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Every mammalian species harbours a gut microbiota, and variation in the gut microbiota within

mammalian species can have profound e�ects on host phenotypes. Understanding the consequences

of gut microbiotas in mammalian evolution �rst requires testable hypotheses regarding the speci�c

modes by which they alter the adaptive landscapes experienced by hosts. Mechanisms underlying

adaptation to various gut microbiota during the evolutionary process remain poorly understood.

This study examines how the immune system of the host in�uences the molecular evolution and

adaptation of the gut microbiota in a variety of mammalian species. We assessed the evidence for the

gut microbiota's in�uence on mammalian evolution and diversi�cation. The maximum likelihood

approach was used to identify evidence of positive selection in immune genes. To identify codons

that underwent adaptive evolution, we looked for episodic and pervasive positive selection

throughout all branches of the mammalian evolutionary tree. Our �ndings reveal intriguing co-

evolutionary processes in which the host's immune system exerts selective pressure on immune

genes, resulting in adaptive changes in microbial populations. Our �ndings suggest that, in the

majority of mammalian species, episodic positive selection has played an important role in the

genetic development of species-speci�c gene sequences and divergence. Furthermore, we found

evidence of broad positive selection during the molecular evolution of immune genes on all branches

of the mammalian phylogenetic tree. These results suggest that the gut microbiota plays a crucial

role in in�uencing the way mammals adapt to their diet, their ability to change their physical

characteristics, the structure of their gastrointestinal system, and their immune response.
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Introduction

The gastrointestinal tract of mammals is a dynamic ecosystem with a high population of billions of

bacteria known as the gut microbiota. Animal gut microbiota is a complex symbiotic ecosystem that

undergoes continuous �uctuations. Environmental factors, including energy sources, and changes in

the niche induced by microbial colonizers, in�uence dynamic changes (Savage, 1977; Xu et al., 2007).

Microorganism growth is supported by carbon sources in the host's food and via the shedding of

epithelial cells. The quantity of viable microbial biomass is restricted by intestinal secretions and

peristalsis (Sonnenburg et al., 2005). Understanding the boundaries of microbiota stability is essential

for appropriately modeling biological systems and diseases in live organisms. Inbreeding can create

animals with identical genes in the host, but the microbiota, the microorganism community in the

host, varies based on factors like the supplier, housing facility, and speci�c cages used for

experiments. Di�erences in the microbiota seen in various colonies of inbred or targeted mouse

models can explain the di�erences in observed phenotypic outcomes across di�erent research

facilities (Mamantopoulos et al., 2017). In other cases, the dominance of potent traits from one

hazardous microbe could surpass any di�erences in the microbiota's makeup. Yet, in other cases,

variations in strains within a single organism might a�ect the interaction between the host and

microbes in a mutually advantageous manner. Establishing a genetically homogeneous colony of mice

can be achieved by standardizing the microbiota in their intestines, which has been comprehensively

sequenced and encompasses a wide variety of microbial species. This aims to provide uniform and

reproducible research projects across di�erent time periods and research institutes. Existing studies

on the microbiota have mostly been carried out for brief durations and have predominantly

concentrated on certain species (Barroso-Batista et al., 2014; Ramiro et al., 2020; Sousa et al., 2017).

The humoral immune response, comprising antibodies, cytokines, and other soluble proteins, is an

essential component of the host immune system that interacts with the gut �ora. It is crucial in

protecting against infections. The reciprocal relationship between the host and the gut microbiota has

garnered increasing attention in the scienti�c community as a co-evolutionary link. Genetic

compositions of host and microbial communities have been shaped by internal and external

evolutionary pressures over millions of years. This has resulted in a delicate equilibrium that improves

the overall health and �exibility of the host organism. A thorough understanding of how the molecular

evolution of the gut microbiota intersects with the selection pressures impacting the host immune

system, particularly in respect to humoral immunity, is lacking despite distinct investigations on
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these topics. This topic continues to be intriguing and demanding for researchers. Humoral immunity

is a crucial element of the adaptive immune system. It produces antibodies and orchestrates

immunological reactions against various illnesses. The immune system faces continuous challenges,

leading to an ongoing interaction between the host and its gut �ora. The host's immune system

in�uences the microbial populations in the gastrointestinal tract through selection forces. The gut

microbiota in�uences the host's immune system through many mechanisms, contributing to the

regulation of immunological equilibrium and tolerance. Advancements in high-throughput

sequencing technology and bioinformatics tools have greatly enhanced our ability to analyze the

intricate molecular processes involved in host-microbiota interactions. The utilization of these

approaches provides extraordinary opportunities to examine the genetic traits of both hosts and the

microorganisms that exist within them. This enables a more in-depth research of the mutually

important dynamics that have altered the ecology of the mammalian gut. These methods allow for a

thorough examination of how the gut microbiota's genetic development is a�ected by the host's

humoral immune system. The objective of this study is to investigate a number of fundamental

problems that pertain to the coevolution of the host and the microbiota. What molecular changes do

gut microbiota undergo in response to the host's humoral immune responses? How do these

adaptations di�er among various mammalian species? Do preservative mechanisms or distinctive

characteristics exist that establish the co-evolutionary connection between the host's humoral

immunity and the gut microbiota? In order to investigate these inquiries, we will conduct an extensive

examination of the genetic variation present in the gut microbiota of several mammalian species. Our

goal is to use advanced bioinformatics approaches to �nd genetic patterns that show positive

selection. This will help us understand how the host's immune system a�ects the gut microbiota in

terms of evolution. Furthermore, we will explore the practical consequences of these adaptations,

aiming to decipher the fundamental mechanisms that propel the observed molecular evolution. The

gut microbiota has been linked to a wide range of health issues, including metabolic disorders and

autoimmune diseases. Comprehending the changes that occur in the microbiota due to the host's

immune system can lead to the development of novel treatment approaches that try to manipulate the

gut microbiota in order to improve the body's antibody-based immune responses. This research

aimed to investigate the rapid evolution of GBP5, GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and

TRAT1 genes and o�er an explanation for the signi�cant sequence divergence found in di�erent

animal species. We showed that these genes underwent rapid evolution due to positive selection. We

examined that genes evolved rapidly due to positive selection.

qeios.com doi.org/10.32388/ZVXT3A 3

https://www.qeios.com/
https://doi.org/10.32388/ZVXT3A


Materials and Methods

Data collection

The sequences of the coding sections of the GBP5, GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and

TRAT1 genes utilized in the analysis were obtained from NCBI. We used gene sequences from the

genomes of representatives of various mammalian species (Supplementary Table S1). The whole-

genome yak sequences were retrieved from the Ensembl database. The amino acid and nucleotide

sequences of GBP5, GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1, which are important for

gut microbiota adaptation, are expressed in mammalian species. Ensembl was accessed to get the

coding sequences for these genes, all of which cover various mammalian species. This was done based

on the gene annotation (two conserved neighboring genes)  [1]. The BLASTn v2.2.29+ algorithm was

used to choose the most e�ective sca�old  [2]. Checking for a start and stop codon was part of the

annotation process that was carried out with MITOS [3]. MACSE v1.01b [4] and ClustalW v2 aligned the

protein-coding and ribosomal genes  [5]. We eliminated any genes that were less than a third of the

length of the overall locus alignment.

