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Abstract

Given two Hamiltonians H0, H1 = H0 + V corresponding respectively
to a free particle Hamiltonian and the free particle Hamiltonian plus its
interaction energy with a scattering centre, we can compute the S-matrix,
i.e., the matrix that determines the quantum mechanical amplitude of the
process involving a particle coming from a free particle state at an infinite
distance from the scattering centre at time t = −∞, entering into an ini-
tial scattered state, interacting with the scattering centre, entering into a
final scattered state, and then escaping away to infinity at time t → ∞
to a final free particle state. Such amplitudes were first studied by Lipp-
mann and Schwinger (Steven Weinberg, The Quantum Theory of Fields,
Vol. 1, W.O. Amrein, Hilbert Space Methods in Quantum Mechanics) and
then analyzed in a mathematically precise way by [T. Kato], [W. Amrein],
and [K.B. Sinha]. In this paper, we first derive the Lippmann-Schwinger
equation for the input and output scattered states in terms of the input
and output free particle states using intuitive arguments originally due to
Lippmann and Schwinger, and then, using rigorous operator theoretic ar-
guments revolving around the spectral theorem for unbounded self-adjoint
operators in a Hilbert space, we obtain an elegant formula for the scat-
tering matrix elements in terms of the interaction potential and the free
particle Hamiltonian between two free particle states corresponding to the
same measure. We then discuss a computationally more efficient method
based on the Dyson series expansion (Steven Weinberg, The Quantum
Theory of Fields, Vol. 1), which works even in the case when the interac-
tion Hamiltonian is time varying, in contrast to the Lippmann-Schwinger
method, for calculating the S-matrix. We assume that the scattering
potential, which can be time varying, can be controlled by incorporat-
ing control parameters and explain how the resulting unitary S-matrix
can be made to approximate a given unitary gate in infinite-dimensional
Hilbert space by optimizing the Hilbert-Schmidt/Frobenius norm distance
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between the given gate and the S-matrix gate, in which the latter is ap-
proximated by a truncated Dyson series. Of course, the S-matrix given
by the Dyson series is a Taylor series functional expansion in the inter-
action potential and hence is a highly nonlinear function of the control
parameters, and hence we propose numerical methods for such optimiza-
tion. We then observe that if the control parameters are taken as random
variables with joint moments, then the TPCP map involving statistical
averaging of the adjoint action of the S-matrix acting on an initial mixed
state w.r.t. the probability distribution of the control parameters will re-
sult in a final mixed state that is linear in the statistical moments of the
control parameters, and hence optimization w.r.t. these moments can be
easily carried out. Our method of TPCP map design is to optimize the
sum of Frobenius distance squares between a sequence of desired output
mixed states and the S-matrix based formula for the TPCP map acting
on the corresponding input mixed states w.r.t. the statistical moments
of the control parameters. We then generalize this method to include the
case of TPCP maps obtained from the Hudson-Parthasarathy quantum
noisy Schrödinger equation. In summary, we simulate the S-matrix gate
for independent realizations of the control parameters having a proba-
bility distribution defined by their joint moments obtained by the above
optimization procedure and apply the adjoint action of these independent
S-matrices on a given input state, and take their ensemble average to ob-
tain a good approximation to the action of the desired TPCP map on any
given input state. This suggests that TPCP maps of arbitrarily large size
can be realized using scattering experiments in the laboratory.

1 Introduction

We first focus on quantum gate design using quantum scattering theory. The
design of unitary gates or TPCP maps using quantum scattering theory ex-
periments enables us to design gates of very large size to implement quantum
signal processing operations like the quantum Fourier transform, quantum tele-
portation of states, quantum phase finding, and quantum order finding and
factoring, Grover’s search algorithm, etc. The materials required to implement
such a quantum gate would involve the purchase of lasers and graphene waveg-
uides to perform ion trap experiments. As a first attempt, we shall use just
software to implement the quantum gates and TPCP maps. We then focus on
the design of an elementary Cq communication system wherein the transmitter
generates a state dependent upon the classical source sequence to be trans-
mitted. This transmitted state gets tensor-coupled to the noisy channel bath,
generating quantum noise as per the Hudson-Parthasarthy quantum stochastic
calculus, and then the channel noise also gets coupled to the receiver so that
the final state of the receiver, given by the partial trace over the transmitter
and channel Hilbert spaces of the unitary action of the total system on the ini-
tial tensor product state, becomes a function of the source alphabet, which had
initially been encoded as the initial transmitter state. The standard methods

