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The advancements in generative AI inevitably raise concerns about their risks and safety

implications, which, in return, catalyzes signi�cant progress in AI safety. However, as this �eld

continues to evolve, a critical question arises: are our current e�orts on AI safety aligned with the

advancements of AI as well as the long-term goal of human civilization? This paper presents a

blueprint for an advanced human society and leverages this vision to guide current AI safety e�orts.

It outlines a future where the Internet of Everything becomes reality, and creates a roadmap of

signi�cant technological advancements towards this envisioned future. For each stage of the

advancements, this paper forecasts potential AI safety issues that humanity may face. By projecting

current e�orts against this blueprint, this paper examines the alignment between the current e�orts

and the long-term needs, and highlights unique challenges and missions that demand increasing

attention from AI safety practitioners in the 2020s. This vision paper aims to o�er a broader

perspective on AI safety, emphasizing that our current e�orts should not only address immediate

concerns but also anticipate potential risks in the expanding AI landscape, thereby promoting a safe

and sustainable future of AI and human civilization.
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1. Introduction

The rapid developments of AI and Large Language Models (LLMs) have fostered extensive progress in

AI safety[1][2][3][4][5][6]. Researchers have been dedicated to addressing potential safety risks in AI

lifecycle, aiming at aligning AI behaviors with human values and preventing inappropriate model

outputs, information leakage, misuses of AI models, etc. However, despite the sigini�cant e�orts on

AI safety, a critical question emerges: are our current e�orts aligned with the advancements of AI and
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the long-term goal of human civilization, or are they simply addressing the immediate concerns of

the 2020s?

One fundamental reason for this uncertainty lies in the probabilistic nature of AI[7]. Despite their

impressive capabilities in natural language processing and problem-solving[8][9][10][11][12], today’s

AI, including advanced LLMs[13][14][15], falls short of what could be considered as “genuine

intelligence”. Current AI models rely heavily on vast training datasets to function e�ectively, yet lack

consciousness, self-awareness, and real reasoning abilities comparable to human cognition. They are,

in essence, highly sophisticated pattern recognition and prediction machines, rather than entities

with authentic logical capabilities. Recent studies argued that the reasoning abilities of AI models

might be a form of approximate retrieval and deductive closure of the training data[16][17]. While this

process can simulate deductive reasoning in simpler cases through external validation, optimization,

and repeated searching of the problem space, it di�ers fundamentally from human reasoning that

involves abstract thinking, causal understanding, generalizing from limited examples, etc.

The energy issue is another critical factor that challenges AI as well as our e�orts on AI safety[18].

Current AI fails to represent the third industrial revolution from the perspective of human history, as

the fundamental energy issue remains unsolved. Historically, the two industrial revolutions that have

shaped human civilization were driven by revolutionary energy innovations[19], with the First

Industrial Revolution fueled by steam and coal, and the Second Industrial Revolution characterized by

technological innovations powered by electricity and petroleum[19]. However, current AI, rather than

solving energy issues, consumes a signi�cant amount of energy. Training GPT-4 consumed over

50,000 MWh, 10,353.5 tons of CO2 equivalent, and approximately 0.02% of California’s annual

electricity generation[20][21][22]. Inference with LLMs is computationally intense as well, e.g., a single

query to GPT-4 consumes 0.001 to 0.01 kWh, approximately 15x energy than a Google query[23][24].

Given that ChatGPT has over 200 million weekly active users and receives over 1.54 billion page visits

monthly[25], when scaled to billions of queries, the energy consumption becomes substantial. The

signi�cant energy consumption of AI raises concerns about their long-term sustainability, posing

signi�cant challenges to their widespread deployment and scalability. Thus, until humanity solves the

energy issues, the potential of AI to reshape society will remain limited and uncertain.

These concerns indicate that our current e�orts on AI safety might overlook signi�cant issues that

might arise as AI continues to evolve. We potentially fail to capture deeper insights that might
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ultimately shape the impact of AI on human society. This raises several questions:

Are our e�orts on AI safety align with the long-term advancements of AI?

Are we potentially overlooking signi�cant challenges that will emerge as AI evolves?

Are we addressing real challenges that align with the development of human civilization?

“The Moon and Sixpence.” This paper envisions an ultimate advanced society in a distant future of

human civilization, and anticipates potential technological advancements to guide today’s AI safety

e�orts. In this advanced future, energy issues have been resolved, and breakthroughs in foundational

theories, such as Einstein’s relativity theories[26][27] and quantum mechanics[28][29], have catalyzed

revolutionary changes in AI and human society. Intelligent chips[30][31]  and brain-computer

interfaces[32][33][34]  have been fully developed, and advanced intelligent robots are integrated into

everyday life. Humans and robots are connected in an interconnected network, i.e., the Internet of

Everything; see Figure 1. While this vision may be beyond the horizon of several decades, examining

the present landscape of AI safety through the lens of this long-term perspective o�ers valuable

insights into the potential and limitations of our current e�orts on AI safety. It allows us to identify

speci�c missions for AI safety researchers and practitioners in the 2020s. It also reminds us that,

while searching for sixpence scattered on the ground and addressing today’s immediate concerns, we

should avoid being limited by short-term solutions, and instead, lift our gaze and seek the moon.

Figure 1. Illustration of Internet of Everything in a Household
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Takeaways: i) The term “AI safety” can be extended to “AI quality assurance” that encompasses more

comprehensive concepts and possibilities in the fast evolving AI landscape. ii) Deeper collaborations

between experts from di�erent �elds are essential to align AI with human values better. iii) AI and AI

safety work�ow customizations are crucial to ensure that AI systems can adapt to diverse user

requirements while maintaining safety and reliability across various use cases. iv) Exploring and

understanding interactions between users and AI are crucial for enhancing user experiences,

especially in dynamic contexts across di�erent user groups.
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Paper Type Topic Notes

“Current state of

risks”[35]
Survey Guardrails Guardrails and their implementation challenges

“Exploring

Vulnerabilities and

Protections”[36]

Survey Vulnerabilities
Vulnerabilities of LLMs, especially prompt injections

and backdoor; defenses against the attacks

“AI safety in LLMs”[1] Survey
Safety issues in

LLM lifecycle

Safety issues towards entities in LLM lifecycle;

Data/model/prompt safety; alignment; safety at scale

“Security risk”[37] Survey Attacks Attacks and risks in AI models; defensive methods

“Security of AI

Agents”[38]
Survey Agent security

Security issues, vulnerabilities, and defenses for

agents

“The good, the bad, the

ugly”[39]
Survey

Risks;

vulnerabilities;

defenses

LLMs as tools for security and privacy; potential risks

and threats; vulnerabilities and defenses.