Interspeci�c Sequences alignments

The nucleotide sequences of the GBP5, GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1 genes

were aligned separately using the ClustalW tool within the MEGA software v.7.0.14, using the default

parameters. The software Gblocks v.0.91b (Castresana, 2000; Talavera and Castresana, 2007) was

employed with standard settings to eliminate inaccurately aligned regions and di�ering segments.

Phylogenetic analysis

PartitionFinder v.1.1.1 (Lanfear et al., 2016) was utilized to determine the optimal partitioning scheme

and substitution models for each partition prior to conducting phylogenetic analysis. This was based

on the Akaike (AIC), corrected Akaike (AICc), and Bayesian (BIC) information criteria. We found that

the GTR + 0 + I model is the most suitable for molecular evolution. RAxML version 8.2.7 (Stamatakis,

2014) was utilized to generate the maximum probability unrooted tree with 10,000 bootstrap

replicates. It was unable to designate an outgroup for tree construction since orthologs of the GBP5,

GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1 genes were not found in the genomes of other

organisms. Phylogenetic trees were constructed using gene sequence data from the mammalian GBP5,
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GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1 genes to show the evolutionary connections

and alterations in these genes over time. Phylogenetic trees were created using MEGA (Molecular

Evolutionary Genetics Analysis) version 10.0.5 [6] using a maximum likelihood method. The topology

of the tree we built with the neighbor-joining method was evaluated by applying the maximum

likelihood method to the Whelan and Goldman (WAG) substitution model {m/7/}. To further evaluate

the stability of the tree structure, we conducted 1000 bootstrap repetitions. Gene trees and other

phylogenetic trees can be compared and evaluated with precision using the TreeBeST-generated

species tree as a benchmark (http://treesoft.svn.sourceforge.net/viewrc/treesoft/).

Codon-based positive selection analyses

The GARD program was utilized for the analysis of potential recombination events, as described by

Kosakovsky Pond et al. in 2006. Statistical tests were conducted using the CODEML algorithm in the

PAML software package v.4.8 to assess adaptive evolution in the GBP5, GZMB, IFNG, IRF7, KLRD1,

RTP4, TNFSF4, and TRAT1 genes due to positive selection. Site models (M8, M8a) and branch-site

models (M1a, A, A1) were employed to identify the likelihood of positive selection occurring at

particular sites throughout all branches of the phylogenetic tree or at speci�ed branches (referred to

as foreground branches) (Yang and Nielsen, 2002). Opposing models were compared using likelihood

ratio tests (LRTs) to identify the best-�tting model among M8 vs. M8a, M1a vs. A, and A1 vs. A. The

degrees of freedom (df) were calculated by subtracting the number of free parameters in the models

being compared. Positive selection was shown by the identi�cation of codons with a dN/dS ratio (ω)

exceeding one.

The optimal value of the Codon parameter was determined in the M1 model, with Hominidae as a

foreground clade, based on AIC, AICc, and BIC criteria. The parameter speci�es the equilibrium codon

frequencies in the codon substitution model. The correct branch lengths of the phylogenetic tree for

the codon-based analysis of positive selection were calculated using model M0 with �x length = 0. The

branch lengths were then �xed for all experiments with �x length = 2. Branch-site tests were

conducted on 35 speci�c branches and clades of the mammalian phylogenetic tree using strict (χ 2-

distribution of LRT statistics, P < 0.01) and relaxed conditions (50:50 mixture distribution of the χ 2-

distribution and a point mass of zero, P < 0.05). The lenient settings were used to reduce the chance of

a false-negative error, as the test is cautious under strict conditions (Zhang et al., 2005). The

Bonferroni correction and the Benjamini-Hochberg procedure were used to minimize the chances of a
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false-positive error caused by multiple testing (Anisimova and Yang, 2007). The BEB technique was

utilized over a major period of the LRT to identify codons likely to undergo positive selection, with PP

criteria set at 0.9 and 0.95. The IBS program version 1.0 showed the localization of areas experiencing

positive selection pressure in protein primary structures. We conducted further positive selection tests

using the MEME program within the HyPhy software package v.2.2.4 (Murrell et al., 2012) to con�rm

the reliability of our results.

To determine whether selective pressure acted on homologous nutritional pathway genes, we

compared the ratio of synonymous to non-synonymous substitutions (dN/dS). The ω was calculated

using the PAML codon-based ML approach, referred to as CODEML [7]. We used two di�erent PAML

models to determine whether there was a di�erence in the selective pressures exerted on the various

grasshopper lineages. In this analysis, we focused on the ω values at the ends of the branches. We

focused on the rate at which mutations have accumulated between modern species and their closest

reconstructed relatives. According to the free-ratio model  [8], the & values at each branch are

predictably random. Initially, positive selection was detected using the branch-site model in PAML [9].

The parameters for testing the null hypothesis were ω=1. The level of statistical signi�cance was

determined by employing a chi-square distribution, with the di�erence in the number of parameters

for the two models being equal to two times the di�erence in the log-likelihood values and the degrees

of freedom. The identi�cation of positive selection is frequently inconsistent due to di�erences

between di�erent approaches in terms of periods, assumptions, methodologies, and gene conversion

bias  [10]. The PAML site-branch model has been adjusted for multiple testing using Bonferroni's

correction with various parameters. Furthermore, we validated these �ndings using various

independent tools, including the HyPhy package [11]. We used site models (M1, M2, M8a, and M8) that

allowed variation between sites to determine the chance of each site in each gene being under positive

selection. This was done to assess the probability of each position within each gene. This model

detected signs of positive selection within the gene at a few speci�c locations during brief periods of

evolutionary time. Both the alternative model of positive selection (ω>1) and the null model of neutral

evolution (ω=1) were employed in the branch-site test to assess if each branch experienced selective

pressure. The alternative model of positive selection was selected for its prediction of higher selection

levels on each branch compared to the null model. We used this methodology to identify examples of

positive selection on a small number of genomic sites across all grasshopper lineages. We employed

the likelihood ratio test (LRT) to assess each paired model and chose the one that most closely �t our
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data. We used site models (M1, M2, M8a, and M8) that allowed variation between sites to determine

the chance of each site in each gene being under positive selection. This was done to assess the

probability of occurrence for each location inside each gene. This model detected signs of positive

selection within the gene at a few speci�c locations during brief periods of evolutionary time. Both the

alternative model of positive selection (ω>1) and the null model of neutral evolution (ω=1) were

employed in the branch-site test to assess selective pressure on each branch. The alternative model of

positive selection was selected due to its prediction that each branch will experience greater degrees of

selection compared to the null model. We used this methodology to identify examples of positive

selection on a small number of genomic sites across all grasshopper lineages. We employed the

likelihood ratio test (LRT) to assess each paired model and chose the one that most closely �t our data.

Protein domain and structure analysis

The positively selected sites from the previous stage were used for future structural analysis. We

utilized the protein secondary structure prediction program PSIPRED 4.0  [12]  and the AlphaFold2

protein structure database [13] to generate educated guesses about the degree of similarity between the

mammalian proteins' predicted secondary and tertiary structures. SCANSITE 4.0 was used to develop

predictions for the speci�c sites of kinase phosphorylation and binding domains, given a database of

81 mammalian kinases/domains  [14]. The output was then put through an additional �ltering phase

with the rigor level set to "high." After that, the linker sections and the domains were examined by

hand. To further understand the functional signi�cance of the putatively selected locations, we

superimposed them on the 3D structures of the proteins. Using the homology modeling software made

available by the I-TASSER server, we made predictions about the 3D gene structures  [15]. The

mammalian genome, received from GenBank, was used to deduce the protein sequences of positively

chosen genes. From UniProt  [16], we collected functional information regarding the presumptively

recognized genes as being positively selected.