2



of Cq coding theory can be applied to decode the source sequence from the re-
ceived state using detection operators. This study would enable us to simulate
real quantum systems using our simplified model. In addition to this, the pur-
chase of the Tenerife quantum computer, based on the interference of photons
rather than on electricity, would enable us to incorporate our designed gates
into such a computer and thereby speed up the operations of signal processing
(The quantum Fourier transform can be performed using O(n) multiplications
in contrast to O(n.log2n) required using a classical FFT).

2 Design of quantum gates using quantum scat-
tering theory

Taken from lecture notes of Harish Parthasarathy, NSUT
Let H0, H = H0 + V be two Hamiltonians. For |Φα > satisfying

H0|Φα >= E(α)|Φα >

we define states |Ψ±
α > by the Lippman-Schwinger equations

|Ψ±
α >= |Φα > +(Eα −H0 ± iϵ)−1V |Ψ±

α >

Then we see that

(Eα −H0 − V ± iϵ)|Ψ±
α >= (Eα −H0 ± iϵ)|Φα >= 0

or equivalently,
(Eα −H)|Ψ±

α >= 0

This suggests to us that even when the states |Φα >, |Ψ±
α > are not normal-

izable so that they belong respectively to the continuous spectra of H0 and H
with the same spectral value Eα, we can make sense of this equation. We shall
soon see that the states |Ψ±

α > are scattered states arising after interaction from
initial or final states |Φα > without interaction. Here, H0 is regarded as the free
particle Hamiltonian and H = H0 + V as the Hamiltonian of the particle after
interaction with the scattering centre that generates an interaction potential
V . Indeed, let |Φ > be an initial non-interacting state, so that it evolves as
|Φ(t) >= exp(−itH0)|Φ > and |Ψ∈ > as the scattered state into which the for-
mer evolves after scattering, so that it evolves as |Ψin(t) >= exp(−itH)|Ψin >.
The superscript in signifies that as t → ∞, the states |Φ(t) > and |Ψin(t) >
converge to each other. It follows then that

|Ψin >= Ω−|Φ >

where
Ω− = s.limt→−∞exp(itH).exp(−itH0)
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on an appropriate dense domain D− of the underlying Hilbert space H. Typ-
ically, |Φ > will belong to the continuous spectrum of the isometry Ω−. Note
that Ω∗

−Ω− = ID− while Ω−Ω
∗
− = P− is the orthogonal projection of H onto

R(Ω−) where ID− equals the identity operator on D− which extends uniquely
into the identity operator on H because the former is dense in the latter and
the identity operator is a bounded operator.

Likewise, we define |Ψout > as a scattered state evolving according to |Ψout(t) >=
exp(−itH)|Ψout > into the free particle state |Φ(t) >= exp(−itH0)|Φ > as
t → ∞ Therefore,

|Ψout >= Ω+|Φ >

where
Ω+ = s.limt→+∞exp(itH).exp(−itH0)|Φ >

again on a dense domain of H (By domain, we mean linear submanfold). Again
Ω∗

+Ω+ = ID+ while Ω+Ω
∗
+ = P+ where P+ is the orthogonal projection onto

R(Ω+) = R(P+), the domain of Ω+ while ID+ is the identity operator on
D+ which uniquely extends to the identity operator on H. It should be noted
that Ω− maps the continuous spectrum of H0 into the continuous spectrum
of H. Indeed, let E0 denote the spectral measure of H0 and E that of H.
Suppose |f > belongs to the continuous spectrum of H0. Then, the measure
B →< f |E0(B)|f >=∥ E0(B)|f >∥2 is absolutely continuous w.r.t the Lebesgue
measure on R. But then since