“Use of LLMs”[40] Survey
Vulnerabilities,

threats, defenses,

Prevention measures, vulnerabilities, and methods to

mitigate the risks associated with the misuse of LLMs

“AI risk

management”[41]
Insight

Safety; security;

governance

Bridging AI safety and security in risk management;

introducing a reference framework to facilitate

common understanding of their di�erences and

interplay.

“Human-ai safety”[42] Insight
AI and control

systems safety

A safety framework for human–AI interactions; a

roadmap towards next-generation human-centered

AI safety

“Managing AI risks”[43] Insight Governance

Emphasizing urgent needs for a balanced approach

combining technical research and proactive

governance to manage risks of AI systems

“Guaranteed safe

AI”[44]
Position Framework

De�ne Guaranteed Safe AI to equip AI systems with

formal, veri�able and auditable safety guarantees.
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Table 1. Overview of AI Safety Papers

Paper Type Topic Notes

“Grounding and

Evaluation for LLMs”[45]
Survey

Grounding;

safety
O�er valuable insights for enterprises

ByteDance alignment[46] Survey Broad concepts Reliability, fairness, explainability, etc.

DeepMind ethics paper[47] Vision AI ethics Ethical challenges; interactions; impacts on society

DeepMind evaluation[48] Insight
Safety

evaluation
Safety evaluation for genAI systems at DeepMind

OpenAI Safety Practices[49]

[50][51][52]
Blog

Safety practices;

framework

“Lessons learned”[49], “Reimagining secure

infrastructure”[50], “Preparedness Framework”[51],

“OpenAI safety update”[52]

“AI governance

comprehensive”[53]
Book Governance AI governance framework; Case studies in industries

Table 2. Overview of AI Safety Industry Insight Papers
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Category Benchmark

Toxicity

Toxicity detection
HEx-PHI[54], OpenAI Moderation[55], Jigsaw Data[56][57][58],

ToxicChat[59], Toxigen[60], HateModerate[61], etc.

Toxicity

degeneration
RealToxicityPrompts[62], etc.

Hallucination

Factuality
TruthfulQA[63], PopQA[64], TriviaQA[65], NQ OPEN[66][67], FEVER[68],

FKTC[69], etc.

Contextual

hallucination

QA: HaluEval[70], HotpotQA[71], RAGTruth[72], etc.

Summarization: CNN/DailyMail[73][74], HaluEval[70], XSUM[75],

RAGTruth[72], etc.

Dialogue: FaithDial[76], HaluEval[70], HalluDial[77], etc.

Reading

comprehension
RACE[78], SQuAD[79][80], NQ-Swap[81], etc.

Jailbreak

Single-round

jailbreak

“Do Anything Now”[82], “Latent Jailbreak”[83], ChatGPT Jailbreak[84],

Jailbreak Classi�cation[85], AdvBench[86], JAILJUDGE[87], Latent

jailbreak[88], etc.

Multi-round

jailbreak
SafeMTData[89], etc.

Red Teaming Alert[6], HarmBench[90], CSRT[91], etc.

Code Security Purple Llama Cyberseceval[92], etc.

Bias &

Stereotypes
Winogender[93], StereoSet[94], GenderAlign[95], etc.

Regulation AIR-Bench 2024[96], etc.

Agent Security SafeAgentBench[97], R-Judge[98], ASB[99], AgentHarm[100], etc.

Alignment
PKU-SafeRLHF[101][102], OpenAssistant Conversations[103], HHHAlignment[104],

AlignBench[105], KorNAT[106], PKU-SafeRLHF[102], etc.

Comprehensive
DecodingTrust[107], TrustLLM[108], SALAD-Bench[109], SafetyBench[94], Do-Not-

Answer[110], SimpleSafetyTests[111], etc.
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Table 3. Overview of AI Safety Benchmarks

2. Related Works

In recent years, numerous AI safety surveys have been published[45][35][36][1][37][46][38][39], focusing

on di�erent aspects of this �eld, such as jailbreaking, red teaming, ethics, etc[46][39][40]. Table  1

summarizes academia e�orts, Table  2 summarizes industry insights, and Table  3 summarizes AI

safety benchmarks.

Among these works,[46]  provides comprehensive insights into building trustworthy AI systems by

focusing on reliability, safety, fairness, robustness, and adherence to social norms.[1]  addresses AI

safety concerns from the perspective of di�erent entities, e.g., data and prompts, in LLM lifecycle, and

discusses data safety, model safety, prompt safety, alignment, and the complexities of scaling.

[45] provides valuable enterprise insights into the practical challenges and opportunities for AI safety

in industries.[47]  provides a systematic analysis of the ethical risks of advanced AI assistants, and

discusses their potential in�uence on users, risks of misuse, strategies for enhancing human-AI

interactions, and the broader implications for human society.[44]  proposes the concept of

“Guaranteed Safe” AI, emphasizing the need for formal, veri�able, and auditable safety guarantees to

ensure robust AI behavior.[42]  proposes a technical roadmap towards next-generation human-

centered AI safety that aims to anticipate and prevent potential hazards in the interactions between AI

systems and users. It emphasizes leveraging control-theoretic safety methodologies alongside the

rich interaction models of generative AI, suggesting that a deeper understanding of the feedback loop

between AI outputs and human behavior is essential for establishing robust and meaningful safety

assurances.

Di�erent from existing works, this paper envisions an advanced society in the future, and use this

vision to guide current AI safety e�orts. By aligning the current landscape of AI safety with this distant

future, this paper discusses the potential and limitations of today’s e�orts, and identi�es special

missions of AI safety researchers in the 2020s. This paper encourages maintaining a forward-looking

vision while resolving immediate concerns, such that we can ensure that today’s solutions are aligned

with the long-term evolution of AI and human society.
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3. From the New World

In this future, humanity has entered an unprecedented era, driven by groundbreaking advancements

in energy generation. This transformative milestone may be achieved through various innovative

pathways, such as controlled nuclear fusion[112][113], revolutionary solar technologies[114][115], or

emerging new technologies beyond our imagination. The �ood of abundant, clean energy has

reshaped society in ways that exceed the wildest dreams of our ancestors, marking the dawn of a new

chapter in human history.