Functional analysis

The protein sequences were evaluated using two free tools found online; Clustal W was used for

sequence alignment, and the LPIcom server was used to annotate amino acid similarities. This protein

was analyzed with the help of the online LPIcom server [17]. We classi�ed the detected proteins based

on their projection at a particular gene ontology (GO) hierarchy level, emphasizing the GO 'Biological
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Process' (GOBP) class. To do this, we used the function 'groupGO,' which you can �nd here. The

'enrichGO' function was then used to execute enrichment tests for GOBP keywords based on a protein

kinase distribution against a background list of all proteins in the relevant annotation database. These

tests were conducted against a protein kinase distribution. To visualize all GO terms related to

nutrient metabolism, we used g: GOSt, a web tool in the g: Pro�ler suite

(http://biit.cs.ut.ee/gpro�ler/),  [18]  in conjunction with Cytoscape's Enrichment Map program

(http://www.baderlab.org/Software/EnrichmentMap)  [19]. We integrated information from these

large-scale transcriptome investigations with that from the Genotype-Tissue Expression (GTEx)

database Release V8 (dbGaP Accession phs000424.v8.p2)  [20]. This database o�ers information on

gene-level associations that explain how gene expression levels test and mediate impacts on

phenotypes [20].

Results

We employed the MirrorTree method (Ochoa and Pazos, 2010) to con�rm the co-evolution of the

GBP5, GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1 genes. We computed the Pearson

correlation coe�cients for the evolutionary distance matrices of phylogenetic trees obtained from

multiple sequence alignments of orthologous genes from several mammalian species. The Pearson

correlation coe�cient varied between 0.84 and 0.95, with a signi�cance level of 0.001. Phylogenetic

trees were compared in pairs, showing high Pearson correlation coe�cients, which con�rmed the co-

evolution of the GBP5, GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1 genes. We utilized

concatenated gene sequences that were matched to create a phylogenetic tree. Employing

concatenated gene sequences instead of individual gene sequences increased the statistical power of

the molecular evolution study and improved the accuracy of the resulting phylogenetic tree by

analyzing a greater number of substitutions. We generated an unrooted phylogenetic tree by merging

the coding sections of the GBP5, GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1 genes (Figure

1). The terminal nodes of the phylogenetic tree were strongly supported by bootstrap values and

closely matched known mammalian evolutionary relationships, with minor discrepancies.

Codon-based positive selection analyses

Before performing positive selection tests, we examined the sequences for recombination events since

recombination might lead to inaccurate positive outcomes. The maximum likelihood method was
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employed to study molecular evolution. Nucleotide sequences encoding proteins can help identify

evolutionary events involving either episodic or persistent positive selection. Positive selection

processes were tested during the molecular evolution of genes in the GBP5, GZMB, IFNG, IRF7, KLRD1,

RTP4, TNFSF4, and TRAT1 gene cluster. We utilized the CODEML tool to obtain log likelihood function

values for site models M8 and M8a. We conducted a likelihood ratio test (LRT) to identify sites

experiencing positive selection pressure (ω > 1) across all branches of the mammalian evolutionary

tree. The test's Likelihood Ratio Test (LRT) value of 175.19 with a p-value of 0.01 was statistically

signi�cant. In silico research showed that all branches of the mammalian phylogenetic tree, created

using concatenated sequences of the GBP5, GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1

genes, exhibit regions under positive selection pressure. We then employed the Bayes empirical Bayes

(BEB) approach to identify the sites. Sites having a posterior probability (PP) > 0.9 were considered to

have experienced positive selection in their evolution. Several amino acid positions have been

identi�ed as being under positive selection pressure across all branches of the evolutionary tree, with

speci�c probabilities and values assigned to each. Most of the possible sites were identi�ed inside the

conserved domains regions of the proteins in the cluster (Figure 1). We observed widespread positive

selection events in these genes' molecular history and also explored the potential impact of episodic

positive selection on the genes' molecular evolution. Positive selection typically happens by

in�uencing particular sites within speci�c clades and branches of a phylogenetic tree. After

calculating the log likelihood values for two branch-site models, we conducted Likelihood Ratio Tests

(LRT) on speci�c clades and branches of the mammalian phylogenetic tree under both strict and

lenient conditions. To investigate whether certain sites are under positive selection (ω>1) or under

relaxed negative selection in speci�c branches (foreground branches) of the mammalian phylogeny

compared to other branches, we initially used the branch-site test 1 (Zhang et al., 2005). Multiple

veri�ed phylogenetic branches and clades exhibited statistically signi�cant likelihood ratio test (LRT)

values. Under stringent criteria, selection events were identi�ed in 20 test branches, but under lenient

conditions, they were recognized in 27 test branches (Table 1). Even in lenient testing conditions, the

likelihood ratio test (LRT) scores for the branches and clades of the phylogenetic tree were not

statistically signi�cant. For these branches, we did not �nd evidence of relaxed negative selection or

positive selection. Test 1 could not distinguish between positive selection and relaxation of selective

constraint, so we utilized test 2, developed by the authors, to directly assess the presence of positive

selection in the lineages of interest. We tested the hypothesis that certain branches or groups of

branches in the phylogenetic tree are under positive selection pressure (ω>1) compared to other
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branches (A1 vs. A), for the branches and clades that passed test 1 (Zhang et al., 2005). We identi�ed

positive selection events in 15 out of 20 branches using strict criteria and in 26 out of 27 branches

under less strict conditions (Table 1). An in silico investigation of the molecular evolution of the GBP5,

GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1 genes (Figure 2) revealed independent positive

selection events in most branches of the mammalian phylogenetic tree.
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Figure 1. Analysis of the domain structure and selection of the proteins Trat1, Gbp5, Ifng, Irf7, Klrd1, Rtp4,

and Tnfsf4. This diagram, generated using the DOG 1.0 illustrator, displays the structural organization of

the GBP5, GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1 proteins, with a focus on the examination

of their conserved domains. Emphasis is given to the protein domains, speci�cally on the identi�cation of
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regions that are subject to positive selection. These sites are correlated with the three-dimensional

con�guration of proteins, exposing the adaptive evolution occurring at the molecular scale.

