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Abstract

Grönwall's function G is defined for all natural numbers n > 1 by G(n) =

σ(n)
n⋅ log logn  where σ(n) is the sum of the divisors

of n and log is the natural logarithm. We require the properties of colossally abundant numbers in relation to the

Grönwall's function G. There are several statements equivalent to the famous Riemann hypothesis. We state that the

Riemann hypothesis is true if and only if there exist infinitely many pairs (N, N ′) of consecutive colossally abundant

numbers N < N ′ such that G(N) < G(N ′). Using this new criterion, we prove that the Riemann hypothesis is true.
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Introduction

As usual σ(n) is the sum-of-divisors function of n

∑
d∣nd,

where d ∣ n means the integer d divides n. In 1997, Ramanujan's old notes were published where it was defined the

generalized highly composite numbers, which include the superabundant and colossally abundant numbers [1]. A natural

number n is called superabundant precisely when, for all natural numbers m < n
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σ(m)
m <

σ(n)
n .

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)
n1+ϵ

≥

σ(m)
m1+ϵ

  for  (m > 1).

Every colossally abundant number is superabundant[2]. In 1913, Grönwall studied the function G(n) =

σ(n)
n⋅ log logn  for all

natural numbers n > 1,[3]. We have the Grönwall's Theorem:

Proposition 1.

lim sup
n→∞ G(n) = eγ

where γ ≈ 0.57721 is the Euler-Mascheroni constant [3].

Next, we have the following Robin's results:

Proposition 2. Let 3 ≤ N < N ′ be two consecutive colossally abundant numbers, then

G(n) ≤ Max G(N), G(N ′)

when satisfying N < n < N ′ [[4], Proposition 1 pp. 192] .

Proposition 3. There are infinitely many colossally abundant numbers N such that G(N) > eγ when the Riemann

hypothesis is false [[4], Proposition 1 pp. 204] . There exist infinitely many colossally abundant numbers N such that G(N) < eγ

 [[4], Theorem 1 pp. 188], [ [4], Proposition 1 pp. 204] .

There are champion numbers (i.e. left to right maxima) of the function n ↦ G(n):

G(m) < G(n)

for all natural numbers 10080 ≤ m < n. A positive integer n is extremely abundant if either n = 10080, or n > 10080 is a

champion number of the function n ↦ G(n). In 1859, Bernhard Riemann proposed his hypothesis [5]. Several analogues of

the Riemann hypothesis have already been proved [5].

Proposition 4. The Riemann hypothesis is true if and only if there exist infinitely many extremely abundant numbers [[6],

Theorem 7 pp. 6].

We use the following property for the extremely abundant numbers:

Proposition 5. Let N < N ′ be two consecutive colossally abundant numbers and n > 10080 is some extremely abundant

number, then N ′ is also extremely abundant when satisfying N < n < N ′[[6], Lemma 21 pp. 12].

This is our main theorem

( )
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Theorem 1. The Riemann hypothesis is true if and only if there exist infinitely many pairs (N, N ′) of consecutive colossally

abundant numbers N < N ′ such that G(N) < G(N ′).

Putting all together yields a new criterion for the Riemann hypothesis. Now, we can conclude with the following result:

Theorem 2. The Riemann hypothesis is true.

Proof. Note that, for all u > 0 [[7], pp. 254]:

lim
n→∞

σ(n)
n ⋅ (logn)u = 0

and so, there are infinitely many pairs (N, N ′) of large enough consecutive colossally abundant numbers N < N ′ such that

logN
logN ′ u

≥

σ(N)
N

σ(N ′ )
N ′

for some u ≥ 1. The inequality G(N) < G(N ′) is equivalent to say

loglogN
loglogN ′

>

σ(N)
N

σ(N ′ )
N ′

.

In addition, we have

loglogN
loglogN ′

>

logN
logN ′

 since e < logN < logN ′ by Lemma 1. So, the following inequality

loglogN
loglogN ′ u

>

logN
logN ′ u

≥

σ(N)
N

σ(N ′ )
N ′

 holds. Hence, it is enough to show that

( )

( )
( )

( )
( )

( ) ( )

( )
( )
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loglogN
loglogN ′

≥

loglogN
loglogN ′ u

which is satisfied since u ≥ 1. Consequently, we obtain that G(N) < G(N ′) holds anyway. In this way, there are infinitely

many pairs (N, N ′) of consecutive colossally abundant numbers N < N ′ such that G(N) < G(N ′). Finally, the proof is

complete by Theorem 1. ◻

2. Central Lemma

Lemma 1. For two real numbers y > x > e:

y
x >

logy
logx .