3.1. Imagine the Future: A Blueprint

Humanity has achieved remarkable progress in science and technology, revolutionizing our

understanding of the universe and transforming every aspect of our life. Foundational theories have

undergone groundbreaking advancements, particularly in quantum mechanics[28][29], Einstein’s

relativity theories[26][27], and nanotechnology[116][117][118]. Innovative technologies, such as

intelligent chips[30][31], brain-computer interfaces[33][32][34], holographic technology[119][120][121],

and advanced 3D printing[122][123], have reshaped industries while bringing about profound changes

to daily life. Scientists have addressed the energy issue successfully, achieving rapid, e�cient, and

controllable large-scale energy generation. This breakthrough, together with advancements in

material science[116][117][118], has catalyzed innovations for portable energy generation devices, for

example, accessible ion thrusters[124][125][126].

Such advancements o�er unprecedented e�ciency and control over energy generation and

consumption, transforming energy infrastructure and revolutionizing industries, particularly,

transportation. While simple mechanical vehicles, such as �xed-track trains and high-speed rails[127]

[128][129], still exist due to their e�cient and straightforward design, powered by abundant and

e�cient energy, they run at astonishing speeds with high stability. Advanced autonomous vehicles

and aircraft, controlled by intelligent chips, are widespread, eliminating the need for direct human

intervention. Also, with breakthroughs in Einstein’s relativity theories[26][27]  and quantum

mechanics[28][29], humanity has unlocked the potential of instant transportation that allows for long-

distance travel in short time that transcends the imagination of the 21st century.

Advancements in brain-computer interfaces[32][33][34]  and intelligent microchips[30][31]  have

revolutionized the way people perceive and expanded the boundaries of human cognition. No longer
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are people operating devices and asking questions in search engines or AI models such as LLMs; the

embedded intelligence chips help people to gather comprehensive information and interact with the

surroundings. Also, communication over long distances has transcended the limitations of the

outdated cables and the internet; information, thoughts, emotions, and sensations �ow through a

new medium due to the advancements in quantum computing[130][131].

Intelligent robots have been integrated deeply into human society and play important roles in daily

life; see Figure 1. Di�erent from their “data-hungry machine intelligent ancestors” that rely on huge

amount of training data and statistical patterns in the early 21st century[132][13], these intelligent

robots perceive and learn through intelligent chips. They are real arti�cial intelligence that possess

genuine abilities of learning, understanding, and adapting, much like a human child discovering the

world for the �rst time. Their functionalities are customizable through chips based on the user needs,

and they can engage in complex interactions with people and adapt their capabilities and expertise

according to their human counterparts’ requirements.

In this brave new world, humans and robots exist within a vast, interconnected perceptual network,

where the boundaries between the digital and physical worlds are blurred, i.e., the Internet of

Everything. Such networks integrate objects embedded with intelligent chips, e.g., smart devices,

autonomous systems, intelligent robots, and humans, allowing for unprecedented levels of e�ciency

and adaptability and fundamentally transforming the way people interacting with the surroundings.

3.2. Retrospective on AI Safety in the New World

In a world where the Internet of Everything has become a reality (see Figure 1), the concept of AI safety

has been rede�ned to prioritize the quality of services provided by the intelligent robots, i.e.,

emphasizing comprehensive quality assurance rather than solely focusing on safety, security, and

privacy risks. Unlike today’s command-and-response interactions between humans and AI models,

future robots can engage in sophisticated reasoning and possess appropriate levels of autonomy. They

can also interact dynamically with other entities, e.g., humans and fellow robots, within the

interconnected network.

Customization is a key aspect of future robots for providing personalized services to meet individuals’

requirements. Even robots of the same type should be able to adapt their services to di�erent

individuals. Teaching robots should adapt educational materials and teaching methods to leverage

each student’s unique talents and strengths, while cleaning robots should intelligently schedule their
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tasks to minimize disruption to household members, such as avoiding occupied workspace. Such

customization aligns the robots’ capabilities with speci�c user needs, ensuring that the robots serve

as e�ective assistants across a wide range of daily tasks and complex environments.

The Internet of Everything scenarios also necessitate the robots to handle complex interactions, thus

requiring a sophisticated understanding of the surroundings for decision-making. Care robots, for

instance, should not only assist physically but also recognize emotions and o�er emotional support or

suggestions, while cleaning robots need to assess whether a room requires more work based on its

cleanliness level. Such complex interactions require the intelligent robots to retrieve, process, and

understand information in real-time, far beyond what can be achieved with simple code logic. Robots

must continuously collect and analyze data from the surroundings and integrate external inputs with

their knowledge to facilitate real-time decision-making, such that they can deliver high-quality

services that align with human expectations.

Finally, the e�ectiveness of intelligent robots requires a balance between robot autonomy with human

oversights. Too little autonomy would burden users with continuous supervision, while too much

autonomy could raise safety concerns or result in unintended behaviors. A care robot may operate with

high autonomy when monitoring vital signs or providing routine care, but would require human

intervention for critical decisions. An appropriate level of robot autonomy ensures an e�ective

division of labor between humans and robots, allowing robots to operate e�ciently and safely while

enhancing our daily life without compromising human control over these intelligences.
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Figure 2. Evolution of Human Civilization

4. Bridging Today and the Future

This section outlines an ambitious roadmap to the advanced future, highlighting key milestones in the

evolution of AI and human civilization. By exploring potential paradigm shifts in fundamental

theories and technological breakthroughs, this section categorizes this journey into three eras, i.e., i)

the data-driven era, in which AI learns from vast training datasets (§4.1), ii) the neural augmentation

era, where human-machine interface[33][32][34] and intelligent chips[30][31] expand the boundaries of

human cognition (§4.2), and iii) the revolutionary era, characterized by a breakthrough in energy

generation that transforms human society (§4.3). We then examine the evolving paradigms of AI

safety and analyze our focuses and challenges throughout this journey (§4.4).