The increased positive selection rates on these sequences may be due to dS saturation or inadequate

taxon sampling, impacting the reconstruction of the ancestral sequence and the calculation of several

model parameters. It is widely known that this problem can sometimes yield inaccurately positive

outcomes. The positions in the primary protein structure of the genes GBP5, GZMB, IFNG, IRF7,

KLRD1, RTP4, TNFSF4, and TRAT1 were identi�ed using the corresponding �gures and table (Figure

3). Closely related populations and species of animals appear to have had rapid evolutionary

repercussions triggered by their microbiota, and it's possible that these e�ects have even impacted

the recent evolution of humans. The gut microbiota has helped in the adaptive evolution of

mammalian gut shapes designed to accommodate helpful microbes. The gut microbiota probably

contributed to the development of both innate and adaptive immune systems in mammals.
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Figure 2. Results for synonymous (α) and non-synonymous (β) rates at each site are displayed as bars,

representing maximum probability estimates. The estimations are shown by the line under the null model

(α=β). This value censors estimates that are more than 10.

qeios.com doi.org/10.32388/ZVXT3A 13

https://www.qeios.com/
https://doi.org/10.32388/ZVXT3A


Figure 3. Three-hit replacements frequently occur in non-synonymous substitutions. Three-hit

replacements with 3H+ support are substitutions that take place at sites with an ER (3H+:2H)

con�guration. Three-hit substitutions with a 2H but not 3H+ support are de�ned as replacements that

happen at locations where the ratio of ER (3H+:2H) is less than 1 and the ratio of ER (2H: 1H) is not

speci�ed. The histogram displays the branch lengths where the two types of substitutions are estimated to

take place.

Adaptation selection analysis

aBSREL detected evidence of episodic diversifying selection on two out of the 35 branches in the GBP5

phylogeny. There were a total of 35 branches that underwent o�cial testing for diversifying selection.
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The signi�cance of the results was evaluated using the Likelihood Ratio Test at a signi�cance level of p

< 0.05, after adjusting for multiple comparisons (Figure 4). The comprehensive �ndings table

provides information on the signi�cance and number of rate categories inferred at each branch (Table

1). aBSREL detected episodic diversifying selection on 9 out of 29 branches in the GZMB phylogeny

(Figure 4); 29 branches underwent formal testing for diversifying selection. The signi�cance was

evaluated using the Likelihood Ratio Test at a threshold of p < 0.05, following adjustment for multiple

testing. The full �ndings table contains information about the signi�cance and number of rate

categories inferred at each branch. aBSREL detected episodic diversifying selection on two branches

out of a total of 35 branches in the IFNG phylogeny (Figure 4). There were 35 branches that underwent

o�cial testing for diversifying selection. The signi�cance of the results was evaluated using the

Likelihood Ratio Test at a signi�cance level of p < 0.05, with adjustments made for multiple testing

(Figure 5). The comprehensive �ndings table contains information on the signi�cance and number of

rate categories inferred at each branch (Table 1). aBSREL detected episodic diversifying selection on 7

out of the 24 branches in the IRF7 phylogeny (Figure 4). There were 24 branches that underwent

o�cial testing for diversifying selection. The signi�cance of the results was evaluated using the

Likelihood Ratio Test at a signi�cance level of p < 0.05, after adjusting for multiple comparisons. The

comprehensive �ndings table provides information on the signi�cance and number of rate categories

inferred at each branch (Figure 4). aBSREL detected evidence of episodic diversifying selection on four

out of 35 branches in the KLRD1 phylogeny (Figure 4). There were a total of 35 branches that

underwent o�cial testing for diversifying selection. The signi�cance of the results was evaluated

using the Likelihood Ratio Test at a threshold of p < 0.05, with adjustments made for multiple testing.

The full �ndings table contains information about the signi�cance and number of rate categories

inferred at each branch. aBSREL detected episodic diversifying selection on 8 out of the 29 branches in

the RTP4 phylogeny (Figure 4). 29 branches underwent formal testing for diversifying selection. The

signi�cance was evaluated using the Likelihood Ratio Test at a threshold of p < 0.05, following

adjustment for multiple testing. The full �ndings table contains information about the signi�cance

and number of rate categories inferred at each branch. aBSREL detected episodic diversifying selection

on two out of the 58 branches in the TNFSF4 phylogeny (Figure 4). A grand total of 58 branches

underwent formal testing to assess the presence of diversifying selection. The signi�cance was

evaluated using the Likelihood Ratio Test with a threshold of p < 0.05, after adjusting for multiple

testing. The comprehensive �ndings table provides information on the signi�cance and number of

rate categories inferred at each branch. aBSREL detected evidence of episodic diversifying selection on
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two out of the 41 branches in the TRAT1 phylogeny (Figure 4). 41 branches underwent formal testing

for diverse selection. The signi�cance of the results was evaluated using the Likelihood Ratio Test at a

signi�cance level of p < 0.05, while accounting for multiple testing (Figure 5). The full �ndings table

contains information about the signi�cance and number of rate categories inferred at each branch

(Table 1).
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Figure 4. An aBSREL adaptive model tree was applied to analyze the full-length GBP5, GZMB, IFNG, IRF7,

KLRD1, RTP4, TNFSF4, and TRAT1 genes across mammalian species. The shade of the branches is

determined by the inferred ω distribution. Alleles that have been determined to be under positive selection,

with a statistical signi�cance of less than 0.05 after adjustment, are visually represented by thick black

branches.
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Figure 5. The Site Log-Likelihood analyses provide estimated ω rate distributions for the relative rate

distribution (mean 1) for site-to-site non-synonymous rate variation that �ts MG94 with double and

triple instantaneous substitutions.
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Gene Codon alpha beta alpha=beta LRT p-value Total branch length class

GBP5

5 0 1.69 0.968 7.776 0.0053 2.731 Diversifying

6 0 1.926 1.376 4.873 0.0273 3.884 Diversifying

11 0 1.322 0.989 3.856 0.0496 2.793 Diversifying

35 0 0.885 0.577 4.096 0.043 1.63 Diversifying

162 0.38 2.981 1.937 5.871 0.0154 5.467 Diversifying

215 0 1.642 1.11 4.856 0.0276 3.133 Diversifying

316 0 1.117 0.691 5.56 0.0184 1.951 Diversifying

421 0 1.445 1.029 4.402 0.0359 2.905 Diversifying

435 0 1.575 1.129 5.272 0.0217 3.188 Diversifying

446 0 1.281 0.834 5.359 0.0206 2.353 Diversifying

GZMB

75 0 0.983 0.723 3.012 0.0826 1.952 Diversifying

130 0 0.687 0.456 3.211 0.0731 1.23 Diversifying

132 0 0.823 0.576 2.811 0.0936 1.555 Diversifying

170 0 1.288 0.913 3.846 0.0499 2.463 Diversifying

172 0 1.002 0.728 3.047 0.0809 1.965 Diversifying

197 0 2.797 1.915 5.445 0.0196 5.168 Diversifying

215 0 2.9 1.964 6.379 0.0115 5.3 Diversifying

223 0 1.901 1.321 4.702 0.0301 3.564 Diversifying

237 0.54 4.06 2.613 4.7 0.0302 7.051 Diversifying

260 0 7.571 2.842 10.49 0.0012 7.669 Diversifying

281 0 0.841 0.576 3.523 0.0605 1.555 Diversifying

IFNG 21 0 1.194 0.783 5.309 0.0212 2.876 Diversifying

54 0 0.753 0.528 3.765 0.0523 1.94 Diversifying

99 0 1.096 0.743 4.438 0.0351 2.731 Diversifying

116 0.49 2.563 1.634 3.617 0.0572 6.006 Diversifying
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Gene Codon alpha beta alpha=beta LRT p-value Total branch length class