Proof. We have y = x + ε for ε > 0. We obtain that

logy
logx =

log(x + ε)
logx

=

log x ⋅ (1 +

ε
x )

logx

=

logx + log(1 +

ε
x )

logx

= 1 +

log(1 +

ε
x )

logx

and

y
x =

x + ε
x

= 1 +

ε
x .

We need to show that

1 +

log(1 +

ε
x )

logx < 1 +

ε
x

which is equivalent to

( )

( )

( ) ( )
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1 +

ε
x ⋅ logx < 1 +

ε
x

using the well-known inequality log(1 + x) ≤ x for x > 0. For x > e, we have

ε
x >

ε
x ⋅ logx .

In conclusion, the inequality

y
x >

logy
logx

holds on condition that y > x > e. ◻

3. Proof of Theorem 1

Proof. Suppose there are not infinitely many pairs (N, N ′) of consecutive colossally abundant numbers N < N ′ such that 

G(N) < G(N ′). This implies that the inequality G(N) ≥ G(N ′) always holds for a sufficiently large N when N < N ′ is a pair of

consecutive colossally abundant numbers. That would mean the existence of a single colossally abundant number 

N ″ ≥ 10080 such that G(n) ≤ G(N ″) for all natural numbers n > N ″  according to Proposition 2. Certainly, the existence of

such single colossally abundant number N ″  is because of the Grönwall's function G would become decreasing on

colossally abundant numbers starting from some single value. We use the Proposition 5 to reveal that under these

preconditions, then there are not infinitely many extremely abundant numbers. This implies that the Riemann hypothesis

is false as a consequence of Proposition 4. By contraposition, if the Riemann hypothesis is true, then there exist infinitely

many pairs (N, N ′) of consecutive colossally abundant numbers N < N ′ such that G(N) < G(N ′).

Suppose that there exist infinitely many pairs (N, N ′) of consecutive colossally abundant numbers N < N ′ such that 

G(N) < G(N ′). On the one hand, let's assume from these infinitely many pairs (N, N ′) of consecutive colossally abundant

numbers N < N ′ such that G(N) < G(N ′), then there could be only a finite amount of these N ′ such that eγ < G(N ′). Thus,

we deduce there could be only a finite amount of colossally abundant numbers N ″  such that eγ < G(N ″). However, when

the Riemann hypothesis is false, then there are infinitely many colossally abundant numbers N ″  such that eγ < G(N ″) by

Proposition 3. On the other hand, let's assume from these infinitely many pairs (N, N ′) of consecutive colossally abundant

numbers N < N ′ such that G(N) < G(N ′), then there could be an infinite amount of these N ′ such that eγ < G(N ′).

Based on this opposite assumption, it could appear the possible scenarios:

there would be an infinite increasing subsequence of colossally abundant numbers Ni such that eγ < G(Ni) and 

G(Ni) < G(Ni+1),

or there would be a colossally abundant number N ″  such that for all colossally abundant numbers N > N ″  we have 

eγ ≤ G(N),

( ) ( )
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or there would be infinitely many pairs (N, N ′) of consecutive colossally abundant numbers N < N ′ such that 

G(N) < eγ < G(N ′).

However, it cannot exist an infinite increasing subsequence of colossally abundant numbers Ni such that eγ < G(Ni) and 

G(Ni) < G(Ni+1), by Proposition 1 and the properties of limit superior. Moreover, there cannot be a colossally abundant

number N ″  such that for all colossally abundant numbers N > N ″  we have eγ ≤ G(N), since this implies that there are not

infinitely many colossally abundant numbers N‴ such that G(N‴) < eγ which is a contradiction by Proposition 3.

Furthermore, there are not infinitely many pairs (N, N ′) of consecutive colossally abundant numbers N < N ′ such that 

G(N) < eγ < G(N ′). Certainly, we deduce that

G(N ′)
G(N) = 1 +

G(N ′) − G(N)
G(N) > 1 +

G(N ′) − G(N)
eγ

> 2 −

G(N)
eγ

.

We obtain a contradiction since the inequality 

G(N ′ )
G(N) +

G(N)
eγ

> 2 tends to be unsatisfied as long as N goes to infinity when 

G(N) < eγ < G(N ′) by Proposition 1. Therefore, the Riemann hypothesis would be true when there exist infinitely many

pairs (N, N ′) of consecutive colossally abundant numbers N < N ′ such that G(N) < G(N ′). ◻

4. Conclusions

Practical uses of the Riemann hypothesis include many propositions that are known to be true under the Riemann

hypothesis and some that can be shown to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothesis is

closely related to various mathematical topics such as the distribution of primes, the growth of arithmetic functions, the

Lindelöf hypothesis, the Large Prime Gap Conjecture, etc. Certainly, a proof of the Riemann hypothesis could spur

considerable advances in many mathematical areas, such as number theory and pure mathematics in general.
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