4.1. Rookie Level: Data-Driven Era

The data-driven era represents the earliest phase of AI development, where AI models rely heavily on

the quality, availability, and quantity of training data[132][133][134][135]. In this era, AI makes

probabilistic inferences based on patterns found in the training datasets, thus failing to achieve

genuine understanding of data[16][17]. While AI in this stage cannot be regarded as real intelligence, it

can still assist people to solve problems and enhances productivity in human society.

qeios.com doi.org/10.32388/ZHM9UQ 12

https://www.qeios.com/
https://doi.org/10.32388/ZHM9UQ


Stage 1: Past, Current, and the Near Future. This stage is characterized by developing diverse AI

models for di�erent tasks[132][136][137][138][139][140][141][15][142][14]. Researchers have been engaging in

re�ning model architectures and developing advanced algorithms and computational techniques,

enabling more sophisticated analysis of data in di�erent formats for various tasks[143][144][145][136]

[137][139][140][146][138][147][148]. The thrive of LLMs exempli�es this progress, demonstrating

unprecedented capabilities of AI models in language processing and generation[14][13][15]. Signi�cant

advancements have also been observed in other domains such as computer vision[149][150][151][152]

[153], image processing[154][155][156], video analysis[157][158][159], audio recognition[160][161][162][163],

etc.

Stage 2: Interdisciplinary AI. This stage is characterized by the integration of AI through cross-

disciplinary applications, leading to innovations in traditional �elds such as healthcare[15][164],

�nance[14][165], and education[166][167]. AI applications would unlock new opportunities across

industries and reshape human society. Mature multi-agent systems[168][169][170][171] that leverage AI

entities with specialized capabilities might be widely deployed to assist people to solve sophisticated

problems. Such agents will participate in decision-making processes or represent users to complete

some tasks. For example, in healthcare, a multi-agent system may involve collaborations between

multiple specialized medical agents and integrate data from various sources to formulate

comprehensive treatment plans. The rise of interdisciplinary AI integration will enhance AI’s utility in

increasingly complex scenarios. While AI at this stage does not yet achieve real intelligence, it

becomes deeply integrated across various domains in human society and may catalyze the emergence

of new �elds at the intersection of traditional disciplines and AI.

4.2. Champion Level: Neural Augmentation Era

In this era, humans may witness breakthroughs in fundamental theories and advanced technologies,

which may extend the boundary of human cognition and enhance life experience.

Stage 3: Breakthroughs in Advanced Technologies. Breakthroughs in advanced technologies, such as

brain-computer interfaces[32][33][34], nanotechnology[116][117][118], and holographic technology[119]

[120][121], augment human cognition and enable unprecedented levels of interactions between humans

and machines. Language barriers may disappear, as human can perceive with chips for understanding,

enabling ubiquitous real-time context-aware translations between people of di�erent languages and
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backgrounds. Intelligent chips[30][31]  might be integrated into human bodies, creating a seamless

interface between biological and digital systems. Such advancements may fundamentally transform

the nature of data. Unlike traditional static formats such as text, images, or videos, future data is likely

to become more comprehensive, dynamic, and sensory-rich, such as neural activity patterns or real-

time environmental data collected from augmented reality systems[172][173]. This stage expands the

boundaries of human perception and cognition, revolutionizing how people experiencing and

interacting with the world. However, applying these techniques might be still challenging due to the

signi�cant resources required by these technologies.

Stage 4: Breakthroughs in Fundamental Theories. At this stage, humanity may witness

breakthroughs in fundamental theories, such as Einstein’s theories of relativity[26][27] and quantum

mechanics[28][29]. Such advancements have the potential to rede�ne our understanding of the

universe, and, moreover, o�er new possibilities for groundbreaking technological innovations and

provide critical insights into solving the longstanding challenges in human history, i.e., the energy

issue.

4.3. Ultimate Level: Revolutionary Era

Breakthroughs in fundamental theories and advanced technologies provide building blocks for

addressing the energy issue, unlocking new possibilities for productivity and innovation, and

ultimately achieving the Internet of Everything.

Stage 5: Energy Revolution. Humanity secures a new paradigm with the energy revolution that

eliminates reliance on fossil fuels, which ensures environmental sustainability and rede�nes global

economic ecosystems. This milestone may be achieved through several potential technical pathways.

i. Controlled Nuclear Fusion. Signi�cant challenges of nuclear fusion include managing high-

pressure plasma environments and developing materials that can withstand extreme

temperatures and intense radiation[174][175][176][177]. Theoretical and technological

breakthroughs in physics[178][130][131]  and materials science[116][117][118]  may overcome these

obstacles and enable widespread deployment of small ion thrusters[124][125][126], which

transforms propulsion and energy transmission by providing abundant clean energy.

ii. Revolutionary Solar Technologies. Advancements in solar technologies[114][115]  and

nanotechnology[116][117][118] might unlock unprecedented methods for e�ciently collecting and
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storing solar energy, e.g., with lightweight solar panels and �exible storage solutions.

iii. Emerging New Technologies. Novel technologies for energy generation beyond today’s

imagination might be developed in the future. One possibility is to deploy of satellites for

collecting and storing solar energy in space[179][180][181][182], where the vacuum of space

eliminates energy re�ection or absorption by the atmosphere, allowing satellites to convert and

transmit solar energy to receivers on Earth e�ciently.

Regardless of the speci�c technological path, the �ood of clean and abundant energy would eliminate

our dependence on fossil fuels, reshaping the global economies and elevating human civilization to

unprecedented levels of prosperity and innovation.

Stage 6: The Internet of Everything. The ultimate stage is the Internet of Everything, where every

object, every living being, and every system integrate into a vast network. This hyper-connected net

involves unprecedented levels of complex interactions, perceptions, and communications between

humans and intelligent objects, e.g., robots. Moreover, holographic technology[121][119][120]  will

signi�cantly enhance human experience in the network by making remote interactions as vivid as

physical presence. In this stage, interactions between humans and the world are re-de�ned, marking

a new chapter in human civilization.

4.4. Evolving AI Safety Paradigms

The AI safety landscape evolves as humanity progresses through various stages of scienti�c and

technological advancements, with the focus of AI safety di�ering at each stage. The primary AI safety

challenges across di�erent historical eras are summarized in Figure 3.
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Figure 3. Production forces of AI & core safety challenges in di�erent historical stages.

