in the Hilbert space, as shown below with an example.

The example is the ordinary Euclidean space R3. With the inner product
defined for the Euclidean vectors, R? is a Hilbert space. For this Hilbert space,
the orthogonal Euclidean vectors do not represent mutually exclusive properties
of any geometric object, and the logical relation between the orthogonal vectors
is conjunction. However, this does not necessarily imply that, for any Hilbert
space, the logical relation between orthogonal vectors can only be conjunction.
The logical relation between orthogonal vectors in a Hilbert space can also be
disjunction (“or”).

For quantum physics, abstract vectors in a Hilbert space are physical states
of a system. Corresponding to alternative outcomes of measurement or observa-
tion, orthogonal vectors in the Hilbert space represent orthogonal states of the
system. There is nothing wrong with the above meaning assigned to the orthog-
onality. However, according to the postulates on which quantum mechanics (in
its current form) is founded, the system before measurement is simultaneously
in each orthogonal state, and hence possesses mutually exclusive properties at
the same time. In other words, using conjunction as the logical relation be-
tween the orthogonal vectors is implied by the assumptions in current quantum
theory. Stemming from the omission of the unattainability of precise space and
time coordinates, the assumptions are problematic. If the meaning assigned to
the orthogonality in a Hilbert space for describing a quantum system is that
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the orthogonal vectors represent mutually exclusive properties of the same sys-
tem, the logical relation between the orthogonal vectors must be disjunction,
because no system in the real world can possess mutually exclusive properties
at the same time, whether or not the system is measured or observed. It may be
worth emphasizing again that there is nothing wrong with the meaning assigned
to the orthogonality for describing a system in quantum physics; the system can
of course possess mutually exclusive properties at different times, but the same
system cannot have mutually exclusive properties at the same time. This is why
the logical relation between the orthogonal vectors in a Hilbert space that serves
to describe a quantum system must be disjunction rather than conjunction.

Described by the notion of quantum superposition, a quantum system pur-
portedly possesses mutually exclusive properties at the same time before mea-
surement; the properties are represented by the corresponding orthogonal vec-
tors in a Hilbert space. Once a measurement is performed on the system, the
quantum superposition collapses immediately onto one of the orthogonal states.
In other words, beginning initially with conjunction as the logical relation be-
tween the orthogonal vectors corresponding to mutually exclusive properties
before measurement, the system, as time evolves, ends up inexplicably in one
of the orthogonal states after measurement, and the logical relation between
orthogonal vectors changes from conjunction to disjunction. This weird change
before and after a measurement then raises a question, as John S. Bell put it:
How does an “and” get converted into an “or”?

The above question now may be answered as follows: Using conjunction
as the logical relation between orthogonal vectors in a Hilbert space for de-
scribing a quantum system is due to the problematic assumptions in current
quantum theory, and the assumptions result from omitting the unattainability
of precise space and time coordinates. As elucidated in the previous sections,
the omission of the unattainability of precise space coordinates may result in
confusing identically prepared systems of the same kind with the same system.
Because of the confusion, the outcomes obtained by measuring different sys-
tems of the same kind along almost surely different directions are mistaken for
the outcomes obtained by measuring the same system in the same direction.
Similarly, because the unattainability of precise time coordinates is omitted,
the outcomes measured at almost surely different instants of time in different
repetitions of the experiment in question are mistaken for the outcomes mea-
sured at the same instant. Quantum randomness in each case above is then
erroneously interpreted. By taking into account the unattainability of precise
time and space coordinates and using disjunction as the logical relation between
orthogonal vectors in a Hilbert space for describing quantum phenomena, quan-
tum randomness can be interpreted reasonably, which is helpful for rendering
quantum mechanics complete in the sense considered by EPR; meanwhile, the
mathematical setting for quantum physics can remain essentially unchanged.
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6 Discussion and Conclusion

In this paper, it is shown that quantum randomness is due to the unattain-
ability of precise space and time coordinates, and Bell’s theorem is questionable.
If the unattainability of precise space coordinates is omitted, then almost surely
different directions along which different systems of the same kind are measured
may be mistaken for the same direction along which the same system is mea-
sured. Similarly, if the unattainability of precise time coordinates is omitted,
then almost surely different instants of time at which a system is measured in
different repetitions of the experiment in question may be mistaken for the same
instant at which the system is measured. In each case above, the measurement
results are erroneously explained, eventually leading to the standard interpreta-
tion of quantum randomness. Because the standard interpretation of quantum
randomness is illegitimate, the quantum-mechanical description of the physical
world is invalid.