120 0.07 4.329 2.532 4.269 0.0388 9.306 Diversifying

IRF7

148 0 2.503 0.925 3.283 0.07 6.233 Diversifying

161 0 2.295 1.421 3.074 0.0796 9.571 Diversifying

179 0.09 2.456 1.742 3.37 0.0664 11.74 Diversifying

181 0.15 1.093 0.648 3.67 0.0554 4.368 Diversifying

253 0.07 2.787 1.1 2.921 0.0874 7.409 Diversifying

370 0 0.471 0.323 3.1 0.0783 2.175 Diversifying

474 0 1.294 0.412 11.68 0.0006 2.775 Diversifying

Klrd1

158 0.08 1.39 0.918 3.311 0.0688 5.077 Diversifying

189 0 0.942 0.644 3.101 0.0782 3.558 Diversifying

225 0 0.875 0.635 4.334 0.0374 3.508 Diversifying

235 0.32 1.809 1.207 3.914 0.0479 6.67 Diversifying

236 0 0.637 0.514 2.986 0.084 2.841 Diversifying

252 0.15 0.677 0.468 2.725 0.0988 2.586 Diversifying

268 0 3.421 2.215 5.524 0.0188 12.24 Diversifying

270 0.24 1.801 1.405 4.09 0.0431 7.764 Diversifying

272 0 3.33 2.213 7.117 0.0076 12.23 Diversifying

274 0 1.177 0.797 6.915 0.0085 4.408 Diversifying

276 0 0.966 0.682 6.166 0.013 3.768 Diversifying

289 0 0.699 0.561 3.249 0.0715 3.102 Diversifying

290 0.34 2.069 1.336 5.638 0.0176 7.384 Diversifying

292 0.06 2.599 1.503 7.414 0.0065 8.308 Diversifying

304 0 1.012 0.722 3.563 0.0591 3.99 Diversifying

Rtp4 25 0 1.342 0.792 2.842 0.0919 2.409 Diversifying

53 0 1.731 1.075 5.869 0.0154 3.267 Diversifying
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Gene Codon alpha beta alpha=beta LRT p-value Total branch length class

79 0 0.753 0.498 3.14 0.0764 1.514 Diversifying

85 0 1.043 0.766 2.946 0.0861 2.328 Diversifying

109 0 2.056 1.188 3.257 0.0711 3.611 Diversifying

125 0 1.369 0.92 3.1 0.0783 2.798 Diversifying

151 0 1.04 0.771 3.073 0.0796 2.343 Diversifying

152 0 0.622 0.424 3.04 0.0813 1.289 Diversifying

173 0.6 3.197 1.97 2.799 0.0944 5.988 Diversifying

184 0 2.512 1.525 8.134 0.0043 4.636 Diversifying

195 0 2.839 1.525 9.264 0.0023 4.635 Diversifying

196 0.07 3.725 2.159 3.891 0.0485 6.562 Diversifying

199 0 1.754 1.166 3.689 0.0548 3.545 Diversifying

208 0 1.088 0.829 3.178 0.0746 2.521 Diversifying

235 0 3.386 2.776 3.551 0.0595 8.438 Diversifying

249 0 4.603 2.443 4.928 0.0264 7.426 Diversifying

261 0 1.882 1.226 3.569 0.0589 3.725 Diversifying

282 0 1.833 1.101 2.833 0.0923 3.348 Diversifying

393 0 1.843 1.18 2.729 0.0985 3.586 Diversifying

403 0 1.823 1.029 2.932 0.0869 3.127 Diversifying

406 0 3.058 1.953 3.004 0.0831 5.937 Diversifying

409 0 8.143 7.189 3.489 0.0618 21.85 Diversifying

470 0 9.818 3.175 2.895 0.0888 9.651 Diversifying

479 0 22.38 18.44 4.826 0.028 56.06 Diversifying

570 0 1.937 1.298 2.82 0.0931 3.947 Diversifying

573 0 1.778 0.984 3.196 0.0738 2.991 Diversifying

578 0 1.92 1.075 2.932 0.0868 3.267 Diversifying
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Gene Codon alpha beta alpha=beta LRT p-value Total branch length class

582 0 4.18 2.174 4.207 0.0402 6.607 Diversifying

595 0.71 3.848 2.784 2.828 0.0926 8.461 Diversifying

611 0 2.891 1.571 4.372 0.0365 4.774 Diversifying

TNFSF4

19 0.43 1.408 0.984 2.793 0.0947 7.414 Diversifying

64 0.25 1.372 1.002 3.629 0.0568 7.546 Diversifying

158 0.3 1.67 1.239 3.188 0.0742 9.331 Diversifying

223 0 0.449 0.332 2.822 0.093 2.498 Diversifying

235 0 0.877 0.684 5.097 0.024 5.152 Diversifying

TRAT1

12 0 1.471 0.91 4.67 0.0307 2.959 Diversifying

21 0 0.492 0.299 2.895 0.0889 0.971 Diversifying

24 0 0.671 0.454 3.187 0.0742 1.475 Diversifying

58 0 0.862 0.651 2.756 0.0969 2.116 Diversifying

93 0 1.341 1.05 3.21 0.0732 3.413 Diversifying

118 0 0.804 0.55 3.787 0.0516 1.786 Diversifying

131 0 0.451 0.282 2.736 0.0981 0.917 Diversifying

Table 1. Detailed site-by-site results from the FEL analysis

Recombination analysis

The GARD analysis detected recombination breakpoints in the GBP5 gene. GARD analyzed a total of

13,556 models at a speed of 21.42 models per second. The alignment consisted of 1183 possible

breakpoints, resulting in a search space of 635810244030937500 models with a maximum of 7

breakpoints. However, the genetic algorithm only searched 0.00% of this search space (Figure 6). The

AICc score of the best-�tting GARD model, which permits di�erent topologies between segments

(29983.2), is compared to that of the model assuming the same tree for all partitions inferred by GARD

but allowing di�erent branch lengths between partitions (30120.2). This suggests that the multiple
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tree model may be preferred over the single tree model by an evidence ratio of 100 or greater,

indicating that at least one of the breakpoints represents a genuine topological incongruence. The

GARD analysis detected recombination breakpoints within the GZMB gene. GARD analyzed a total of

9905 models at a speed of 50.54 models per second. The alignment consisted of 458 possible

breakpoints, resulting in a search space of 166123556333 models with a maximum of 5 breakpoints.

However, the genetic algorithm only searched 0.00% of this search space (Figure 6). The AICc score of

the best-�tting GARD model, which permits di�erent topologies between segments (10967.6), is

compared to that of the model assuming the same tree for all partitions inferred by GARD but allowing

di�erent branch lengths between partitions (11723.4). This suggests that the multiple tree model may

be preferred over the single tree model by an evidence ratio of 100 or greater, indicating that at least

one of the breakpoints represents a genuine topological incongruence. GARD did not detect any signs

of recombination in IFNG. GARD analyzed a total of 2630 models at a speed of 49.62 models per

second. The alignment consisted of 409 possible breakpoints, resulting in a search space of 409

models with a maximum of 1 breakpoint (Figure 6). The genetic algorithm examined 643.03% of this

search space. The comparison of the AICc scores between the best-�tting GARD model, which permits

di�erent topologies between segments (9309.1), and the model that assumes the same tree for all

partitions inferred by GARD but allows di�erent branch lengths between partitions (9309.1), indicates

that the multiple tree model cannot be favored over the single tree model by an evidence ratio of 100 or

more. This suggests that some or all of the breakpoints may be indicative of rate variation rather than

topological incongruence. Notably, GARD detected evidence of recombination breakpoints in the IRF7

and KLRD1 genes. GARD analyzed a total of 12,831 models at a speed of 41.52 models per second. The

alignment consisted of 1253 possible breakpoints, resulting in a search space of 25635663809007

models with a maximum of 5 breakpoints (Figure 6). However, the genetic algorithm only searched

0.00% of this search space. The AICc score of the best-�tting GARD model, which permits di�erent

topologies between segments (23104.9), is compared to that of the model assuming the same tree for

all partitions inferred by GARD but allowing di�erent branch lengths between partitions (23164.6).