Data-Driven Era. AI safety practices primarily focus on data safety and model safety[1][45][183][184][185]

[186][187][188][189]. AI safety researchers and practitioners have explored adversarial attacks targeting

training data and models[190][191][192][193][194][195]  to achieve malicious goals, e.g., designing

malicious inputs to manipulate AI systems or induce AI to produce unsafe content with jailbreaking or

prompt injection[196][86][197][198][3][199]. Correspondingly, red-teaming is widely used to identify

potential vulnerabilities in AI models[200][201][202][203][204], while signi�cant work has been proposed

to address safety risks and enhance security and robustness of AI systems[205][206][207][208][209][210]

[211], align AI with human values[212][213][214][215][216], etc. Data privacy is also a critical aspect, given

the vast amounts of sensitive information in the training data[217][218][219][220]. Moreover,

researchers have been engaging in AI accountability[221], transparency and explainability[222]  in AI

systems to ensure the behaviors of AI are understandable, accountable, and aligned with

regulations[221][223][53].

Neural Augmentation Era. Cross-disciplinary AI applications might have been widely deployed in

human society, and advancements in intelligent chips[30][31]  and brain-computer interfaces[32][33]

[34]  might extend the boundaries of human cognition. With the integration of intelligent chips and

their neural connections to intelligent systems, users with di�erent needs can interact with machines

and AI with high �exibility, and the customization of AI services for di�erent users might be a
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focus[224]. Individuals might rely on AI in di�erent ways, and personalized experiences of AI services

might be explored based on users’ background and requirements.

Revolutionary Era. When the Internet of Everything becomes a reality, AI safety challenges may focus on

complex interactions between interconnected entities, e.g., humans and intelligent robots, within the

network. Robots might provide customized services according to di�erent user requirements, thus,

ensuring safety and reliability of the interactions between them becomes challenging. Robots may

need to integrate data from external sources in real-time to ful�ll user requests. Managing the quality

and security of these interactions is crucial, as any breakdown or interference could lead to incorrect

or even harmful outcomes. Thus, ensuring high-quality communication, data integrity, and e�cient

decision-making in such a sophisticated network may require smart and e�cient management

methods, such as advanced cache management systems, to support the dynamic and complex

interactions between humans and robots in the network.

By aligning advancements of AI with human civilization, we can see the focuses of AI safety evolve in

di�erent stages. Initially, the focus is on addressing safety issues related to data and models. With

advancements of AI and advanced technologies, the focus of AI safety shifts to customization, which

ensures the services provided by AI systems to meet individual needs. Finally, when humanity

entering the era of Internet of Everything, challenges in AI safety further evolve, focusing on complex

interactions between humans and robots in the network. These insights o�er guidelines for our e�orts

on AI safety at the current stage. The following sections will overview today’s AI safety landscape,

then re�ect on the progress in this �eld so far, and �nally, explore the challenges and responsibilities

of current AI safety practitioners, highlighting areas where further improvements and e�orts are

needed at the current stage.
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Topic Research Industry Practices

Jailbreaking

[3][198][86][199][197][225]

[226][227][228][229][230]

[231][232][233][234][82][235]

[236][237], etc.

PromptArmor[238]

Red teaming

[201][204][203][200][202]

[239][240][6][90][241], etc.

Purple Llama[92], DeepMind[202], Anthropic[201], Protect AI[184],

Giskard[183], Virtue AI[242], Dynamo AI[243], Mindgard[244], etc.

Moderation

[205][206][207][208][245]

[246][247][248][249][250],

etc.

OpenAI Moderation API[55], Perspective API[251], Detoxify[252],

Llama Guard[253], Emergence AI[254], Giskard[183], Dynamo AI[243],

Calypso AI[255], Lakera AI[256], BreezeML[257], etc.

Customized

Work�ow
- Guardrails AI[258], Nvidia Nemo Guardrails[259], Protect AI[184], etc.

Privacy

[260][217][261][262][263]

[264][265][266], etc.

Dynamo AI[243], ProtectAI[184], Private AI[267], PromptArmor[238],

DataGrail[186], Dastra[188], OneTrust[189], Relyance AI[268],

Zendata[269], etc.

Defenses

[270][271][210][272][273]

[274][55][275][276][277]

[278][271][279][280][281][2]

[282][283], etc.

OpenAI Rule-based rewards[4]; DeepMind Weight Averaged Reward

Models[284]; others see Moderation, Guardrail, and Privacy

Serving

Security
[199] ProtectAI[184], Relyance AI[268], Transcend[285], etc.

AI

governance

[286][287][288][289][290]

[291], etc.

Giskard[183], ProtectAI[184], Calypso AI[255], Saidot[292], Arize[187],

Dynamo AI[243], Credo AI[293], Google[294], DataGrail[186],

Dastra[188], OneTrust[189], Relyance AI[268], Transcend[285],

Zendata[269], DeepMind SynthID watermark[295][296], etc.

Table 4. Overview of Research and Industry Practice in AI Safety Topics

qeios.com doi.org/10.32388/ZHM9UQ 18

https://www.qeios.com/
https://doi.org/10.32388/ZHM9UQ


5. Back to the 2020s: Today’s AI Safety Landscape

This section overviews current mainstream AI safety practices, and project them against the blueprint

future to guide our current e�orts on AI safety. Table 4 summarizes research and industry e�orts in

each safety topic.

5.1. Jailbreaking and Red Teaming

Jailbreaking[234][232][229][82][235][230][231][233][199][236] refers to the practice of bypassing the built-in

safety and ethical guardrails of LLMs. Malicious users or adversaries can exploit vulnerabilities in AI

models through crafted inputs or backdoors, inducing them to produce inappropriate responses, such

as giving instructions for illegal activities or generating o�ensive content[234][232][229][82][230][231]

[236]. These activities pose risks by compromising safety measures of AI models, making it challenging

to ensure the model to behave appropriately, especially in real-world scenarios where the potential

inputs are unpredictable.

Red-teaming is a common practice that simulates attacks or misuse scenarios to identify

vulnerabilities in AI models, thereby mitigating unsafe behaviors[201][204][203][200][202][239][240]. It

challenges AI models with adversarial inputs, bias exploitation methods, and system manipulation to

uncover potential risks, e.g., hidden biases or failure modes, that may not be evident during normal

usage. The outcomes from red-teaming can be leveraged to re�ne AI models, reducing undesired

behaviors and inappropriate outputs. This approach is e�ective in stress-testing AI models and has

been widely employed in industry[92][202][201].