Bell’s theorem is questionable because the experimental invalidation of Bell
inequalities is irrelevant to local realism, and because Bell experiments imply a
fatal logical flaw. By reconsidering Bell’s theorem in the context of the math-
ematical setting for quantum physics, namely, Hilbert space, it is shown that,
whether a measurement is performed on a system or not, the logical relation
between orthogonal vectors corresponding to mutually exclusive properties of
the system must be disjunction (“or”) rather than conjunction (“and”). No
systems possess mutually exclusive properties simultaneously in the real world.
Any system purportedly having such properties is due to the omission of the
unattainability of precise space and time coordinates. If the unattainability of
precise space and time coordinates is taken into account, and if disjunction is
used to serve as the logical relation between the orthogonal vectors, then it is
possible to render quantum mechanics complete in the sense considered by EPR,
while any essential change of the mathematical setting for quantum physics may
be unnecessary.

Based on the notion of quantum superposition, the quantum-mechanical de-
scription of the physical world implies the standard interpretation of quantum
randomness. When Bell asked how an “and” became an “or,” he already im-
plicitly assumed the validity of using the notion of quantum superposition to
describe the physical world. According to Bell’s theorem, local realism should be
responsible for the experimental invalidation of Bell inequalities, and hence ei-
ther or both of locality and realism should be abandoned. Were such conclusions
true, they would indeed be philosophically startling. However, the conclusions
are wrong and have led to serious consequences in practice. For sciences, re-
nouncing either or both of locality and realism appears to be a disaster; it opened
the door to ineligible applications of quantum mechanics represented by quan-
tum information technologies [13], such as quantum computation and quantum
communication [14]. Various attempts to realize such unrealizable technologies
have already consumed a huge amount of effort, funding, and investment. In
such a way that “Einstein would have liked least”[12], Bell experiments pur-
portedly resolved the Einstein-Bohr debate.
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The so-called quantum information technologies are all based on the notion of
the quantum bit (qubit). A qubit is a quantum superposition, which describes a
two-level system with conjunction serving as the logical relation between the su-
perposed orthogonal vectors purportedly representing mutually exclusive prop-
erties of the same system at the same time before measurement. It is claimed
that the system for realizing the notion of a qubit might be single microscopic
objects such as photons [17], or some composite objects [18, 19, 20, 21, 22],
or macroscopic objects [23]. The composite systems and macroscopic objects
may be measured repeatedly without being destroyed. However, for a system
of this kind, because the unattainability of precise time coordinates is omitted,
different outcomes obtained by measuring the system at almost surely differ-
ent instants of time in different repetitions of the experiment in question are
mistaken for the outcomes measured at the same instant.

In fact, for any quantum system in the real world, it is not legitimate to use
conjunction as the logical relation between the superposed orthogonal vectors in
a Hilbert space for describing the system. Whether a measurement is performed
on the system or not, the logical relation between the orthogonal vectors must
be disjunction, given that such vectors represent mutually exclusive properties
of the system. Using conjunction as the logical relation between the orthogonal
vectors is due to the problematic assumptions in current quantum theory. Such
assumptions stem from the omission of the unattainability of precise space and
time coordinates. Therefore, with conjunction serving as the logical relation
between the superposed orthogonal vectors, quantum superpositions have no
physical counterparts in the real world, and the so-called quantum information
technologies are all ineligible applications of quantum mechanics and doomed
to failure. See also [24]
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