This suggests that the multiple tree model may be preferred over the single tree model by an evidence

ratio of 100 or more, indicating that at least one of the breakpoints represents a genuine topological

incongruence. GARD analyzed a total of 1419 models at a speed of 43.00 models per second. The

alignment consisted of 717 possible breakpoints, resulting in a search space of 257,403 models that

might have up to 2 breakpoints (Figure 6). The genetic algorithm examined only 0.55% of this search

area. Comparing the AICc score of the best-�tting GARD model, which permits di�erent topologies
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between segments (16444.6), with that of the model assuming the same tree for all partitions inferred

by GARD but allowing di�erent branch lengths between partitions (16511.0), indicates that the

multiple tree model is favored over the single tree model by an evidence ratio of 100 or more. This

suggests that at least one of the breakpoints represents a genuine topological incongruence. The

Genetic Algorithm for Recombination Detection (GARD) identi�ed recombination breakpoints in the

RTP4 gene. GARD analyzed a total of 11,981 models at a speed of 19.45 models per second. The

alignment consisted of 1041 possible breakpoints, resulting in a search space of 10,138,915,336,889

models with a maximum of 5 breakpoints. However, the genetic algorithm only examined 0.00% of

this search space. The Genetic Analysis and Recombination Detection (GARD) method did not detect

any evidence of recombination in the TNFSF4 gene. GARD analyzed a total of 1793 models at a speed of

23.29 models per second. The alignment consisted of 559 possible breakpoints, resulting in a search

space of 559 models with a maximum of 1 breakpoint (Figure 6). The genetic algorithm examined

320.75% of this search area. The GARD analysis detected recombination breakpoints in the TRAT1

gene. GARD analyzed a total of 2298 models at a speed of 69.64 models per second. The alignment

consisted of 442 possible breakpoints, resulting in a search space of 97903 models with a maximum of

2 breakpoints. The genetic algorithm searched 2.35% of this search area.
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Figure 6. Left: the algorithm's best estimate of where to put breakpoints for each number of breakpoints

taken into consideration. Correct: the increase in the c-AIC score (log scale) when breakpoint numbers

increase.
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Functional analysis

Initially, we identi�ed all terms that were statistically enriched, such as GO/KEGG terms, canonical

pathways, and hallmark gene sets. This was done based on either the default choices under Express

Analysis or the choices made during Custom Analysis. We then calculated accumulative

hypergeometric p-values and enrichment factors, which were used for �ltering. The remaining

important phrases were further organized into a hierarchical tree structure using Kappa-statistical

similarities among their gene memberships, similar to the approach employed in the NCI DAVID site.

A threshold of 0.3 kappa score was used to convert the tree into term clusters. The terms contained in

each cluster are exported in the Excel worksheet titled "Enrichment Analysis". We extracted a subset

of key phrases from the entire cluster and transformed them into a network layout. Each word is

depicted as a circular node, with its size according to the number of input genes associated with that

term. The color of the node indicates its cluster identi�cation, meaning nodes of the same color

belong to the same cluster. Terms that have a similarity score greater than 0.3 are connected by an

edge, with the thickness of the edge representing the similarity score. The network is shown using

Cytoscape, with a "force-directed" structure and edge bundling to enhance clarity. Positively chosen

sites have been found in the GBP5 protein, which contains the Guanylate-binding protein (GBP) and

the N-terminal domain of Interferon (IFN)-inducible GTPase. These pathogens are a wide variety of

bacteria, viruses, and protozoa, and they play signi�cant roles in innate immunity against them. After

infection, it is drawn to bacteria that have escaped from vacuoles or contain pathogens, and it

functions as a positive regulator of the assembly of in�ammasomes by encouraging the release of

ligands from the bacteria. This releases ligands that are recognized by in�ammasomes, such as

double-stranded DNA (dsDNA), that activates the AIM2 in�ammasome or lipopolysaccharide (LPS),

which activates the non-canonical CASP4/CASP11 in�ammasome. The GZMB protein has a trypsin-

like serine protease domain that contains the active site and is found in members of the trypsin family.

The serine proteases from the trypsin family exhibit catalytic activity through a charge relay system.

This system involves an aspartic acid residue that forms a hydrogen bond with a histidine, which in

turn forms a hydrogen bond with a serine. The IFNG protein, which possesses the IFN-gamma

domain, exhibits antiviral properties and plays a crucial role in regulating the immune system. This

substance is highly e�ective at stimulating macrophages and has the ability to inhibit the growth of

altered cells. It has the ability to enhance the antiviral and anticancer e�ects of type I interferons. The

interferon-regulatory factor 7 includes the truncated CREB-binding protein domain. The DRAF1
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(double-stranded RNA-activated factor 1) consists of these two subunits (Figure 8). The production of

viral double-stranded RNA (dsRNA) during viral transcription or replication results in the activation

of DRAF1. The DNA-binding speci�city of DRAF1 is directly related to the transcriptional stimulation

of ISGs (interferon-alpha, beta-stimulated genes). The protein IRF-3 is initially present in the

cytoplasm of cells that have not been infected, but it moves to the nucleus after a viral infection

occurs. The translocation of IRF-3 is accompanied by an elevation in phosphorylation of serine and

threonine residues, and its interaction with the CREB co-activator only takes place following

infection. The carbohydrate-recognition domain (CRD), often referred to as the C-type lectin domain

(CTL), is composed of around 110 to 130 amino acid residues. There are four cysteines that are

completely preserved and participate in the formation of two disulphide linkages. Lectins exhibit

signi�cant diversity in terms of both their structural composition and functional properties. The

ability to bind carbohydrates may have separately and occasionally evolved in multiple unrelated

families, with each family developing a structure that was conserved to serve a di�erent activity and

function. Animal lectins serve as recognition molecules in the immune system, playing roles in

pathogen defense, cell movement, immunological control, and the prevention of autoimmunity

(Figure 8). The protein known as tumour necrosis factor comprises a domain called TNF. Cytokines

that belong to a family can form complexes consisting of either three identical subunits or three

di�erent subunits. The p75 TNF receptor is responsible for mediating apoptosis produced by the

mature T-cell receptor through TNF. The GTEx database includes a crucial tool known as an

expression quantitative trait locus (eQTL) browser. This browser functions as a storage and graphical

display of data collected from a nationwide research initiative that sought to discover links between

genetic variants and high-throughput molecular-level expression phenotypes (Figure 9). It is worth

mentioning that a considerable number of genes display connections with di�erent tissues. Gbp5,

Gzmb, Ifng, Irf7, Klrd1, Rtp4, and Trat1 genes exhibit signi�cant expression in whole blood, whereas