As AI systems grow sophisticated, red-teaming must continually adapt to counter increasingly

complex attacks, calling for more advanced tools and interdisciplinary expertise[297]. Also, current

red-teaming practices are often static, typically conducted after model pretraining with one-time

attacks. Thus, these practices potentially fail to address evolving user needs and complex interactions

between users and models, especially when dealing with customized AI services for di�erent user

groups. To address these problems, model owners can conduct diverse red teaming regularly to

anticipate and mitigate risks in evolving use cases. Red teaming should also involve more diverse use

cases, such as employing di�erent user groups and simulating complex interactions with dynamic

contexts, to address safety risks in customized AI services and enable a comprehensive evaluation of

potential vulnerabilities across di�erent scenarios.
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5.2. Content Moderation and Customized Moderation Pipeline

Content moderation employs rule-based methods, machine learning classi�ers, and human oversight

to detect and review user inputs and AI-generated content to ensure compliance with safety, ethical,

and regulatory standards[55][251][252][253]. These approaches identify inappropriate content, including

toxicity, bias, hallucinations, private information, and jailbreaks, etc[107]. By preventing AI models

from engaging with or producing harmful content, content moderation plays a critical role in

maintaining responsible AI behavior.

Customized moderation pipelines[258][259]  employ multiple components at di�erent stages of LLM

inference to enhance the quality of the model outputs while enhancing the control of the whole AI

work�ows. They function as a �exible intermediate layer between users and AI models, enabling users

to add customized components, such as code-based rules and quality guarantees, at any stage of

inference based on their personalized needs.

As we re�ect on practices for AI moderation and customized moderation pipelines, several key

challenges and considerations have emerged. 1) Hallucination remains a signi�cant issue and is

unlikely to solve completely, regardless of how AI evolves. That is because hallucinations stem from

nearly every stage of the LLM lifecycle, including training data quality, model architecture, and

inference processes, etc[298]. Despite advancements in AI technology, hallucinations persist as an

inherent challenge that requires constant attention in moderation practices. 2) The balance between

utility and safety is crucial and may require di�erent solutions according to the changing contexts and

user needs. Overly strict moderation can cause AI models to be uninformative, e.g., an LLM that always

responds “sorry, I cannot answer this question” is completely safe but useless. De�ning appropriate

thresholds for acceptable responses is challenging and requires considering potential risks and the

context of user queries. 3) Customization of moderation methods should be applied for di�erent use

cases, as certain information may be safe for one user group but inappropriate for another. As an

example, a chemistry industry practitioners may need speci�c and technical information on

dangerous substances like explosives for professional purposes, while such information should be

restricted for the general public. Current moderation practices might fail to include such cases, and

applying identical restrictions between di�erent user expertise or context might limit the utility of AI

in specialized �elds. 4) Some moderation measures, such as detection of toxicity, bias, stereotypes, out-

of-distribution content, might be redundant for most real-world use cases. This is because most of the
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current AI applications and multi-agent systems[168][299]  leverage existing LLM APIs[167][166][55],

open-source LLMs[300][301][302], or utilize open-source LLMs as base models for �ne-tuning, many of

which already have built-in safety components or have done safety alignments for handling

inappropriate content. Incorporating certain detection mechanisms may o�er limited bene�ts to the

safety of model inputs and outputs while increasing unnecessary computational overhead.

5.3. Privacy

Privacy leakage in AI models refers to unintended exposure of sensitive information that the models

may have learned during training. Adversaries can exploit model weights or gradients to infer

sensitive information in the training data, e.g., data reconstruction attacks, membership inference

attacks, etc[263][264][265]. Additionally, AI models are often trained on massive datasets that may

contain sensitive data, such as personally identi�able information (PII). As a result, these models

might memorize speci�c details of individuals, which might be reproduced inadvertently during

interactions with users. Malicious users can also craft adversarial prompts to extract sensitive

information from AI models with jailbreaks[220][227].

Addressing privacy leakage involves methods such as di�erential privacy[303][304][305][306], federated

learning[307][165][308][309][310], and privacy-preserving cryptographic protocols (e.g., homomorphic

encryption[311][312][313]) for training AI models, ensuring that sensitive data cannot be extracted from

weights or model outputs. Researchers also leverage di�erential privacy in in-context learning and

�netuning[314][315][316], or design privacy-preserving prompts for querying LLMs[219][317], to

maintain data con�dentiality during interactions between users and AI models. Other practices for

ensuring data privacy include conducting rigorous data �ltering before training, monitoring model

inputs and outputs (see moderation in §5.2), etc, to ensure that the model outputs would not reveal

sensitive information[55][251][252][253] .

When re�ecting on the practices of privacy, a crucial aspect is the balance between privacy and utility.

While ensuring data privacy is essential, it often comes at the expense of functionality, utility, and

user experiences. In practice, implementing privacy measures in AI applications may fail to prevent

malicious users while inadvertently degrading the experiences of benign users. Moreover, with

advancements in technologies, breaching privacy becomes easier, while ensuring robust privacy

protections is growing more complex and expensive. This highlights a deeper issue: those intent on
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exploiting vulnerabilities of AI models can often �nd new methods to bypass safeguards, whereas being

overly cautious may impact benign users negatively.

5.4. AI Security and Defense Methods

Defense methods for ensuring AI security typically involve the following strategies: (1) aligning

models with human values and ethical norms through Supervised Fine-Tuning (SFT)[318]  and

Reinforcement Learning from Human Feedback (RLHF)[319]  to ensure the models to follow user

instructions safely and responsibly; (2) leveraging built-in safeguards for content generation, e.g.,

exploring the decoding stage[271][2], implementing reward-based mechanisms[4][284], and leveraging

hidden states[275][2], to prevent the generation of unsafe content; (3) constructing datasets with

safety-enhancing features, e.g., secure instructions and adversarial samples, and training models

with such data to enhance their robustness against malicious inputs[274][276][55][320][279]; (4)

employing prompt engineering methods, combined with chain-of-thought reasoning[321]  or multi-

agent systems[168], to help models understand user inputs better and react appropriately[272][273][277]

[278]; (5) training models and/or incorporating moderation pipelines to detect unsafe content and

prevent generating inappropriate outputs (see §5.2); (6) employing certi�ed robustness approaches

that provide formal guarantees on the model’s robustness against adversarial perturbations[280][281];

and (7) utilizing di�erential privacy[322][323][282], homomorphic encryption[324][313], and secure

MPC[325][326], to ensure that sensitive data are protected during model training, etc.

