
Open Peer Review on Qeios

Riemann Hypothesis on Grönwall's Function

Frank Vega

Funding: No specific funding was received for this work.

Potential competing interests:  No potential competing interests to declare.

Abstract

Grönwall's function G is defined for all natural numbers n > 1 by G(n) =

σ(n)
n⋅ log logn  where σ(n) is the sum of the divisors

of n and log is the natural logarithm. We require the properties of extremely abundant numbers, that is to say left to

right maxima of n ↦ G(n). We also use the colossally abundant and hyper abundant numbers. There are several

statements equivalent to the famous Riemann hypothesis. We state that the Riemann hypothesis is true if and only if

there exist infinitely many consecutive colossally abundant numbers N < N ′ such that G(N) < G(N ′). In addition, we

prove that the Riemann hypothesis is true when there exist infinitely many hyper abundant numbers n with any

parameter u > 1. We claim that there could be infinitely many hyper abundant numbers with any parameter u > 1 and

thus, the Riemann hypothesis would be true.
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Introduction

As usual σ(n) is the sum-of-divisors function of n

∑
d∣nd,

where d ∣ n means the integer d divides n. In 1997, Ramanujan's old notes were published where it was defined the

generalized highly composite numbers, which include the superabundant and colossally abundant numbers [1]. A natural
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number n is called superabundant precisely when, for all natural numbers m < n

σ(m)
m <

σ(n)
n .

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)
n1+ϵ

≥

σ(m)
m1+ϵ

  for  (m > 1).

Every colossally abundant number is superabundant [2]. Let us call hyper abundant an integer n for which there exists 

u > 0 such that

σ(n)
n ⋅ (logn)u ≥

σ(m)
m ⋅ (logm)u   for  (m > 1),

where log is the natural logarithm. Every hyper abundant number is colossally abundant [[3], pp. 255]. In 1913, Grönwall

studied the function G(n) =

σ(n)
n⋅ log logn  for all natural numbers n > 1 [4]. We have the Grönwall's Theorem:

Proposition 1.

lim sup
n→∞ G(n) = eγ

where γ ≈ 0.57721 is the Euler-Mascheroni constant [4].

Next, we have the following Robin's results:

Proposition 2. Let 3 ≤ N < N ′ be two consecutive colossally abundant numbers, then

G(n) ≤ Max G(N), G(N ′)

when satisfying N < n < N ′ [[5], Proposition 1 pp. 192] .

Proposition 3. There are infinitely many colossally abundant numbers N such that G(N) > eγ when the Riemann

hypothesis is false [[5], Proposition 1 pp. 204]. There exist infinitely many colossally abundant numbers N such that 

G(N) < eγ [[5], Theorem 1 pp. 188], [[5], Proposition 1 pp. 204].

Proposition 4. Let 3 ≤ N < N ′ be two consecutive colossally abundant numbers, then there exists some ϵ > 0 such that

[[5], Proposition 1 pp. 192]

σ(N)
N1+ϵ

=

σ(N ′)
N ′1+ϵ

.

There are champion numbers (i.e. left to right maxima) of the function n ↦ G(n):

G(m) < G(n)

( )
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for all natural numbers 10080 ≤ m < n. A positive integer n is extremely abundant if either n = 10080, or n > 10080 is a

champion number of the function n ↦ G(n). In 1859, Bernhard Riemann proposed his hypothesis [6]. Several analogues of

the Riemann hypothesis have already been proved [6].

Proposition 5. The Riemann hypothesis is true if and only if there exist infinitely many extremely abundant numbers [[7],

Theorem 7 pp. 6].

We use the following property for the extremely abundant numbers:

Proposition 6. Let N < N ′ be two consecutive colossally abundant numbers and n > 10080 is some extremely abundant

number, then N ′ is also extremely abundant when satisfying N < n < N ′[[7], Lemma 21 pp. 12].

This is our main theorem

Theorem 1. The Riemann hypothesis is true if and only if there exist infinitely many consecutive colossally abundant

numbers N < N ′ such that G(N) < G(N ′).

The following is a key Corollary.

Corollary 1. The Riemann hypothesis is true when there exist infinitely many hyper abundant numbers N ′ with any

parameter u > 1.

Putting all together yields a new criterion for the Riemann hypothesis. Now, we can conclude with the following result:

Theorem 2. The Riemann hypothesis is true.

Proof. Note also that, for all u > 0 [[3], pp. 254]:

lim
n→∞

σ(n)
n ⋅ (logn)u = 0

and so, we claim that there could be infinitely many hyper abundant numbers with any parameter u > 1 and thus, the

Riemann hypothesis would be true. ◻

2. Central Lemma

Lemma 1. For two real numbers y > x > e:

y
x >

logy
logx .

Proof. We have y = x + ε for ε > 0. We obtain that
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logy
logx =

log(x + ε)
logx

=

log x ⋅ (1 +

ε
x )

logx

=

logx + log(1 +

ε
x )

logx

= 1 +

log(1 +

ε
x )

logx

and

y
x =

x + ε
x

= 1 +

ε
x .

We need to show that

1 +

log(1 +

ε
x )

logx < 1 +

ε
x

which is equivalent to

1 +

ε
x ⋅ logx < 1 +

ε
x

using the well-known inequality log(1 + x) ≤ x for x > 0. For x > e, we have

ε
x >

ε
x ⋅ logx .

In conclusion, the inequality

y
x >

logy
logx

holds on condition that y > x > e. ◻

3. Proof of Theorem 1

( )

( ) ( )

( ) ( )
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Proof. Suppose there are not infinitely many consecutive colossally abundant numbers N < N ′ such that G(N) < G(N ′).