Ω−exp(isH0)|f >= exp(isH)Ω−|f >, s ∈ R

it follows that for any Borel subset B of R,

Ω−E0(B)|f >= E(B)Ω−|f >

which implies since Ω− is an isometry,

∥ E0(B)|f >∥2=∥ Ω−E0(B)|f >∥2=∥ E(B)Ω−|f >∥2

and therefore the measure B →∥ E(B)Ω−|f >∥2 is absolutely continuous w.r.t
the Lebesgue measure, proving the claim. The same is true for Ω+. We now
consider the Lippman-Schwinger equation in the form∫

g(α)exp(−iEαt)Ψ
±
α > dα =

∫
g(α)exp(−iEαt)|Φα > dα+

∫
g(α)exp(−iEαt)(Eα −H0 ± iϵ)−1V |Ψ±

α > dα

=

∫
g(α)exp(−iEαt)|Φα > dα+

∫
g(α)exp(−iEαt)(Eα−Eβ±iϵ)−1|Φβ >< Φβ |V |Ψ±

α > dα.dβ

Taking the plus sign in this equation, we observe that the integrand on the rhs
has a pole for the α-integral at Eα = Eβ − iϵ, in the lower half complex plane
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and further as t → −∞ the α-integral can be closed by extending the integral to
the upper half infinite semicircle since if Im(Eα) > 0, then Re(−iEα]t) → −∞
and the upper half semicircle will thus contribute zero in this limit. Further
the α-integral over the upper half closed semicircle will contribute zero since as
just observed, the poles of the integrand are all in the lower half complex plane.
Thus, we get

limt→+∞

∫
g(α)exp(−iEαt)Ψ

+
α > dα =

limt→+∞intg(α)exp(−iEαt)|Φα > dα

which proves that |Ψ+
α (t) > evolves to |Φα(t) > as t → +∞. Likewise, it is

proven that

limt→−∞

∫
g(α)exp(−iEαt)|Ψ+

α > dα =

limt→−∞

∫
g(α)exp(−iEαt)|Φα > dα

and hence that |Ψ−
α (t) > evolves to |Φα(t) > as t → −∞. This means that

|Ψ+
α >= Ω+|Φα >, |Ψ−

α >= Ω−|Φα >

The picture is therefore that the free particle state |Φα > having energy Eα

starting at time t = −∞ evolves to the in-scattered state |Ψ−
α > and this state

in turn gets scattered to the out-scattered state |Ψ+
β > which then evolves as

t → +∞ to the out-scattered state |Φβ > with the amplitude for this process
being given by

< Ψ+
β |Ψ

−
α >=< Φβ |Ω∗

+Ω−|Φα >

=< Φβ |S|Φα >= S(β, α)

S = Ω∗
+Ω− is the scattering matrix and it is a unitary matrix on the continuous

spectrum of H0 and can therefore be extended to a unitary matrix on the entire
Hilbert space H. S(β, α) defines the representation of the scattering matrix
w.r.t the free particle scattered states.

3 A method for calculating the matrix elements
of S relative to the spectrum of the free Hamil-
tonian H0

We have

Ω+ = I +

∫ ∞

0

d

dt
(exp(itH).exp(−itH0)))dt

= I + i

∫ ∞

0

exp(itH).V.exp(−itH0)dt
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Ω− = I −
∫ 0

−∞

d

dt
(exp(itH).exp(−itH0))dt

= I − i

∫ 0

−∞
exp(itH).V.exp(−itH0)dt

= I − i

∫ ∞

0

exp(−itH).V.exp(itH0)dt

Thus,
S − I = ω∗

+Ω− − ω∗
−Ω−

and

Ω∗
+ = I − i

∫ ∞

0

exp(itH0).V.exp(−itH)dt,

Ω∗
− = I + i

∫ ∞

0

exp(−itH0).V.exp(itH)dt

so that using
exp(−itH)Ω− = Ω−.exp(−itH0),

we get

S = Ω∗
+Ω− = Ω− − i

∫ ∞

0

exp(itH0).V.Ω−.exp(−itH0)dt

I = Ω∗
−Ω− = Ω− + i

∫ ∞

0

exp(−itH0).V.Ω−.exp(itH0)dt

= Ω− + i

∫ 0

−∞
exp(itH0).V.Ω−.exp(−itH0)dt

giving finally,

R = S − I = −i

∫ ∞

−∞
exp(itH0).V.Ω−.exp(−itH0)dt

= −i

∫ ∞

−∞
exp(itH0)V.exp(−itH0)dt

−
∫
t∈R,s∈R+

exp(itH0).V.exp(−isH).V.exp(i(s− t)H0)dtds

= −i

∫ ∞

−∞
exp(itH0)V.exp(−itH0)dt

−
∫
t∈R,s∈R+

exp(itH0).V.exp(−isH).V.exp(i(s− t)H0)dtds

= −i

∫
R3

exp(i(µ− λ)t)dE0(λ).V.dE0(µ)dt

−
∫
µ,λ,t∈R,s∈R+

exp(i(µ− λ)t)dE0(µ).V.exp(−is(H − λ)).V.dE0(λ)dtds
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= −2πi