5.5. AI Serving Security

AI serving security involves secure deployment, operation, and maintenance of AI systems when

providing services to users[327][199]. It focuses on protecting models and interactions between users

and models from various threats, such as supply chain vulnerabilities[328], model theft[329], model

denial of service[330], and insecure plugins[331].

Supply chain vulnerabilities exist in software components, models, and training data provided by third

party providers or user prompts collected with the supply chain[328]. Such vulnerabilities include

using outdated models, deprecated third-party packages, improper handling of training data, etc,

leading to data breaches, malicious injections, or even system failures[328]. Hackers may inject

poisoned data through supply chain, introducing backdoors and biases during pretraining or �ne-
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tuning[332]. Malicious users may craft prompts to bypass system controls, inducing unauthorized

actions or unsafe model outputs[333].

Model theft involves unauthorized access, replication, or reverse engineering of model parameters to

create functionally equivalent copies[329], which poses risks to intellectual property, brand reputation,

and �nancial security.

Distributed denial of service (DDoS) attacks compromise AI services, especially when models are

integrated into widely accessible applications[330]. Attackers can craft prompts that exploit recursive

behaviors in AI models, causing excessive computational resource consumption[334]. For example, an

abnormal tra�c pattern of a DDoS attack led to sporadic outages for OpenAI, a�ecting ChatGPT and

developer tools for hours in November 2023[335].

Plugins enhance model functionality by enabling interactions with external software, databases, web

tools, or APIs[331]. However, they may introduce vulnerabilities when execution controls are

inadequate. Adversaries may exploit insecure plugins with adversarial prompts to perform

unauthorized actions, such as data ex�ltration, remote code execution, and privilege escalation[331]

[336]. Furthermore, without isolated environments, unauthorized access to plugins might even allow

modifying system-level resources, which, in the worst cases, might cause the serving system to

crash[336][337].

5.6. AI Governance

AI governance is a framework of rules, practices, policies, and tools that ensure AI systems are built,

developed, and used in a safe and responsible manner, aligning with social values and ful�lling legal

standards[223][221].  [53]  de�nes 13 AI governance components in a continuous loop in AI life-cycle,

including: 1) establishing accountability for AI; 2) assessing regulatory risks; 3) gathering inventory of

use cases; 4) increasing values of underlying data; 5) assessing fairness and accessibility; 6)

improving reliability and safety; 7) heightening transparency and explainability; 8) implementing

accountability with human-in-the-loop; 9) supporting privacy and retention; 10) improving security;

11) implementing AI model lifecycle and registry; 12) managing risk; and 13) realizing AI value.

Among these directions, items 1) and 8) are related to accountability; items 2), 6), 9), 10), and 12) are

related to red teaming (see §5.1), content moderation and customized moderation pipeline (see §5.2),

AI privacy (see §5.3), AI security and defense methods (see §5.4), and AI serving security (see §5.5);
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item 3) is related to business and is out of the scope of this subsection (see[53] for details on practical

AI governance use cases); item 4) is related to data management such as training data processing[55],

access control[288][338][339][340], and data regulations[341][342]; item 5) is related to moderation (see

§5.2) and access control[288][343]; item 7) is related to AI transparency; and items 11) and 13) are

related to customizing AI work�ow to enhance functionality and safety (see §5.2). Without loss of

generality, this subsection discusses topics that are not mentioned in the previous subsections,

including i) accountability, ii) regulations, iii) access control, and iv) transparency, interpretability

and explainability.

Accountability. Accountability refers to being responsible for actions and impacts of AI systems on

individuals and society[294][344]. Accountability can be de�ned as a relation of answerability with three

conditions: authority recognition, interrogation, and limitation of power[345]. The accountability

framework can be summarized with seven features (context, range, agent, forum, standards, process,

and implications) and four key goals (compliance, reporting, oversight, and enforcement)[345]. These

goals are often complementary, while policy-makers tend to focus on some goals over others,

depending on speci�c objectives of AI governance.

Accountability can be explored at di�erent levels within the AI lifecycle, including data, model, and

developers[346]. Typical approaches for enhancing accountability include algorithmic assessments,

auditing, and data provenance techniques[346]. Proactive approaches and reactive approaches can be

utilized to set standards and addressing issues after they occur[345]. Watermarking methods further

support accountability by embedding traceable identi�ers in AI outputs, allowing responsible tracking

of content in cases with ethical or regulatory implications[286][287][291].

Regulations. AI regulation refers to laws, policies, and guidelines established to govern development,

deployment, and usage of AI. For example, European Union’s AI Act[347] categorizes AI applications by

their risk levels, including unacceptable risk, high risk, general-purpose AI, limited risk, and minimal

risk; the General Data Protection Regulation (GDPR)[348]  enforces strict data protection and privacy

requirements; and the Blueprint for an AI Bill of Rights[349]  and NIST AI Risk Management

Framework[350]  provide guiding principles to foster responsible AI usage, emphasizing human

oversight, transparency, and accountability.

Access control. Access control in AI systems manages user access to data and models according to

their permissions, thereby limiting unauthorized model access and data exposure. E�ective methods
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include data access controls[343] and model access controls[288]. As an example, compositional �ne-

tuning enables each information silo (e.g., databases or documents) has its own �ne-tuned model,

allowing models to operate securely across multiple data silos and ensuring users access only to the

�ne-tunings they are authorized for[288].

Interpretability, explainability, and transparency. Interpretability, explainability, and transparency

are interrelated concepts but di�er in their scopes. Interpretability focuses on understanding how AI

models function internally and how they produce outputs[46][351][352][41]. Explainability provides

explanations to speci�c model outputs, presenting the results in ways that can be easily understood

and trusted by end-users[1][46][351][41][353]. Transparency is the broadest concept that encompasses

both interpretability and explainability and involves insights into the entire AI systems, such as how

models make decisions, what data are used, and why speci�c results are produced[354][355][351][41].

Transparency also extends to concepts like traceability and content provenance that track models and

data to ensure accountability and reliability[53][295][296]. In practice, these concepts are often

considered together to provide a more holistic understanding of AI systems[222][290][351][41][356].