This implies that the inequality G(N) ≥ G(N ′) always holds for a sufficiently large N when N < N ′ is a pair of consecutive

colossally abundant numbers. That would mean the existence of a single colossally abundant number N ″ ≥ 10080 such

that G(n) ≤ G(N ″) for all natural numbers n > N ″  according to Proposition 2. Certainly, the existence of such single

colossally abundant number N ″  is because of the Grönwall's function G would become decreasing on colossally abundant

numbers starting from some single value. We use the Proposition 6 to reveal that under these preconditions, then there

are not infinitely many extremely abundant numbers. This implies that the Riemann hypothesis is false as a consequence

of Proposition 5. By contraposition, if the Riemann hypothesis is true, then there exist infinitely many consecutive

colossally abundant numbers N < N ′ such that G(N) < G(N ′).

Suppose that there exist infinitely many consecutive colossally abundant numbers N < N ′ such that G(N) < G(N ′). On the

one hand, let's assume from these infinitely many consecutive colossally abundant numbers N < N ′ such that 

G(N) < G(N ′), then there could be only a finite amount of these N ′ such that eγ < G(N ′). Thus, we deduce there could be

only a finite amount of colossally abundant numbers N ″  such that eγ < G(N ″). However, when the Riemann hypothesis is

false, then there are infinitely many colossally abundant numbers N ″  such that eγ < G(N ″) by Proposition 3. On the other

hand, let's assume from these infinitely many consecutive colossally abundant numbers N < N ′ such that G(N) < G(N ′),

then there could be an infinite amount of these N ′ such that eγ < G(N ′).

Based on this opposite assumption, it could appear the possible scenarios:

there would be an infinite increasing subsequence of colossally abundant numbers Ni such that eγ < G(Ni) and 

G(Ni) < G(Ni+1),

or there would be a colossally abundant number N ″  such that for all colossally abundant numbers N > N ″  we have 

eγ ≤ G(N), 

or there would be infinitely many consecutive colossally abundant numbers N < N ′ such that G(N) < eγ < G(N ′).

However, it cannot exist an infinite increasing subsequence of colossally abundant numbers Ni such that eγ < G(Ni) and 

G(Ni) < G(Ni+1), by Proposition 1 and the properties of limit superior. Moreover, there cannot be a colossally abundant

number N ″  such that for all colossally abundant numbers N > N ″  we have eγ ≤ G(N), since this implies that there are not

infinitely many colossally abundant numbers N‴ such that G(N‴) < eγ which is a contradiction by Proposition 3.

Furthermore, there are not infinitely many consecutive colossally abundant numbers N < N ′ such that G(N) < eγ < G(N ′),

because there exists some ϵ > 0 such that 

σ(N)
N1 +ϵ

=

σ(N ′ )
N ′ 1 +ϵ

 by Proposition 4. Certainly, we deduce that

G(N ′)
N ′ϵ

=

σ(N ′)
N ′1+ϵ ⋅ loglogN ′

=

σ(N)
N1+ϵ ⋅ loglogN ′

<

σ(N)
N1+ϵ ⋅ loglogN =

G(N)
Nϵ

<

eγ

Nϵ
.

Finally, we obtain as contradiction that G(N ′) < eγ ≤ eγ ⋅
N ′

N
ϵ
 under our assumption that G(N) < eγ < G(N ′) since ( )
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N ′

N
ϵ

=

σ (N ′ )
N ′

σ (N)
N

≥ 1 holds due to every colossally abundant number is superabundant. Therefore, the Riemann

hypothesis would be true when there exist infinitely many consecutive colossally abundant numbers N < N ′ such that 

G(N) < G(N ′). ◻

4. Proof of Corollary 1

Proof. Suppose there exists a large enough hyper abundant numbers N ′ with a parameter u > 1. We know that N ′ must be

also a colossally abundant number. Let N be the greatest colossally abundant number such that N < N ′, which means

that N and N ′ is a pair of consecutive colossally abundant numbers. By definition of hyper abundant, we have

σ(N ′)
N ′ ⋅ (logN ′)u ≥

σ(N)
N ⋅ (logN)u

 which is the same as

σ(N ′) ⋅ (logN)u

N ′ ⋅ (logN ′)u ⋅ loglogN ≥

σ(N)
N ⋅ loglogN = G(N).

Hence, it is enough to show that

G(N ′) =

σ(N ′)
N ′ ⋅ loglogN ′

>

σ(N ′) ⋅ (logN)u

N ′ ⋅ (logN ′)u ⋅ loglogN

 which is equivalent to

(logN ′)u

(logN)u >

loglogN ′

loglogN .

 Since u > 1, then we only need to show that the inequality

logN ′

logN >

loglogN ′

loglogN .

holds on condition that logN ′ > logN > e by Lemma 1. Consequently, this arbitrary large enough hyper abundant numbers 

N ′ with a parameter u > 1 reveals that G(N) < G(N ′) holds on anyway. In this way, if there exist infinitely many hyper

abundant numbers N ′ with any parameter u > 1, then there are infinitely many consecutive colossally abundant numbers 

N < N ′ such that G(N) < G(N ′). Finally, the proof is complete by Theorem 1. ◻

( )
( )
( )
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5. Conclusions

Practical uses of the Riemann hypothesis include many propositions that are known to be true under the Riemann

hypothesis and some that can be shown to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothesis is

closely related to various mathematical topics such as the distribution of primes, the growth of arithmetic functions, the

Lindelöf hypothesis, the Large Prime Gap Conjecture, etc. Certainly, a proof of the Riemann hypothesis could spur

considerable advances in many mathematical areas, such as number theory and pure mathematics in general.
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