∫
dE0(λ)V.dE0(λ)/dλ

+2πi

∫
dE0(λ).V.(H − λ)−1.V.dE0(λ)/dλ

Note that here we have made use of the identity∫
R
exp(i(µ− λ)t)dt = 2π.δ(µ− λ)

Thus, relative to a fixed energy λ of the spectrum of H0, the matrix of the
operator R = S − I is given by

R(λ) = −2π.i.(V − V.(H − λ)−1.V )

More precisely, suppose |λ, α > denotes an eigenstate of H0 of energy λ with the
index α running over the joint eigenvalues of a set of commuting variables that
along with H0 form a complete set of commuting variables. Then, the matrix
of R corresponding to the fixed eigenvalue λ of H0 or more precisely to a value
λ in the spectrum of H0 is given by

< β|R(λ)|α >=

−2π.i[< λ, β|V |λ, α > − < λ, β|V.(H − λ)−1.V |λ, α >]

= −2π.i[< λ, β|V |λ, α > − < λ, β|V.(H0 + V − λ)−1.V |λ, α >]

= −2π.i[< λ, β|V |λ, α > −
∫

< λ, β|V |λ′, β′ >< λ′, β′|(H0+V−λ)−1|λ′′, α′ >< λ′′, α′|V |λ, α > dλ′dβ′dλ′′dα′

In matrix notation, this expression can be expressed as

R(λ) = −2πi.[XVX∗ −X.V.(H0 + V − λ)−1V X∗]

where X = X(λ). The problem of gate design is then that we control V by
parameters θ so that V = V (θ) and choose θ so that R(λ) = R(λ|θ) is as close
as possible to a given matrix Rg = Sg−I = −2πiG, ie we solve the optimization
problem

argminθ ∥ G− [XV (θ)X∗ −X.V (θ).(H0 + V (θ)− λ)−1V (θ)X∗] ∥2

Specifically, we assume that

V (θ) = V0 +

p∑
k=1

θ[k]V [k]

and optimize w.r.t {θ[k]}pk=1. Note that in the above expression, X = X(λ)
is the matrix Row(< λ,α|, α ∈ F ) or equivalently, X∗ = Col(|λ, α >: α ∈ F )
where F is the index set over which the joint eigenvalues or spectral values of
all the commuting set of observables except H0 vary.
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4 Scattering theory for time-varying potentials
generated using random control parameters

The case of a time-varying interacting potential. Here, H(t) = H0 + V (t). We
write

U0(t) = exp(−itH0),

U(t, s) = T{exp(−i

∫ t

s

H(u)du)}, s ≤ t

It is well known (Dyson series) that

U(t, s) = U0(t).W (t, s)U0(s)
∗

where

W (t, s) = T{exp(−i

∫ t

s

Ṽ (u)du)}

with
Ṽ (t) = U0(t)

∗.V (t).U0(t) = U0(−t)V (t)U0(t)

Then,
Ω+ = limt→∞U(t, 0)∗U0(t),

Ω− = limt→∞U(0,−t)U0(−t)

so
S = Ω∗

+Ω− = limt→∞U0(−t)U(t,−t)U0(−t)

= limt→∞W (t,−t) = W (∞,−∞)

= I +
∑
n≥1

(−i)n
∫
−∞<tn<..<t1<∞

Ṽ (t1)...Ṽ (tn)dt1...dtn

Now writing

V (t) =

p∑
k=0

θ[k]V (k, t)

where θ(0) = 1, the problem is to choose θ(k), k = 1, 2, ..., p so that S = S(θ) is
as close as possible to a given unitary gate Gd, i.e., we solve the optimization
problem

minθ ∥ S(θ)−G ∥2

Note that writing
Ṽ (k, t) = U0(−t)V (k, t)U0(t)

we can write

S(θ) = I+
∑
n≥1

(−i)n
p∑

k1,...,kn=1

θ(k1), , , θ(kn)