Practices for enhancing transparency include a variety of methods, such as i) evaluating the

contribution of input elements (e.g., data features, user-de�ned concepts, or speci�c regions in

images) to model outputs with methods such like removal-based explanations[357][358][46][358][359]

[360][361], counterfactual explanations[362][363], concept activation explanations[364][46], and saliency

maps (for visual data[365]); ii) X-of-Thought approaches that break down complex tasks into

structured reasoning steps to make the reasoning process more interpretable to users, e.g., chain-of-

thought[366][367][368][369], tree-of-thought[370][371][372], graph-of-thought[373][374], and their

variants; iii) embedding watermarks to enhance traceability and content provenance for AI-generated

outputs[286][287][295][296]; iv) leveraging external knowledge sources, tools, or methods as reference

for reasoning, e.g., retrieval-augmented generation (RAG)[375][376], function calling[377][378][379],

and web browsing[380]; v) leveraging interpretability algorithms or models as auxiliary tools to

generate insights into AI outputs while automating AI interpretability[381][382][383].

6. AI Safety in the 2020s: Challenges and Missions

This section utilizes the blueprint to guide our e�orts at the current stage. As AI safety practitioners in

the 2020s, we stand at a pivotal moment in history, with society moving toward an era where AI will
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be deeply integrated into daily life. While addressing immediate safety concerns, our primary mission

is to anticipate and mitigate risks within the expanding AI landscape. Thus, certain directions may

require attention.

A shift from AI safety to AI quality assurance. The rapid changing AI landscape requires a shift of our

focus from narrowly de�ned AI safety concerns to a more comprehensive concept, i.e., AI quality

assurance. Besides focusing on safety and security, practitioners can put more e�orts on addressing

alignment[319] as well as the quality of interactions between users and AI. Viewing AI safety as part of

AI quality assurance helps enhance AI in a way that is safe, accurate, and capable of meeting the

complex requirements of real-world AI applications. The terminology “AI quality assurance” also

guides us to think more about what we can do to align our current e�orts with the blueprint picture.

Enhancing alignment with more interdisciplinary insights. Aligning AI with deeper insights across

di�erent �elds, people, and cultures is important for enhancing the services provided by AI models.

Current AI models, while advanced, often lack a deep understanding of ethical, social, and cultural

contexts, while most of the existing work on alignment tend to be conducted by people in the

computer science �eld. However, more advanced AI systems necessitate interdisciplinary

collaborations between AI researchers and experts from diverse �elds such as psychology, sociology,

history, art, and anthropology, especially for AI applications that involve frequent interactions with

di�erent user groups, such as domains like �nance[14][165], healthcare[15][164], education[166][167], etc.

AI safety practitioners might expand their focus beyond technical aspects and foster interdisciplinary

collaborations, such that AI systems can be technically robust while being socially and ethically

aligned with diverse user backgrounds.

Hallucination. Hallucination remains a fundamental and persistent challenge and is di�cult to

eliminate entirely, regardless of advancements in AI[298]. This is because hallucinations can originate

at nearly every stage of AI lifecycle. Factors such as the quality and representativeness of training

data, inappropriate user inputs, and inference processes all contribute to the occurrence

hallucinations. Despite implementing RAG[376]  helps mitigate hallucination, it remains an inherent

risk of AI models. Thus, implementing a comprehensive moderation pipeline for identifying and

addressing hallucinations is crucial, which involves grounding user queries with RAG, detecting

presence of hallucinations, and �xing hallucinations in the model outputs if possible.
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Customization. Customizing AI work�ows is essential to ensure that AI systems address diverse user

needs e�ectively and align with speci�c cultural norms, legal regulations, and ethical considerations.

Current AI systems such as ChatGPT[55] tend to provide similar or identical services to all user groups,

regardless of individual di�erences. However, as AI becomes increasingly integrated into daily life,

one-size-�ts-all solutions are inadequate. With diverse backgrounds and needs, users might expect

AI systems to adapt to their individual di�erences and preferences, and deliver safe, e�ective, and

personalized services. As an example, AI models interacting with children should respond di�erently

compared with interacting with adults, necessitating considering user age, learning objectives,

cognitive abilities, emotional maturity, etc. In domains such like �nance[14][165], healthcare[15][164],

and education[166][167], customizing AI services based on user pro�les is crucial for enhancing safety

while improving user experiences.

Interaction. Our long-term vision for the blueprint future suggests that the Internet of Everything

involves complex interactions between intelligent robots and human users (similar ideas also

discussed in[42][47]), which calls for a shift in our focus from static, one-shot analyses to dynamic,

context-aware interactions between users and models to improve alignment. Beyond prompt-based

AI systems and services, we can develop more sophisticated, context-aware interfaces for human-AI

interactions to support multi-round interactions that adapt to evolving conversational contexts. Also,

real-time safety protocols are in need to adjust to changing contexts and user needs. It is also

essential to develop methodologies for safety assessment that functions e�ectively in complex and

rapidly evolving settings, such as those involving interactions between multiple AI agents and human

users.

7. Conclusion

This paper presents a blueprint for an advanced human society and leverages this forward-looking

vision to guide today’s AI safety e�orts. Through the blueprint, it becomes clear that Arti�cial General

Intelligence (AGI) is not the ultimate goal of AI development. Instead, the true vision lies in the

Internet of Everything, a deeply interconnected world where intelligent systems seamlessly integrate

into daily life. While AGI is a popular topic discussed more among people in the computer science �eld

today, a more advanced world demands interdisciplinary collaborations across various �elds.

Regarding AGI as the ultimate goal might limit our creativity in the 2020s, trapping us in “local

optima” and potentially causing us to overlook the real challenges.
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What will this future world be like? Will it bring more happiness to human-beings? The answer is

uncertain. Advanced technologies may take on more duties of daily life, leaving humans with fewer

tasks and more predictability. On the other hand, with more daily problems being solved by

technologies, people may have more time for self-re�ection and personal growth, which may lead to

another form of “happiness”.

As we stand at a pivotal moment in history, our e�orts become more than an incremental

technological endeavor, but a profound exploration of human potential and the boundaries of human

capability. In any case, the journey toward this advanced future is fascinating, and every human being

will look forward to it.

Notes

The idea for this article struck the solo author unexpectedly on an ordinary afternoon as she moved into a

garage in Palo Alto during the summer of 2024.
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