Klrd1, Rtp4, and Trat1 genes revealed expression in the spleen (Figure 7). Tnfsf4 and Rtp4 have shown

expression in lymphocytes. Nevertheless, our examination of the mean expression levels of all

(signi�cant) genes using various enrichment techniques yielded inconclusive results about the tissues

that are expected to have a higher prevalence of diseases and well-established biological processes

(Table 2).
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Figure 7. Tissue-speci�c expression of GBP5, GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1 genes

in humans used as a reference genome. The expression data of these genes were revealed across various

tissues courtesy of the GTEx consortium.
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Figure 8. Detected all signi�cantly enriched terms, including GO/KEGG terms, canonical pathways, and

gene sets for GBP5, GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1. Selected key phrases from the

entire cluster and transformed them into a network arrangement. A protein-protein network was built by

extracting connections among the genes GBP5, GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1

from a data source of protein-protein interactions.
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Figure 9. Expression analysis of GBP5, GZMB, IFNG, IRF7, KLRD1, RTP4, TNFSF4, and TRAT1 proteins in

tissues.
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GO Category Description Count % Log10(P) Log10(q)

GO:0002252
GO Biological

Processes
immune e�ector process 7 33.33 -7.78 -3.46

GO:0001819
GO Biological

Processes

positive regulation of cytokine

production
7 33.33 -7.50 -3.46

WP5218 WikiPathways
Extrafollicular and follicular B cell

activation by SARS CoV 2
4 19.05 -6.67 -3.11

GO:0045589
GO Biological

Processes

regulation of regulatory T cell

di�erentiation
3 14.29 -5.69 -2.50

GO:2000107
GO Biological

Processes

negative regulation of leukocyte

apoptotic process
3 14.29 -5.09 -2.07

hsa04658 KEGG Pathway Th1 and Th2 cell di�erentiation 3 14.29 -4.46 -1.72

GO:0031348
GO Biological

Processes

negative regulation of defense

response
3 14.29 -3.00 -0.56

GO:1902532
GO Biological

Processes

negative regulation of intracellular

signal transduction
3 14.29 -2.13 0.00

GO:0048871
GO Biological

Processes

multicellular organismal-level

homeostasis
3 14.29 -2.10 0.00

Table 2. The network performed GO enrichment analysis to identify the underlying "biological meanings".

Discussion

The gut mucosal immune system functions as the interface between the internal body and the external

environment. The microorganisms present in the gut environment have a continuous impact on the

immune system, and in return, the immune system of the host has an in�uence on the makeup of the

microbiome. The intricate balance is maintained by a complex interplay between microbial activity,

the intestinal epithelium, and elements of the innate and adaptive immune system. The mucosal

surface's formation and development are crucial milestones in maintaining mammalian life from an
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evolutionary standpoint. We analyzed a group of 8 protein-coding orthologs (GBP5, GZMB, IFNG,

IRF7, KLRD1, RTP4, TNFSF4, and TRAT1) that are present in the genomes of humans, monkeys, dogs,

cats, cows, mice, and domestic yaks. Our goal was to identify signs of positive selection in these genes.

Within these genes exhibiting statistically signi�cant signals (P < 0.05 corrected), further analysis of

branch sites indicated the presence of positive selection speci�cally along the mammalian lineages.

The M8 model, which employs positive selection, was utilized to detect variations at the codon level. A

Markov Chain Monte Carlo (MCMC) model, implemented in MrBayes on the Selecton server, was

utilized to ascertain the disparity at the codon level. Values were calculated for each place in both

cases. The results of our study demonstrate that the coding sequences of eight genes exhibit domain

conservation when analyzed using MAFFT protein alignments (Figure 1). These �ndings indicate that

non-identical protein switches in areas undergoing purifying selection are detrimental to health and

therefore unlikely to become established during the process of evolution. Genetic transfers and

duplications are fundamental in the development of all major adaptive immune molecular systems on

a horizontal scale. Prior research on the evolution of immune genes in birds mostly examined the co-

evolution of disease hotspots, such as MAVS, in the context of in�uenza virus infection. They play a

role in activating lymphocytes, regulating the immune system, stimulating T regulatory cells, and

in�uencing the development and tolerance of autoimmunity. The impact of selection on host

organisms in regulating gut microbiota during the adaptive evolution of mammalian species remains

inadequately understood, despite the intricate mechanisms developed by our ancestors' predecessors.

Immune genes in mammalian genomes are evolving rapidly, suggesting the presence of pathogens

and co-evolutionary dynamics known as red-queen dynamics. The extent to which genetic variation

in immune genes is a�ected by di�erences in gut microbiota among mammalian species remains

uncertain. Bacteria can change rapidly during an evolutionary arms race, making it di�cult for

mammalian hosts to constantly adapt to control the microbiota, which also evolves to compete among

itself. Multiple veri�ed phylogenetic branches and clades exhibited statistically signi�cant likelihood

ratio test (LRT) values. Under stringent criteria, selection events were identi�ed in 20 test branches,

but under lenient conditions, they were recognized in 27 test branches (Table 1). Even in lenient

testing conditions, the likelihood ratio test (LRT) scores for the branches and clades of the

phylogenetic tree were not statistically signi�cant. For these branches, we did not �nd evidence of

relaxed negative selection or positive selection. Test 1 could not distinguish between positive selection

and relaxation of selective constraint, so we utilized test 2, developed by the authors, to directly assess

the presence of positive selection in the lineages of interest. We tested the hypothesis that certain

qeios.com doi.org/10.32388/ZVXT3A 32

https://www.qeios.com/
https://doi.org/10.32388/ZVXT3A


branches or groups of branches in the phylogenetic tree are under positive selection pressure (ω>1)

compared to other branches (A1 vs. A), for the branches and clades that passed test 1 (Zhang et al.,

2005). The functional repertoires in mammalian gut microbiotas have likely supported the evolution

and diversi�cation of chitin-eating and herbivory, the specialization of mammalian species and

communities on hazardous diets, and potentially even recent dietary changes in human evolution.

Furthermore, there is increasing evidence that animals have adapted to depend on signals from the

speci�c gut bacteria of their hosts during postnatal development and functioning. House mice

colonized with the gut microbiota of rats or humans did not exhibit fully di�erentiated T cell

repertoires, unlike those colonized with the gut microbiota of other house mice. Mammals have

evolved to rely on the speci�c gut microbiota of their hosts for guidance during postnatal growth and

function, as supported by a growing body of research. When house mice were colonized with the gut

microbiota of rats or humans, their T cell repertoires did not properly di�erentiate compared to when

they were colonized with the gut microbiota of other house mice. These �ndings suggest that the

immunological development of house mice has evolved to include components of their particular gut

�ora since the divergence of mice and rats. When germ-free house mice were inoculated with gut

microbiota from di�erent species within the genus Mus (Mus spretus and Mus pahari), they exhibited

reduced di�erences in body composition between males and females, larger livers, and slower growth

rates compared to those inoculated with their own gut microbiota. House mice have adapted to

integrate their distinct gut microbiota into their postnatal growth process since diverging from other

Mus species, as indicated by these results. The wild mouse gut microbiota has been shown to enhance

disease resistance and improve �tness in laboratory mice when compared to the altered gut

microbiome frequently present in laboratory mice. Additionally, mice injected with the gut

microbiotas of several Peromyscus species exhibited reduced digestive e�ciency compared to P.

polionotus animals treated with their own gut microbiota. The adaptation of a species to a new food is

a signi�cant driving force in the evolution of that species. The dietary modi�cations that occurred

throughout the development of several primate species, including humans, have been extensively

recorded across time (61,62). Additionally, some genes have been identi�ed as being involved in

positive selection driven by nutrition. An extensively researched instance can be observed in a

pancreatic ribonuclease present in old-world monkey species (63). Due to the monkey's dietary

changes, the protein in this species has developed an enhanced capacity to break down bacterial DNA.