∫
−∞<tn<...<t1<∞

Ṽ (k1, t1)...Ṽ (kn, tn)dt1...dtn
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= I +
∑
n≥1

(−i)n(θ⊗n ⊗ I)T
∫
−∞<tn<...<t1<∞

Ṽ (t1)⊗ ...⊗ V (tn)dt1...dtn

where the notation is that Ṽ (t1)⊗ ...⊗ Ṽ (tn) is a pn × 1 vector operator whose
(k1, ..., kn)

th entry in lexicographic order is given by Ṽ (k1, t1)...Ṽ (kn, tn). Now
the optimization problem in gate design can be expressed as

minθ ∥ I +
∑
n≥1

(θ⊗n ⊗ I)TGn −Gd ∥2

where

Gn = (−i)n
∫
−∞<tn<...<t1<∞

Ṽ (t1)⊗ ...⊗ Ṽ (tn)dt1...dtn

is a vector operator of size pn × 1. This optimization problem is hard to solve
because it is highly nonlinear. So we look at the following statistical problem.
Assume θ = [θ[1], ..., θ[p]]T to be a random vector with moments

µθ[n] ==< (θ⊗n >,n ≥ 1

Given an initial mixed state ρ(i), the final state after scattering is

ρ(f) =< S(θ)ρ(i)S(θ)∗ >=

∫
S(θ)ρ(i)S(θ)∗dP (θ)

=
∑

n,m≥0,k1,...,kn,l1,...,lm

< θ[k1]...θ[kn]θ[l1]...θ[lm] >

×
∫

Ṽ (k1, t1)...Ṽ (kn, tn)ρ(i)Ṽ (l1, s1)...Ṽ (lm, sm)dt1...dtnds1..dsm

=
∑

n,m≥0,k1,...,kn,l1,...,lm

µθ[k1, ..., kn, l1, ..., lm]

×
∫

Ṽ (k1, t1)...Ṽ (kn, tn)ρ(i)Ṽ (l1, s1)...Ṽ (lm, sm)dt1...dtnds1..dsm

5 Quantum gate design in the presence of quan-
tum noise based on the generalized quantum
stochastic calculus of Hudson and Parthasarathy

When noise corrupts the evolution of the particle interacting with the scattering
centre, then the free particle unitary dynamics is described as earlier by U0(t) =
exp(−itH0)⊗ IB , where IB is the identity operator in the Boson Fock space of
the noisy bath, while the perturbed dynamics is described by U(t) which satisfies
the H.P.qsde

dU(t) = (La
b (θ)dΛ

b
a(t))U(t)
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where
L0
0(θ) = −iH(θ), H(θ) = H0 + V (θ),

Thus, the scattering matrix in the tensor product of the system and bath Hilbert
spaces is given by

S(θ) = I+
∑
n≥1

(−i)n
∫
−∞<tn<...<t1<∞

Ma1

b1
(θ, t1)...M

an

bn
(θ, tn)dΛ

b1
a1
(t1)...dΛ

bn
an
(tn)

where

Ma
b (θ, t) = U0(−t)La

b (θ, t)U0(t) = exp(itH0)L
a
b (θ, t)exp(−itH0), a+ b ≥ 1,

Ma
0 (θ, t) = Ṽ (θ, t) = exp(itH0)V (θ).exp(−itH0)

Remark: Formally, we can consider the time-varying perturbing potential
to be V (θ) +

∑
a+b≥1 L

a
b (θ)dΛ

b
a(t)/dt and then, using the methods of standard

time-dependent scattering theory developed above, try to design the parameters
θ in a TPCP map acting on the states of the system Hilbert space with the bath
in a coherent state or in a mixture of coherent states given by

T (θ)(ρs) = TrB(S(θ)(ρs ⊗ ρB)S(θ)
∗)

so that T (θ) well approximates a given TPCP map G in the sense that for a
set of input-output system pair states (ρ1k, ρ2k = G(ρ1k)), k = 1, 2, ..., N T (θ)
gives the desired output, i.e., the optimal value of θ is given by

θ̂ = argminθ

N∑
k=1

∥ T (θ)(ρ1k)− ρ2k ∥2

is a minimum.
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