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How Far from the Edge Does a Population

Need to Be to Survive? A Probability

Model
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Let   be a natural number. We consider a population that lives on  .

Each individual gives birth at rate   on each of its neighboring sites and dies at rate 1. No births are

allowed from the inside of   to the outside or vice versa. There is no limit on the number of

individuals per site and therefore on the total population. The population on the whole line (i.e., 

) survives with positive probability if and only if  . On the other hand, for any 

, there exists a natural number   such that the population survives on   for 

 but dies out for  . There is no limit on the number of individuals per site, so the

population could grow at the center where the birth rates are maximum. Our result shows that it does

not if the edge is too close.
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1. The model

A branching random walk (BRW in short) on the one-dimensional lattice   evolves as follows.

Each individual dies at rate 1.

Let   and   in   be such that  . An individual at   gives birth to an individual at   at rate  .

There is no limit on the number of individuals per site.

Let    be a natural number. We are interested in a branching random walk restricted to 

 with the following boundary conditions. No births are allowed from

the inside of    to the outside or vice versa. In other words, if the population is to survive, it has to

survive on its own on the finite set of sites  .
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We will show that if  , the population on    survives for all  . On the other hand, if 

, the population dies out for all  .

When  , things get more interesting. Our main result is the following.

Let  . Then there exists a natural number    such that if  , the population

restricted to   dies out with probability 1, while if  , the population has a positive probability

of surviving (i.e., there is at least one individual alive in   at all times).

2. Discussion

Our result may have some relevance from a theoretical ecology point of view. It is well known that habitat

fragmentation is one of the main causes of species extinction; see, for instance, [1]. Fragmentation results

in less contiguous space but also in lower quality of the habitat. As a result, one expects lower birth rates

and higher death rates. This in turn can cause the extinction of a population. In contrast to this scenario,

our model shows that even with no change in birth and death rates, the population will die out for being

too close to the edge (i.e.,   is too small). Note that there is no limit on the number of individuals per site,

so the population could grow at the center, where the birth rates are maximum. Our result shows that it

does not if the edge is too close. Moreover, in this model, the boundary is minimal (two sites at   and 

). This should be helpful to the population since boundary sites are the only ones with a lower birth

rate. But even with a minimal boundary, our model suggests that fragmentation can be fatal.

3. The proof

3.1. The construction

We start by giving an informal construction of the process. We first construct the process on the whole

line  . The same construction will be used to construct the process on   for all  . At time 0, the

initial configuration is assumed to have finitely many individuals on (finitely many) sites of  . Every

individual is assigned two Poisson processes, each with rate  . If the individual is at  , then at each

occurrence of the first Poisson process, a new particle is born at  . Similarly, at each occurrence of the

second Poisson process, a new particle is born at  . Every individual is also assigned an exponential

random variable with rate 1. At this exponential (random) time, the individual dies. To each new

individual, we again assign an exponential rate 1 random variable and two rate   Poisson processes, and

so on. All exponential random variables and Poisson processes are independent.
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Let  . We use the same exponential random variables and Poisson processes defined above to

construct the process on  . The only difference with the construction on the whole line is that we

suppress births from inside to outside and from outside to inside the box  . This allows the

construction of the process on   for all   on the same probability space.

3.2. Monotone properties

We now use this construction to show that the process (restricted or unrestricted) is increasing in  .

Assume that  . We construct the process with birth rate    and death rate 1 as indicated above.

From this construction, we get the process with rate   by filtering the births. That is, every time the 

 process has a birth, we flip a coin. With probability  , the birth happens for the   process. With

probability  , the birth does not happen for the   process. This is a well-known procedure to

obtain a rate   Poisson process from a rate   Poisson process (see Schinazi (2025)[2], for instance). This

coupling shows that at every fixed time and for every site of  , the   process has more individuals than

the   process. This is what we mean by stating that the process is increasing in  .

We now turn to a monotone property in  . Let   be two natural numbers. By the construction

above, we can simultaneously construct the processes on  , restricted to   and restricted to  . To get

the process restricted to   from the one on  , we suppress the births from inside   to outside   and

vice versa. We do the same for the process restricted to  . Since  , if a birth does not happen for

the process restricted to  , it certainly does not happen for the process restricted to  . However, there

are births that happen in    but not in  . Hence, at every fixed time and for every site, the process

restricted to    has more individuals than the process restricted to  . In this sense, the process is

increasing in  .

3.3. Tom Liggett’s result

We first deal with the case  . Consider the process on the whole line  . Every individual has a birth

rate of    and a death rate of 1. Hence, the process on    survives if and only if  . Note that for 

, the process restricted to   will die out for all   since (by our construction) the restricted

process has fewer individuals than the unrestricted one.

Let    be the total number of individuals alive at time    for the BRW restricted to  . Define the

critical value by

N ≥ 1

IN

IN

IN N

λ

<λ1 λ2 λ2

λ1

λ2 /λ1 λ2 λ1

1 − /λ1 λ2 λ1

λ1 λ2

Z λ2

λ1 λ

N <N1 N2

Z IN1 IN2

IN2 Z IN2 IN2

IN1 <N1 N2

IN2 IN1

IN2 IN1

IN2 IN1

N

λ < 1/2 Z

2λ Z λ > 1/2

λ ≤ 1/2 IN N ≥ 1

(N)At t IN

(N) = inf {λ > 0 : ( (N) ≥ 1~for all t) > 0}.λc Pλ At

qeios.com doi.org/10.32388/ZJ6VBH 3

https://www.qeios.com/
https://doi.org/10.32388/ZJ6VBH


Since   is an increasing function of  , if  , the population restricted to 

  survives forever with positive probability, while the population dies out if  . Actually, the

population also dies out when  , as will be explained below.

Tom Liggett ([3]) considered branching random walks on finite homogeneous trees. In the infinite tree,

each site has   neighbors. The finite tree    is obtained by retaining all those sites which can be

reached from the origin (i.e., a fixed site on the tree) with a path of length less than or equal to  . In the

particular case  ,   is exactly  .

The analysis in [3] is based on the representation of the branching random walk as a (non-spatial) multi-

type branching process. Such a process survives if and only if a certain known matrix has a strictly

positive eigenvalue. Using this fact, the critical value   is shown to be the smallest positive root of a

polynomial that can be computed recursively. This allows for the explicit computation of   (at least

for the first values of  ). In particular, we get  . Hence, the BRW restricted to   will survive

for    for all  . Moreover, the largest eigenvalue of the matrix mentioned above is 0 for 

. This shows that the BRW restricted to   dies out for  .

In  [3], it is also proved that the critical value of the branching random walk on    has the following

limit,

We are interested in the case  . Not surprisingly,   converges to   (i.e., the critical value of the

branching random walk on the whole line  ). We also note that   is strictly larger than 1/2 for all  .

See also [4] for an analogous (but less precise) result on   for all  .

Let  . Define

Since   converges to  , the set   is not empty. By the well-ordering principle,

it has a minimum,  . Thus, the BRW restricted to   with birth rate   survives for all  .

Since    we see that  . Therefore,    is a natural number such that 

. Hence, the brw restricted to    with birth rate    dies out all  . This

completes the proof of our result.
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