Another instance is lysozyme, which facilitates the breakdown of intestinal microorganisms. This

protein has demonstrated positive selection in various primate groups, including humans (64,65).
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The langur monkey, a species that has developed a foregut fermentation mechanism of digesting

comparable to ruminants, provides the clearest understanding of the nature of this selection (64,66).

The cause for positive selection in humans is not well understood, although it has been hypothesized

that the transition to a diet mostly consisting of meat, which would have necessitated adaptations in

bacterial digestion, may have been a contributing factor (67,68). Studies of alanine-glyoxylate

aminotransferase (AGT), a gene that has di�erent functions in herbivores and carnivores, provide

support for this notion. Additionally, there is evidence of positive selection for this gene among simian

primates (69). aBSREL detected evidence of episodic diversifying selection on two out of the 35

branches in the GBP5 phylogeny. There were a total of 35 branches that underwent o�cial testing for

diversifying selection. The signi�cance of the results was evaluated using the Likelihood Ratio Test at

a signi�cance level of p < 0.05, after adjusting for multiple comparisons (Figure 4). While episodic

diversifying selection was found on 9 out of 29 branches in the GZMB phylogeny, aBSREL detected

episodic diversifying selection on two branches out of a total of 35 branches in the IFNG phylogeny

and 7 out of the 24 branches in the IRF7 phylogeny (Figure 4). aBSREL detected evidence of episodic

diversifying selection on four out of 35 branches in the KLRD1 phylogeny and 8 out of the 29 branches

in the RTP4 phylogeny (Figure 4). Furthermore, the mammalian innate and adaptive immune systems

are examples of evolutionary adaptations that were most likely motivated, at least in part, by the need

to control the gut microbiota's composition in ways that enhance host �tness. The immune system

o�ers mechanisms for distinguishing and getting rid of harmful germs while allowing healthy or

commensal microbes to coexist. Studies have demonstrated that the body's lack of immunological

components might have detrimental e�ects on the composition of the gut microbiota in hosts. For

instance, it has been demonstrated that the removal of Toll-like receptors from the host genome

causes disruptions in the makeup of the gut microbiota in mice, which in turn modi�es the host's

energy harvesting and metabolism in likely maladaptive ways {m/60/}. The GARD analysis detected

recombination breakpoints in the GBP5, GZMB, IRF7, KLRD1, RTP4, and TRAT1 genes. GARD analyzed

a total of 13,556 models at a speed of 21.42 models per second. The alignment consisted of 1183

possible breakpoints, resulting in a search space of 635810244030937500 models with a maximum of

7 breakpoints. However, the genetic algorithm only searched 0.00% of this search space (Figure 6).

The AICc score of the best-�tting GARD model, which permits di�erent topologies between segments

(29983.2), is compared to that of the model assuming the same tree for all partitions inferred by GARD

but allowing di�erent branch lengths between partitions (30120.2). This suggests that the multiple

tree model may be preferred over the single tree model by an evidence ratio of 100 or greater,
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indicating that at least one of the breakpoints represents a genuine topological incongruence. GARD

did not detect any signs of recombination in the IFNG and TNFSF4 genes. GARD analyzed a total of

2630 models at a speed of 49.62 models per second. The alignment consisted of 409 possible

breakpoints, resulting in a search space of 409 models with a maximum of 1 breakpoint (Figure 6).

The genetic algorithm examined 643.03% of this search space. The comparison of the AICc scores

between the best-�tting GARD model, which permits di�erent topologies between segments (9309.1),

and the model that assumes the same tree for all partitions inferred by GARD but allows di�erent

branch lengths between partitions (9309.1), indicates that the multiple tree model cannot be favored

over the single tree model by an evidence ratio of 100 or more. This suggests that some or all of the

breakpoints may be indicative of rate variation rather than topological incongruence. Similarly, the

makeup of the gut microbiota is di�erent in RAG1−/− mice, who do not have adaptive immune

systems. While all mammalian species have gut microbiota, the evolutionary consequences of

interacting with a gut microbiota probably vary from mammalian taxon to mammalian taxon.

Mammalian orders exhibit varying degrees of concordance between the makeup of the gut microbiota

and the phylogenetic history of the host, according to recent investigations  [21]. While the gut

microbiotas of certain animal orders—like bats—show relatively minor relationships with host

phylogeny, the gut microbiotas of most other orders exhibit robust evidence of phylogenetic signal.

Mammalian species may be spared the risk of evolutionary reliance on a particular gut microbiota if

there is no species-speci�c gut microbiome. In these circumstances, hosts might only evolve to

incorporate signals from ambient or non-speci�c microorganisms into their growth, as opposed to

signals from particular bacteria or groups of microbes. On the other hand, hosts might completely

stop depending on microbes for development. These theories highlight the necessity for manipulation

studies including a greater variety of mammalian species with gut microbiotas that di�er in terms of

phylogenetic signal.

Conclusion

The mammalian gut microbiota is a crucial component of the host's biotic environment and is

susceptible to host modi�cation. Interacting with gut microbiota has altered the environment in

which mammals adapt, leading to a wider range of dietary habits and incorporating the gut microbiota

into the host's ability to change physical characteristics by enhancing signals from the surroundings

and internal growth processes. The identi�cation of positively selected genes is occurring at an ever-
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increasing rate as a result of the rapid expansion of genomic data and the availability of increasingly

powerful analysis methods. Based on the data that is currently available, it would appear that the

majority of these genes are associated with a small number of functional domains. The identi�cation

of positively selected genes is occurring at an ever-increasing rate as a result of the rapid expansion of

genomic data and the availability of increasingly powerful analysis methods. Based on the data that is

currently available, it would appear that the majority of these genes are associated with a small

number of functional domains. It is possible that the identi�cation of genes that have been positively

selected, particularly those that are associated with the development of gut microbiota, could provide

molecular proof for the extraordinary strength of the selection pressure that has been driving the

evolution of our species. Furthermore, there are still numerous unresolved inquiries concerning the

ways in which the evolutionary e�ects of gut microbiota are observed throughout the mammalian

phylogeny. It is also unclear how these evolutionary e�ects are in�uenced by and contribute to the

speci�city of relationships between hosts and gut microbial lineages. Additionally, it remains

uncertain if any mammalian species have managed to overcome or avoid dependence on gut

microbiota for metabolism or signals to initiate adaptive phenotypic plasticity. While a considerable

number of genes have been recognized as subjects of positive selection throughout human and/or

primate evolution, these probably represent only a small portion of the total. The inclusion of more

genes and the mapping of gene sequence variations to functional changes may lead to the widespread

adoption of studying positively selected genes as a primary method for understanding human biology

and disease.
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